
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 

 

 

 

143 

Manuscript received April 5, 2012 

Manuscript revised April 20, 2012 

Enhanced Software Quality Metrics for Fault Prediction in 

Object Oriented Components using SVM Classifier 

C. NEELAMEGAM* Dr. M. PUNITHAVALLI** 

  
*  Sri Venkateswara College of Computer Applications and Management, Coimbatore, Tamil Nadu, India. Department of 

Computer Applications. 
** Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India Department of Computer Applications. 

 

Summary. 
Software quality metrics are defined as methods for 

quantitatively determining the extent to which an object oriented 

(OO) software process possess a certain quality attribute. 

Increase in software complexity and size is increasing the 

demand for new metrics to identify flaws in the design of OO 

system. This demand has necessitated this study to focus on 

adopting new metrics for measuring class complexities, for 

which established practices have yet to be developed. The 

proposed system works in two stages. The first stage presents 

new software metrics for measuring class complexity and the 

second stage analyzes the use of SVM classifier to predict faulty 

modules. Four new metrics, namely, Class Method Flow 

Complexity Measure, Friend Class Complexity Metric, Class 

Complexity from Inheritance and Class Complexity from 

Cohesion Measure, are proposed. These metrics, combined with 

20 existing metrics, are used during prediction using SVM. The 

performance of prediction system is analyzed in terms of 

accuracy, precision, recall and F Measure. The experimental 

results showed positive improvement in the performance of 

prediction with the inclusion of the proposed metric and SVM 

classifier. 

Keywords: 
Class Complexity, Object Oriented Quality Metrics, Software 

Fault Prediction, Support Vector machine.  

1. INTRODUCTION 

software quality metric is defined as methods for 

quantitatively determining the extent to which a software 

process, product or project possess a certain quality 

attribute. They are used to measure software engineering 

products (design, source code, etc), processes (analysis, 

design, coding, testing, etc.) and professionals (efficiency 

or productivity of an individual designer). The main aim of 

these techniques is to accurately identify and/or predict 

faulty modules which have direct impact on the three 

pillars of software product, namely, time, cost and scope. 

In the past few decades, software industries have realized 

the potential of using metrics to assess and improve the 

performance of developed projects, reduce time-to-market 

and improve customer satisfaction. Quality metrics can be 

categorized into process and product metrics.  

Process metrics focus on improving the software 

development and maintenance processes, while product 

metrics improve software products by reducing the 

complexity of design, size and increase usability. In 

general, they should, be simple to understand, be precisely 

defined, decrease the influence of manual intervention, be 

cost effective and be informative. Techniques and methods 

that identify and predict faults using these quality metrics 

has gained wide acceptance in the past few decades ([6], 

[7]).    

Existing metrics for fault module detection include CK 

metrics and Mood metrics along with traditional general 

metrics like simple metrics and program complexity 

measures. Traditional metrics do not consider OO 

paradigms like inheritance, encapsulation and passing of 

message and therefore do not perform well with fault 

prediction. The OO metrics have been developed 

specifically to analyze the performance of OO system. But, 

the increase in software complexity and size is increasing 

the demand for new metrics to identify flaws in the design 

and code of software system. This demand has 

necessitated the researchers to focus on adopting new 

metrics for which established practices have yet to be 

developed. This paper focus on such needs through the 

development of four metrics for OO design. In particular, 

this work analyzes metrics for measuring class 

complexities that can be used as a medium to identify 

design defects. For this purpose, four metrics based on 

flow of information, friend class/function, inheritance and 

cohesion are proposed. To analyze the performance of 

these metrics on fault module detection, the study proposes 

the use of SVM classifier.  

The rest of the paper is organized as follows. Section 2 

presents the four proposed metrics to calculate the 

complexity of the class. The methodology used by 

proposed prediction based classifier that uses existing and 

proposed metrics to predict faulty class is presented in 

Chapter 3. Several experiments were conducted to analyze 

the performance of the proposed metrics and SVM 

classifier to predict faulty modules. The results are 

presented and discussed in Section 4. Section 5 concludes 

the work with future research directions.  



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 

 

144 

2. Proposed metrics 

This section discusses four proposed complexity metrics 

and with all the metrics a high value denotes high 

excessive functional complexity and indicates serious 

design flaws that requires extensive testing and 

redesigning. 

2.1 Class Method Flow Complexity Measure 

(CMFCM) 

The two famous metrics, Cyclomatic complexity and the 

structural fan-in/fan-out, are concerned with the control 

flow of a program and ignore the data or information flow 

complexity. Information flow complexity focus on 

parameter passing and variable access details. Two 

measures that are used during information flow complexity 

are Fan-In and Fan-Out. Fan-In measures the information 

flow into the procedure, that is, it is the sum of number of 

parameters passed to a module from outside and global 

variables read by the same module. Fan-out, on the other 

hand, indicates the sum of number of return values of a 

module and global variables written by the same module.  

According to [14], the module complexity can be 

calculated as in Equation (1).  

CMFCM = (Fan-In * Fan-Out)
2
 + Code Length  (1) 

It is known fact that in object-oriented systems, the private 

data (internal data) of an object cannot be directly accessed 

by other objects and therefore programmers use parameter 

passing and return values. The Fan-In (FI) and Fan-Out 

(FO) measures for a method ‘m’ should taken into 

consideration these values and can be calculated using the 

following Equations (2) and (3). 

FI =1+ Nm1 + (NIP+ NPV+ NPU+ NLV + NGVR) + f( ) (2) 

FO = = 1 +  Nm2 + (NOP+ NGVW) + f( ) (3)     (3) 

where Nm1 is the number of objects called, Nm2 is the 

number of objects that call this method, NIP is No. of input 

parameters, NPV is the No. of protected variables, NPU is 

No. of public variables, NLV is the No. of Local variables, 

NOP is the number of parameters written to, NGVR and 

NGVW
 
are number of global variables read and written to 

and f( ) is a function which returns a value 1 if method ‘m’ 

returns a value, zero otherwise.  

Another property that has to be considered while 

considering OO systems is the coupling among entities. 

The Coupling Among Entities (CAE) is calculated as the 

sum of indirect coupling metric and direct coupling metric 

(Equation 4). 

CAE = DCM + IDCM (4) 

where DCM=














minParametersof.NominMethodsof.No

Ctheinparametersof.NoCinMethodsof.No  and 

ICM=Product of DCM of all methods in the length of two 

entities and C is the class and m is the method Consider, 

for example, a system with entity relationship as shown in 

Fig. 1.  

 

Fig. 1 : Sample Entity Relationship Diagram 

In this scenario, a direct coupling exists between entities 

(Ent-1, Ent-2), (Ent-2, Ent-3) and (Ent-3, Ent-4), while 

there is no direct coupling between entities Ent-1 and Ent-

4. This will produce a zero value to DCM(Ent-1, Ent-4). 

However, there is a path from Ent-1 to Ent-4 through Ent-

2 and Ent-3, which can be used during the calculation of 

coupling measure. Here the length between the entities 

Ent-1 and Ent-4 is 3 and the Indirect Coupling Measure is 

calculated as DCM(Ent-1, Ent-2) * DCM(Ent-2, Ent-2) * 

DCM(Ent-3, Ent-4). Now, Equation (1) can now be 

rewritten as 

CMFCM = (FI + FO) * CAE  * MCL (5) 

Here, the multiplicative operator in the traditional 

complexity measure is replaced by an additive operator. 

This modification was done to accommodate coupling 

among entities computation. This has the added advantage 

of reducing computation complexity. In the equation, 

MCL is the module code length and is calculated using 

Equation (6). 

MCL = LOC + MLOC + CLOC  + (CL * j) + BL (6) 

where LOC is the line of codes with comments and blank 

lines, MLOC is the multiline of code which is calculated 

as LOC * number of separate statements in the same line, 

CLOC is the line of code that contain comments and is 

calculated as the sum of LOC and number of comment 

lines. CL * j expression denotes the number of lines that 

contain more than one comment statement and BL denotes 

the blank lines. The proposed CMFCM metric is a method 

level metric.  

2.2 Friend Class Complexity Metric (FCCM) 

A friend class is defined as a function or method that can 

access all private and protected members of a class to 

which it is declared as a friend. While considering 

complexity measure for friend classes, the following 

characteristics have be noted.  

1. On declaration of friend class, all member functions 

of the friend class become friend of the class in which 

the friend class is declared. 

2. Friend class cannot be inherited and every friendship 

has to be explicitly declared. 

3. The friendship relation is not symmetric 

In the field of OO metrics for fault detection, studies on 

friend classes are minimum, inspite of its extensive usage 

Ent-1 Ent-2 Ent-3 

Ent-4 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 

 

145 

([8], [9]). Friend constructs are violation of encapsulation 

and will complicate a program, which in turn, makes 

debugging more difficult. Moreover, the task of tracking 

polymorphism also becomes more complex while using 

friend classes. According to Chidamber and Kemerer's 

principle only those methods which require additional 

design effort should be counted for metric measurement 

and inherited methods and methods from friend classes are 

not defined in the class and therefore, need not be included.  

However, it has been proved that the coupling that exists 

between friend classes increase fault proneness of a class 

[4]. These methods consider relationship and type of 

association between class attributes and methods and do 

not consider the relationship between friend attributes and 

external attributes. This section proposes a modified 

version, which considers this relationship and extends 

coupling metrics to use these friend metrics. Using these 

metrics, a new coupling measure to determine the class 

complexity is proposed. 

Coupling measure can be either Direct Coupling (DC) or 

Indirect Coupling (IDC). DC here refers to the normal 

coupling factor, while IDC refers to coupling while friend 

functions or classes are used. Thus the new coupling factor 

is defined as a sum of DC and IDC (Equation 7). 

CFNew = DC + IDC (7) 

DC is calculated using the method specified in Mood 

metric suite. The IDC of a class is calculated as average of 

Method IDC (MIDC) factor. The MIDC is modified to 

identify a factor called actual friend methods, which is 

introduced because generally, a friend class declaration 

grants access to all methods in a class but in reality only a 

few of these methods are actually called by other classes. 

The MIDC combined with this factor is calculated using 

Equation (8). 

MC

N

1i
VPCGFGVWGVR

N

N  N  N  )N  (N

MIDC

MC

iiiii
 

   (8) 

where NGF is the number of global functions, NPC is the 

number of messages to other classes and NV is the number 

of references to instance variables of other classes and 

NMC is the number of actual methods in the class which is 

calculated as the difference between the number of 

methods (NM) and Number of Hidden Methods (NHM) in 

a class (Equation 9). Hidden methods are methods that 

cannot be called on an object of the class without the use 

of the friend construct.  

NMC = NM – NHM (9) 

The number of hidden methods is calculated as the number 

of methods in a class that access hidden members of 

classes which declare the current class as a friend [12]. 

NHM is calculated as the sum of two measures. The first is 

the number the hidden methods belonging to other classes 

accessed by the class. This measure is called in this study 

as Number of EXternal Hidden Methods NHME. The 

second measure is the number of hidden methods that are 

invoked by other classes from the class. This measure is 

referred in this study as Number of Internal Hidden 

Methods NHMI. Thus NHM is calculated as 

NHM = NHME + NHMI (10) 

Using the above metric, the complexity measure can be 

calculated by modifying Equation (5) as given below 

FCCM = (FI + FO) * CFNEW * MCL (11) 

Again, this metric is a method level metric, where a 

high value indicates design flaws.   

2.3 Class Complexity from Inheritance (CCI) 

Inheritance a powerful mechanism in OO programming 

provides a method for reusing code of existing objects or 

establishes a subtype from an existing object, or both. 

Inheritance metrics are used to analyze various aspects of a 

program in terms of depth, breadth in a hierarchy and its 

overriding complexity. It can be used to measure class 

complexity as a measure of data / method shared from 

ancestor classes. The class complexity while taking 

inheritance into consideration depends mainly on the 

inheritance type (single, multiple, multi-level inheritance). 

Apart from this, while calculating the class complexity 

with respect to inheritance, the complexity imposed by 

inherited methods and inherited attributes should also be 

considered. Thus the proposed CCI metric considers the 

individual complexity of a class while taking the 

properties of inheritance into consideration (ICC), 

inherited method complexity (IMC) and inherited attribute 

complexity (IAC) and is calculated using Equation (12). 

CCI = ICC + IMC + IAC (12) 

where ICC of a class i is calculated as  

ICC = NA + 


AN

2i
iICC  (13) 

Here the ICC of the root of the inheritance tree is zero as it 

has no parent. Consider for example Fig.2 where, Class A1 

and A2 are inherited from Class A and are examples of 

single class inheritance, while Class A3 is inherited from 

Class A1, which is inherited from Class A and presents an 

example of multi-level inheritance. Class A4 and A5 

presents multiple inheritance as both are inherited from 

more than one class.  

 

Fig. 2. Example Class Inheritance Hierarchy 

From the inheritance hierarchy presented in the figure, the 

ICC of Class A and Class B is zero, as both do not have 

Class A Class B 

Class A1 Class A2 

Class A4 Class A3 Class A5 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 

 

146 

parent class. The ICC of Class A1 and A2 is calculated as 

1 + 0 [ICC(Class A)] = 1. The ICC for Class A3 = 1 + 

ICC(Class A1) + ICC(Class A) = 1 + 1 + 0 = 2.  Similarly, 

the ICC(Class A4) = 2 + ICC(Class A1) + ICC(Class A2) 

= 2 + 1 + 1 = 4, where 2 being the number of parents of 

A4. ICC(Class A5) = 2 + ICC(Class A2 ) + ICC (Class B) 

= 2 + 1 + 0 = 3. 

The ICC measure thus takes into consideration the depth 

of the class in the inheritance hierarchy, number of parents 

of the class and their depth in the inheritance hierarchy 

along with the type of inheritance. The IMC is calculated 

as  

IMC = (NPD * 1) + (NDD * 2) + (NUD* 3) (14) 

where NPD is the number of primary data variables, NDD is 

the number of derived data variables and NUD is the 

number of user defined data type variables. The 

classification of data types is similar to the one proposed 

by [1], who defined PD as in-built data types like int, float 

and char, DD as in-built structures like arrays and UD as 

user designed structures which are formed by combining 

PD and DD. Examples for UD includes structure, union 

and class. As suggested by the same author, a cognitive 

weight of 1, 2 and 3 are used along with NPD, NDD and NUD 

respectively. These cognitive weights are assigned 

according to the cognitive phenomenon suggested by [17] 

which assigns weight for PD=1, DD=2 and UD=3. 

Finally, IAC is calculated again by assigning cognitive 

weights to the control structures in the method. The 

control structures considered are sequence statements, 

branching statements, iterative statements and call 

statements. As suggested by [17] a value of 1, 2, 3 and 2 

are assigned to these statements respectively. 

2.4 Class Complexity from Cohesion Measure 

(CCCM) 

Cohesion of a class describes how the methods of a class 

are related to each other. In general, a high cohesion is 

desirable as it promotes encapsulation, while a low 

cohesion indicates high likelihood of errors, design change 

and high class complexity. This section presents a metric 

to calculate class complexity through cohesion measure. 

Four types of cohesion methods are used, namely, 

Cohesion Among Attribute in a class Measure (CAA), 

Ratio of Cohesion Interactions (RCI), Cohesion Among 

Methods in a class (CAMC) and Normalized Hamming 

Distance (NHD) Metric. Here RCI, CAMC and NHD are 

calculated using steps as provided by [5], [2], [10].  The 

RCI considers the data to method relationship, the CAMC 

considers the method-method interactions The CCCM 

metric is a metric that is included in this study to measure 

the degree of similarity among methods while considering 

attribute usage.  

 CCCM = CCM + RCI + CAMC / 3 (15) 

and CCCM is calculated as below. 

1) Calculate the number of methods in a class, M (={m1, 

m2, …}) 

2) Calculate the number of instance variables in each 

method, Vi ({=V1,V2, V3, …}, i  M)  

3) Calculate number of methods using each instance 

from V, NVi, as (M  Vi)-1. The value is 1 used to 

remove the attributes similarity dependency from the 

method it is declared. 

Step 4 : Calculate CCCM as 

xV)1M(

N
M

1i
Vi




   

     (16) 

To understand the CCM measure, consider the following 

code snippet showing four methods of a class. 

Class Sample 

{ AddRecord()   { int AccNo; char 

AccName [];   

float Balance;   

 …. } 

DeleteRecord()  { int AccNo;  

    …. } 

SearchAccount()  { int AccNo;  

    …. } 

UpdateAcc()   { int AccNo; float Balance;  

float WithDrawals; float Deposits;… }} 

From these codes, M=4 (={AddRecord, DeleteRecord, 

SearchAccount, UpdateAcc}) and V=5 (={AccNo, 

AccName, Balance, WithDrawals, Deposits}). 

NV1={AccNo,AccName,Balance, WithDrawals, Deposits} 

 {AccNo, AccName, Balance}=3–1=2. Similar 

calculations for NV2, NV3, NV4 produces the values 0, 0 and 

3 respectively. With these values the CCM measure can be 

calculated as CCCM = (2+0+0+3)/(4*(5-1))=5/16=0.3. 

3. FAULT PREDICTION USING OBJECT 

ORIENTED METRICS 

The present study proposes the use of machine learning 

algorithm to analyze the performance of the proposed 

metrics in predicting design flaws in OO programs. The 

proposed method consists of four steps. (i) Selection of 

metrics  (ii) Dimensionality Reduction (iii) Normalize the 

metric values and (iv) Implement prediction model. Here 

the prediction model is proposed as a binary classification 

task, where a module is predicted as either faulty (complex) 

or not-faulty (normal).  



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 

 

147 

3.1 Selection of Metrics 

3.2 The four proposed metrics are combined with 

twenty existing metrics (Table 1) during fault 

prediction. The selected existing metrics were chosen 

because of their wide usage in fault detection.  

Dimensionality Reduction 

The vital step in designing a classification model is the 

selection of a set of input metrics, which unless selected 

carefully will result in ‘Curse of dimensionality’ [3]. This 

phenomenon can be avoided by the use of dimensionality 

reduction procedure, which aims to reduce the number of 

input variables by removing irrelevant data and retaining 

only those data which are most discriminating. 

TABLE 1 : LIST OF SELECTED EXISTING METRICS 

A Simple metrics  

 1) LOC (Total number of lines) 

 2) BR (Number of methods) 

 3) NOP (Total Number of Unique Operators) 

 4) NOPE (Total Number of Unique Operands) 

 5) RE (Readability with Comment percentage) 

 6) VO (Volume) 

B Mood Metrics  

 1) MHF (Method hiding factor) 

 2) AHF (Attribute hiding factor)  

 3) MIF (Method inheritance factor) 

 4) AIF (Attribute inheritance factor) 

 5) PF (Polymorphism factor) 

 6) CF (Coupling factor) 

C Chidamber & Kemerer's Metrics  

 1) WMC (Weighted Methods per Class) 

 2) DIT (Depth of Inheritance Tree) 

 3) NC (Number of children) 

 4) COC (Coupling between object classes) 

 5) RC (Response for a Class) 

 6) LCM (Lack of Cohesion in Methods) 

D Program Complexity Measure  

 1) CC (Cyclomatic Complexity) 

 2) FI-FO(Fan-In Fan-Out) - Henry's & 

Kafura's) 

In the present study, Sensitivity Analysis of data is used 

for this purpose. Sensitivity analysis analyzes the 

importance of each input data in relation to a particular 

model and estimates the rate of change of output as a result 

of varying the input values. The resulting estimates can be 

used to determine the importance of each input variable 

[16]. This study adopts the Sensitivity Casual Index (SCI) 

proposed by [13]. SCI is calculated as follows. For a 

classifier having architecture as shown in Fig. 3, given a 

set of input Vectors, {Vi, n  i  0}, where Vi belongs to 

the set of metric values collected from the input dataset 

with ‘d’ dimensions with single output Y = f(xi), the SCI 

for each input dimension is calculated using Equation (17). 

 


n

1i
ijiij |)V(f)V(f|SCI

  (17) 

where |.| denotes absolute value and ij is a small constant 

added to the jth component Vj of Vi. 

3.3 Normalization 

This step is used to normalize each input to the same range 

and makes sure that the initial default parameter values are 

appropriate and every input at the start has equal important. 

 

Fig. 3 : Classifier Architecture 

Further, normalization is performed to improve the 

training process of the classifier. Normalization is 

performed by estimating the upper and lower bounds for 

each metric value and then scale them using Equation (18). 

)Vmin()Vmax(

)Vmin(V
V

jj

jj'
j






 (18) 

where '
jV  is the normalized or scaled value, min(Vj) and 

max(Vj) are the maximum and minimum bounds of the 

metric ‘j’ from ‘n’ observations respectively. The result of 

normalization thus, maps each input value to a closed 

interval [0, 1]. 

3.4 Prediction Model 

The steps to build the prediction model are given below. 

Step 1 : Identify a classifier 

Step 2 : Identify the feature vector to be used as input 

Step 3 : Partitioning method (Training and Testing sets) 

Step 4 : Train and test the classifier using n-fold cross-

validation method 

The present study uses SVM for fault prediction. Input 

feature vector is created using metrics described in Section 

2 and salient data is identified using the procedures 

described in Sections 3(A) and 3(B). The partitioning 

method used to separate the normalized, dimensionality 

reduced input data into training and testing set is the hold-

out method. In the present study, two-thirds of the data is 

used during training and the rest of the one-third is used as 

testing set. Given a set of input data set, the Support 

V1 

V2 

Vd 

: : : : 

Y 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 

 

148 

Vector Machine (SVM) classifier marks each given input 

as belonging to one of two categories (faulty or not-faulty).   

4. EXPERIMENTAL RESULTS 

The proposed fault-detection classifier systems using 

software metrics was developed using MATLAB and all 

the experiments were conducted on a Pentium IV machine 

with 4GM RAM. To analyze the applicability of SVM and 

the affect of the new metrics on fault identification, 

experiments were conducted with a commercial real-time 

C++ project from a software company in Coimbatore, 

India.  Obliging to the privacy issues of the company, only 

the details of the software system from which metrics were 

calculated is mentioned here. The details were collected 

from various historical reports maintained by the company. 

The project contains around 45000 LOC with 1771 

modules. After studying the error reports, around 1502 

modules were found to have no errors (non-faulty modules) 

and the 269 were faulty modules.  

The feature vector created has 24 dimensions (20 

existing and 4 proposed). The feature vector V was created 

using the 24 software metric values (20 existing and 4 

proposed). This vector was first normalized to an interval 

[0, 1] to ensure that all the 24 values have equal 

importance. Dimensionality reduction was next performed 

on this set to select discriminating metrics by calculating 

SCI of each input dimension over the entire normalized 

dataset with =0.1. After calculation of SSI, the metrics 

were arranged in descending order of SSI and the top 15 

metrics were selected. The resultant feature vector, after 

dimensionality reduced consist of LOC, BR, NOP, NOPE, 

RE, VO, MHF, PF, WMC, NC, RC, CMFCM, FCCM, 

CCI and CCCM. It can be seen that the resultant reduced 

dataset consists of only those metrics which has impact on 

complexity measure. Further, the SCI of all the four 

proposed metrics were high and came after all the simple 

metrics and WMC metric, which shows that the proposed 

metrics have relevant information with respect to the task 

of identifying faulty modules while considering 

complexity. The reduced dataset with 15 metrics is then 

divided into training (943 modules) and testing (628) 

datasets.  

Four performance metrics were used during evaluation. 

They are accuracy, precision, recall and F-measure, which 

are derived from the confusion matrix. A 10-fold cross 

validation method was used with all experiments. The 

performance of the SVM algorithm is compared with that 

of Back Propagation Neural Network (BPNN) and K-

Nearest Neighbour (KNN) algorithms. For SVM classifier, 

the regularization parameter was set to 1, the kernel 

function used was Gaussian and bandwidth of the kernet 

was set to 0.5. For K-NN classifier, k was set to 3. For 

BPNN classifier, 2 hidden nodes with learning rate of 0.2 

were used.  ‘t’ test proposed by [15] was performed at 95 % 

confidence level (0.05 level) to analyze the significant 

difference between SVM and BPNN, SVM and KNN. 

This method was adopted because it is more suited for 

classifiers adapting 10-fold cross-validation method [11]. 

The traditional student ‘t’ test, method  produces more 

false significant differences due to the dependencies that 

exists in the estimates.  

Table 2 shows the performance based on Accuracy, 

Precision, Recall and F Measure and SD denotes the 

standard deviation. Sig denotes the significance status and 

a value ‘Yes’ denotes that there is a significance 

performance difference between SVM and the 

corresponding model, while a ‘No’ represents insignificant 

performance. A ‘+’ sign denotes that SVM has 

outperformed the corresponding classifier, while ‘– ’ sign 

denotes the opposite. 

Table 2 : Prediction Performance 

 SVM BPNN KNN 

Accuracy Mean 91.62 77.38 85.29 

SD 1.161 6.562 4.216 

Sig  Yes(+) Yes(+) 

Precision Mean 91.34 89.04 93.72 

SD 0.042 0.016 0.029 

Sig  Yes(+) No (–) 

Recall Mean 99.94 80.12 91.09 

SD 0.001 0.081 0.046 

Sig  Yes(+) Yes(+) 

F 

Measure 

Mean 0.953 0.874 0.901 

SD 0.006 0.049 0.026 

Sig  Yes(+) Yes(+) 

From the results, it is clear that the performance of SVM 

showed higher accuracy than both BPNN and KNN 

algorithm in terms of classification accuracy, as indicated 

by Yes (+) in significance column. While considering the 

precision of classifiers, SVM showed significant 

improvement with BPNN but was insignificant with KNN. 

However, the recall performance showed significant 

positive improvement when compared with both BPNN 

and KNN. The last parameter, F measure is the harmonic 

mean of precision and recall by taking both into 

consideration, The results show that both BPNN and KNN 

shows degraded performance when compared with SVM. 

All these results show that SVM can be considered as the 

right candidate for identifying faulty modules. Fig. 4a to 

4d shows the Mean accuracy, precision, recall and F 

measure while testing the classification algorithm with 

only existing 20 metrics (E20), existing and proposed 

metric (EP24 metrics). 

From the figures, it can be seen that the inclusion of the 

four new metrics has increased the performance of the 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 

 

149 

classifiers. While comparing E20 and EP24 metrics, the 

EP24 metrics showed 7.58% accuracy improvement when 

compared with E20 metric set. Similarly, 8.12% and 9.69% 

efficiency gain with respect to precision and recall was 

seen with E24 metric set. All these results prove that the 

proposed metrics are efficient in identifying classes that 

have high complexity and flaws and therefore can be used 

by software industries to improve the design of OO 

software products. 

 

 

Fig. 4. Performance of Proposed Metrics 

5. CONCLUSION 

This paper identified OO modules with faults in two stages. 

The first stage identified four new software metrics to 

measure class design complexity and second stage used 

SVM classifier to predict faulty modules. The four new 

metrics proposed are Class Method Flow Complexity 

Measure (CMFCM), Friend Class Complexity Metric 

(FCCM), Class Complexity from Inheritance (CCI) and 

Class Complexity from Cohesion Measure (CCCM). 

These metrics were combined with 20 existing traditional 

metrics during prediction. Sensitivity index was used to 

select relevant metrics for classification after 

normalization. The experimental results showed positive 

improvement in the performance of prediction with the 

inclusion of the proposed metric and SVM classifier. In 

future, evaluation of the proposed metrics using criteria as 

suggested by [18] is planned. Moreover, the use of 

ensemble classification is also planned to increase the 

reliability and maintainability of the software product by 

increasing the accuracy of flaw module prediction. 

REFERENCES 
[1] Arockiam, L. and Aloysius, A. (2011) Attribute Weighted 

Class Complexity: A New Metric for Measuring Cognitive 

Complexity of OO Systems, World Academy of Science, 

Engineering and Technology, 58,Pp. 808-813. 

[2] Bansiya, J., Etzkorn, L., Davis, C. and Li, W. (1999) A class 

cohesion metric for object-oriented designs, Journal of 

Object-Oriented Program, Vol. 11, No. 8, Pp. 47-52. 

[3] Bellman, R. (1961) Adaptive Control Processes, Princeton 

University Press. 

[4] Briand, L.C., Devanbu, P.T. and Melo, W.L. (1997) An 

Investigation into Coupling Measures for C++, International 

Conference on Software Engineering, Pp.412-421. 

[5] Briand, L.C., Morasca, S. and Basili, V.R. (1999) Defining 

and validating measures for object-based high-level design, 

IEEE Transactions on Software Engineering, Vol. 25, No. 5, 

Pp. 722-743. 

[6] Catal, C and Diri, B. (2009) Investigating the effect of 

dataset size, metrics sets, and feature selection techniques 

on software fault prediction problem, Information Science, 

Elsevier, Vol. 179, Pp. 1040-1058. 

[7] Chowdhury, I. and Zulkernine, M. (2011) Using complexity, 

coupling, and cohesion metrics as early indicators of 

vulnerabilities, Journal of Systems Architecture, Elsevier, 

Vol. 57, Pp. 294-313. 

[8] Counsell, S. and Newson, P. (2000) Use of Friends in C++ 

Software: An Empirical Investigation. Journal of Systems 

and Software, Vol.53, No.1, Pp.15.21. 

[9] Counsell, S., Newson, P. and Mendes, E. (2004) Design 

Level Hypothesis Testing Through Reverse Engineering of 

Object-Oriented Software, International Journal of Software 

Engineering, Vol.14, No.2, Pp.207.220. 

[10] Counsell, S., Swift, S. and Crampton, J. (2006) The 

interpretation and utility of three cohesion metrics for 

object-oriented design, ACM Transactions on Software 

Engineering and Methodology (TOSEM), Vol. 15, No. 2, 

Pp.123-149. 

[11] Dietterich, T. (1998) Approximate statistical tests for 

comparing supervised classification learning algorithms, 

Neural Computation, Vol. 10, Pp. 1895–1924. 

[12] English, M., Buckley, J., Cahill, T. and Lynch, K. (2005) 

An Empirical Study of the Use of Friends in C++ Software, 

International Workshop on Program Comprehension, Pp. 

329.332. 

[13] Goh, T.H. and Wong, F. (1991) Semantic extraction using 

neural network modeling and sensitivity analysis, 

Proceedings of IEEE International Joint Conference on 

Neural Networks, Pp. 18–21. 

[14] Henry, S.M. and Kafura, D. (1981) Software structure 

metrics based on information flow, IEEE Transactions on 

Sofware Engineering, Vol. SE-7, Pp. 510-518. 

[15] Nadeau, C. and Bengio, Y. (2003) Inference for the 

generalization error, Machine Learning, Vol. 52, Pp.239–

281. 

[16] Saltelli, A., Chan, K. and Scott, E.M. (2000) Sensitivity 

Analysis, John Wiley & Sons. 

[17] Wang. Y, (2002) On Cognitive Informatics, IEEE 

International Conference on Cognitive Informatics, Pp. 69-

74. 

[18] Weyuker. E.J. (1988) Evaluating Software Complexity 

Measures, IEEE Transactions on Software Engineering, 

Vol.14, No.9, Pp. 1357-1365.  

0

20

40

60

80

100

M
e
a
n
 A

c
c
u
ra

c
y

SVM BPNN KNN

(a) Accuracy

E20 EP24

75

80

85

90

95

M
e
a
n
 P

re
c
is

io
n

SVM BPNN KNN

(b) Precision

E20 EP24

0

20

40

60

80

100

M
e
a
n
 R

e
c
a
ll

SVM BPNN KNN

(c) Recall

E20 EP24

0.7

0.75

0.8

0.85

0.9

0.95

1

M
e
a
n
 F

 M
e
a
s
u
re

SVM BPNN KNN

(d) F Measure

E20 EP24


