
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

150

Manuscript received April 5, 2012

Manuscript revised April 20, 2012

An Efficient Distributed Deadlock Detection and Prevention

Algorithm by Daemons

Alireza Soleimany
2
, Zahra Giahi

1

1
Computer Engineering Department, Islamic Azad University, Lahijan Branch, Lahijan, Iran

2
Computer Engineering Department, Islamic Azad University, MeshkinShahr Branch, Meshkin Shahr, Iran

Abstract:

The deadlock is one of the important problems in distributed systems and different solutions have been proposed for

solving it. Among the many deadlock detection algorithms, Edge-chasing has been the most widely used. In Edge-chasing

algorithm, a special message called probe is made and sent along dependency edges. When the initiator of a probe receives

the probe back the existence of a deadlock is revealed. One of the problems associated with them is that they cannot detect

some deadlocks and they even identify false deadlocks. A key point not mentioned in the literature is that when the process

is waiting to obtain the required resources and its execution has been blocked, how it can actually respond to probe

messages in the system. Also the question of ‘which process should be victimized in order to achieve a better performance

when multiple cycles exist within one single process in the system’ has received little attention. Besides, before allocating

one resources to a process waiting for it, a reasonable action is to In this paper, one of the basic concepts of the operating

system - daemon - will be used to solve the problems mentioned. The proposed Algorithm becomes engaged in sending

probe messages to the mandatory daemons and collects enough information to effectively identify and resolve multi-cycle

deadlocks in distributed systems.

Keywords: Distributed system, distributed deadlock detection and resolution, daemon, false deadlock, prevention

1. Introduction

Recently, many researches were done in the field of

distributed systems like H.Zheng et.al(2008) and

Kofahi(2005) . One of the most important fields is process

management and resource allocation.

If a process in a distributed system needs a resource,

which is located in another machine, it sends a message to

that machine through a network connection to access the

required resource. If the required resource is available, it

will be allocated to the process and if it is being used by

other processes, the requesting process will be blocked

until the resource is released and obtained. Deadlock

occurs when a set of processes wait for each other for an

indefinite period of time to obtain their intended resources.

Presence of a deadlock in the system creates at least two

major deficiencies. First all the resources held by

deadlock processes will not be available to other

processes. Second, deadlock persistence time is added to

the response time of each process involved in the

deadlock Therefore, the problem of prompt and efficient

detection and resolution of deadlocks is an important

issue in a distributed system that proposed by Chandy

et.al(1983).Dependence relationship between processes in

distribution systems is shown by a directed graph called

Waite-For Graph that proposed by Choudhary (1989). In

this graph, each node corresponds to a process and an

edge directed from one node to another indicates that the

first process is waiting for the resource the other process

is holding. A cycle in this graph indicates the presence of

a deadlock in the system. There are several resource

request models defined for the process operations in

Distribution systems like that proposed by Knapp(1982).

The simplest one is single-resource model in which a

process is only able to request at most one resource at a

time. In the AND model, a process will be able to request

a set of resources and wait until all requested resources

are provided. In OR Model, a process that needs some

resources will not be active unless at least one of its

required resources has been provided. AND-OR model is

a combination of the two models. In this model, any

combination of resources is possible. This model is the

more general form of AND-OR model in which a process

simultaneously makes a request for q resource and

remains blocked until it is granted out of q resources.

Another model is called the unrestricted model. In this

model, there is no particular structure for resource request.

Four categories have been proposed for classifying

distributed deadlock detection algorithms: path pushing,

edge chasing, diffusing computing and global state

detection algorithms. Edge chasing algorithms are

regarded as one of the most important deadlock detection

algorithms due to their high application and feasibility. In

this method, a special message called probe is generated

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

151

by an initiator process and propagated along the edge of

WFG. Deadlock is detected when this probe message gets

back to the initiator, forming a dependency cycle.

Edge-chasing algorithms have been mentioned a lot in the

literature Chandy and Misra (1982,1983),

Choudhary(1989), Farajzadeh et.al(2005), shemkalyani

et.al(1991), Sinha and Natarjan (1985).

The key limitation in these algorithms is that they are

unable to detect deadlocks whenever the initiator does not

belong to the deadlock cycle; that is when the detector

process is the same as the initiator process. Although this

problem has been solved in some algorithms, they still

detect false deadlocks like as Lee et.al (1995, 2004).

In addition, these algorithms cannot detect deadlocks

when a single node becomes involved in several deadlock

cycles. Another question often ignored in previous studies

is how a process can answer deadlock detection messages

received when it is stuck in a deadlock cycle and is

therefore on sleep mode?

In this paper we will try to solve these problems using the

concept of daemon in the operating system and with

introducing an applicable structure for a probe message

and providing an efficient algorithm in order for a correct

detection of deadlocks and therefore, minimizing the

possibility of false deadlock detection in distributed

systems. This study is mainly concerned with the

detection of multi-cycle deadlocks. There has been an

attempt to find an effective method for resolving such

deadlocks.

The rest of the paper is organized as follows; a thorough

study of state-of-the-art probe based algorithms and the

criticisms against them are presented in section 2. In

section 3 we describe the proposed algorithm with sample

executions. Section 4 consists of correctness proof of

proposed algorithm. Performance comparisons are

presented in section 5 and finally we conclude the paper

in section 6.

2. Related works

The main idea of using probes was first introduced by

Chandy-Misra and Haas(1982) .The key concept in CMH

algorithm is that the initiator propagates probe message in

the WFG and declares a deadlock upon receiving its own

probe back . Probe message in this algorithm has three

parameters (i,j,k), which respectively include: the blocked

process ID, the sending process ID and the ID of the

process that should receive the message. Deadlocks occur

when we have a message in the form of (i,j,i) that is when

the process that has initiated the probe operations receives

the same probe message . Therefore, a cycle is identified

in the system and a deadlock is detected.

Another algorithm was presented by Mitchell and Merritt

which is similar to Chandy-Misra and Haas(1982,1983)

algorithm except that each process has two different

labels; ‘public’ and ‘private’ . The two labels have equal

values in the beginning. This algorithm is able to detect

the deadlock by propagating public labels in the backward

direction in WFG. When a transaction gets blocked, the

public and private labels of its node in WFG increase in

value and undergo greater changes than the public labels

of the blocked transaction. A deadlock is detected when a

transaction receives its own public label; this method

ensures that there is only one detector in the system.

Sinha and Natarajan (1985) presented a bipartite

algorithm that includes detecting and resolving deadlocks.

During the detection step, a probe message is used and

processes should save some of the probe messages. In the

deadlock resolving step, priority is used to reduce the

number of probe messages and the process with lowest

priority in a cycle is chosen as the victim accordingly.

Also unnecessary probe messages that are stored in the

system by other transactions are deleted through the

victim process.

Chadhary et.al(1982,1983) presented a modified

algorithm that somewhat fixed the problems in Sinha and

Natarajan’s algorithm; problems such as deadlock

detection failure and false deadlock detection. However,

this algorithm was later reviewed by Shemkalyani and

Singhal (1991) and modified again and its correctness was

substantiated . None of the algorithms are able to identify

deadlocks in which the initiator is not directly involved in

the cycle, though Lee et.al(1995,2004) proposed an

algorithm in which deadlocks can be detected even when

the initiator does not belong to any deadlock. In this

algorithm a tree is generated through propagating probes

in the system and deadlocks are detected based on the

information obtained from data dependency between the

tree nodes. However, this algorithm cannot identify all the

deadlocks reachable from the initiator and may detect

false deadlocks during concurrent executions.

In the algorithm proposed by Faraj Zadeh et .al(2005), a

probe with two parameters was introduced: initiator ID

and an integer string called Route- String which includes

the IDs of the passing edges from any of the Graph nodes.

In this paper, the storage was considered for graph nodes

in which probe messages passing in any of the nodes are

saved. If the corresponding storage is empty in the

passing probe of a node, the probe is stored and forwarded

to the next nodes, otherwise, the message ID in storage

and the received message ID will be checked for

correspondence. Finally, if the path-string of the message

in storage be a prefix of the received message path-string,

deadlocks are detected. However, in the multi-cycle

deadlock detection issue was ignored this algorithm.

 The Algorithm proposed by the Abdorrazzaq et.al(2007)

addresses the multi-cycle deadlock detection issue and the

algorithm is able to identify and resolve these deadlocks

through providing structures for probe and victim

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

152

messages . Although this algorithm is good at solving

many of the problems in this field, it does this at the cost

of a memory overhead for each process to achieve this

goal.

3. The proposed algorithm

In Distribution systems, presenting a comprehensive

algorithm that can detect a deadlock with certainty and

resolve it in an efficient manner is almost impossible .

The algorithm presented in this paper is an optimal

algorithm for detecting, preventing and resolving

deadlocks especially during concurrent executions in the

system. The proposed method is an enhance to [17].

3.1. System assumptions

A distributed system consists of a set of processes

connected by a network Communication delay is limited

but unpredictable. A distributed program is a set of n-

asynchronous processes (p1, p2, ..., pn) in which

communication is made through message passing. Each

Process has a unique individual ID in the system and there

is no shared memory. It is FIFO assumed that messages in

the network act as FIFO and that they are reliable i .e,

messages do not get lost or are not replicated and

therefore they are transferred in an error-free manner.

3.2. Daemon application

According to OS definitions by Tanenbaum (2008),

Daemon is a process that runs in the background and is in

sleep mode under normal conditions. When an event takes

place in the system, it wakes up and logs it. Each machine

can host several daemons in a distributed system. Here

daemon is considered as one of the core components of

the operating system.

In this paper, a daemon is considered for each machine

having a database with the following components:

Process

ID

Process

Requirements
Port

Array of

Probes

By utilizing the above definition in the database of every

daemon, probes will be easily able to engage in message

exchange between the daemons.

In this database, the name of the process includes the

process IDs for any daemon. Communication between

processes is specified by the process requirements field;

so if a Process is waiting to get more resource(s) held by

one or more other processes, the process IDs are stored in

this field. Corresponding with any requirement, if this

requirement is inside the daemon, the port field value is

NULL; otherwise the related port number of the process

daemon is respectively stored. All the probes passing

through each process will be stored in the array of probes

so that the algorithm can optimally track the daemons. In

a Given distributed system, a probe message is produced

and propagated in each daemon and the name of each

probe is shown with its associated daemon ID. For

example, a probe generated in daemon No.1 and

propagated in the system is named pb1.

3.3. Algorithm description

A process can be in two states: ruining and blocked. In the

running state (active) processes obtain all the requested

resources and are running or are ready for run. A process

is blocked when waiting to obtain some resources.

Deadlock occurs when a set of processes are waiting for

each other to obtain unspecified resources. The proposed

algorithm is a probe-based algorithm and its probe

message has 4 fields: victim ID, Maximum Requirements,

Processes string and daemon sting.

Victim

ID

Maximum

Requirement

Processes

String

Daemon

String

Victim ID is a process ID that must be killed to resolve a

deadlock and its value at the beginning of the algorithm is

equal to process ID from which the probe has initiated. In

the path of a probe, maximum resource requirements of a

process held by other processes are stored in Maximum

Requirements field and concurrently victim ID is updated.

Maximum Requirements value in the beginning of the

algorithm shows the number of requested resources in the

first process of a daemon. Process strings and daemon

strings store the probe routes sequentially.

When process strings reach a process that is available in

the prefix of array of probes, deadlock has occurred. This

process is called deadlock detector. After deadlock

detection, a message called "victim message" is used to

resolve the deadlock. This message leads to the removal

of a process ID which has been stored in the victim ID

field. For this purpose, the daemon in which the victim ID

is available is identified by means of daemon string, and a

victim message is sent for deleting it. If the field of victim

ID contains a process that is not in the identified process

cycle, the execution of algorithms leads to deleting a

process that does not affect deadlock resolution procedure.

Therefore, victim ID field will be updated by the

detector's ID.

3.4. Algorithm execution

A threshold is assumed for processes in the system. If the

waiting time for acquired resources exceeds the threshold,

the daemon initiates the deadlock detection algorithm by

generating a probe message. Through requirements field,

the daemon can find out to what process to send a probe if

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

153

the specified process is outside the current daemon, the

address of the destination daemon will be available in the

port field. When a probe passes through a daemon, the

information about it will be registered in the database of

the daemon.

Suppose we have a distribution system with 3 machines

and 6 processes and requirements in accordance with

Figure 1.

Figure 1. A distribution system with 3 machines and 6 process

In Given Distribution System, a daemon has been

assumed for each machine. Address of the daemons is

presumably considered the same as their number. As it

was mentioned, one database is assumed for each daemon

in which process requirements for the resources available

to other processes can be found.(see figure 2)

DB_D1

Process name Requirements Port Array probe

p1 p2 -

p2 p3 2

DB_D2

Process name Requirements Port Array probe

p3 p6, p4 3,-

p4 p5 -

p5 p6 3

DB_D3

Process name Requirements Port Array probe

p6 p2 1
Figure 2. Database per daemon

The algorithm starts when process p1 in daemon D1 is

waiting for more than expected threshold time. In this

case, D1 will be the deadlock detection initiator. Daemon

D1 creates a probe message and propagates it in the

system. The probe message created will be like

("1","1",1,p1). This message may be sent from the

information in the database of daemon D1 to the

processes involved in the daemon.

Figure 3 shows how this message is propagated in the

system. Finally when the probe gets back to p2, as the ID

of this process is available in probe processes string field,

the daemon detects a cycle and proclaims p2 as the

deadlock detector process.

Now we will review cycle creation and correct deadlock

detection procedure discussed up to now. Therefore, in

the daemon initiator we will try to see if the name of the

probe is available in the field of the corresponding array

of probes or not. If the name of the probe is available,

cycle is proved to exist and a victim message is sent from

daemon D1 to daemon D2 in which the victim process p3

is available. Otherwise, the probe is discarded because the

cycle has already become discrete for any reason.

Figure 3. Propagation of probe message

Then, all the daemons available in the daemons string will

be announced to delete the probe message. All the probes

in the probe array field of p3 process are also discarded

(concurrent execution problem) and the initiator probe is

announced to remove the probes from its array of probes.

3.5. Concurrent execution problem

In a distributed system, concurrent execution of an

algorithm on a few machines is inevitable. As long as a

daemon in a machine sends probe messages for detecting

deadlocks, there may be other machines simultaneously

propagating other probes messages leading to false

deadlock detection, especially when we face a multi-cycle

system.

We will take Figure 4 as a multi-cycle system. Deadlock

detection algorithm will simultaneously be initiated by

any of the 3 daemons of p1, p2 and p5 processes. Having

finished pb1, pb2 and pb3 probes will respectively contain

process strings of "1231", "24512", and "5645".

Figure 4. Distributed multi- cycle

Daemon 2

 p1

p3

p5

p2 p4

p6

D
aem

o
n

 1
 D

ae
m

o
n

 3

(“112223”, “123456”,2,p3)

(“1122”, “1234”,2,p3)

(“112”, “123”,2,p3)

(“1”, “1”,1,p1)

p1 p2

p5

p3

p4

p6

(“11”, “12”,1,p2)

(“11222”, “12345”,2,p3)

Daemon1

Daemon 3

p1 p2

Daemon 2

p5

p3

p4

p6

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

154

Suppose that pb3 probe has completed its work earlier.

Then daemon D3 should victimize the p5 process. In

probe array field of p5 process in daemon D3 database,

pb2 may also be available in addition to this probe, and

with the end of pb2 route, false deadlock will be found.

So a message is sent to the daemon of the second probe i.e.

D2, to remove the name of this probe from the field array

of the daemon probes. After detection cycle "24512" is

identified by Pb2, this probe will be discarded because p5

has been already destroyed and the initiator daemon

probes array is without pb2

After the end of pb1, p2 process is victimized for

resolving the deadlock caused by the “1231” cycle and the

updates are done according to the above procedure.

3.6. Prevention before deadlock occurred

When a resource is free and some processes are in wait

queue to use it, we likely are able to detect and prevent

from those allocations tend to deadlock. Resource

allocation is done by each daemon. Figure5 shows pseudo

code of resource allocation.

Figure5. Pseudo code of allocation function

Each daemon has a list of waiting process and a list of

available resources. Daemon finds those processes are in

the last phase of allocation or those only need one

resource to complete their execution. It’s completely

reasonable action beacuase resources of these processes

are returned to system; so resources of system increase. If

there are not a process, which needs one resource or in the

last phase, the proposed allocation algorithms search for

reliable process. The reliable process is a process that gets

a resource but does not cause any deadlock. If the

proposed allocation algorithm does not find any reliable

process while there are some free resources, it restarts

allocation function after T seconds. T depends on number

of available resources and grade of multiprogramming.

4. Performance evaluation

In this paper, the proposed method with and without

prevention function is simulated. Result of simulation is

compared with MC2DR that proposed by Abdur

Razzaque et.al(2007). In the simulation, there are 10

computers with five resources in each one. The needed

resources of each process are a poisson distribution with

average of 5. Hold time of each resource is produced by a

poisson distribution with average 6 seconds. Simulation

time is 300 seconds.

Table1 presents the number of dead locks and wait time in

different methods. The proposed method is more efficient

than MC2DR.

P
ro

ce
ss

 p
ro

d
u

ci
n
g

 r
at

e
p

er

se
co

n
d

The proposed

method without

prevention

The

proposed

method

with

prevention

MC2DR

#
d

ea
d

lo
ck

s

W
ai

t
ti

m
e(

se
c)

#
d

ea
d

lo
ck

s

W
ai

t
ti

m
e(

se
c)

#
d

ea
d

lo
ck

s

W
ai

t
ti

m
e(

se
c)

2 56 1.01 9 2.09 87 1.23

4 92 1.89 21 2.31 132 2.32

6 221 2.43 48 2.47 389 3.71

8 297 2.88 63 2.53 561 4.59

10 452 3.12 82 2.49 967 6.75

In according to results of table1, allocation function

has impressive role in performance of the proposed

method.

5. Conclusion

 In this paper, a distributed algorithm was proposed for

detecting and resolving deadlocks. This algorithm is able

to discover the deadlocks in operating systems correctly

using the concept of daemon and minimizes the

possibility of false deadlock detection by presenting a

suitable structure for probe messages. Moreover, an

allocation method was proposed to find reliable process

for allocating. This function has dramatic improvement in

results.

In the future works, the proposed methods are

implemented in real environments.

AllocFunc (resource M [n1], Request R [n2])
{

 For (each free resource in M) DO

 Find a requester in R that is in the last phase of allocation
or

 needs only one resource

else until there are reliable proceses ,
allocate resource to them

 else if there is not reliable process , restart this function

 after T seconds
}

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

155

References
[1] Abdur Razzaque. Md., Mamun-Or-Rashid. Md.,

Ch.Hong,"MC2DR:Multi-cycle Deadlock Detection and

Recovery Algorithm for Distributed Systems", LNCS

4782(HPCC2007), Sep 26-28 2007, pp. 554-565

[2] Chandy, KM, Misra, J,"A distributed algorithm for

detecting resource deadlocks in distributed systems". In

Proc. ACM SIGA CT-SIGOPS Syrup, 1982, pp. 157-164

[3] Chandy KM, Misra .J, Haas LM, "Distributed Deadlock

Detection", ACM Transactions on Computer Systems, May

1983,Vol 1,No. 2.PP 144-156

[4] Choudhary ," A Modified Priority Based Probe Algorithm

for Distributed Deadlock Detection and Resolution", IEEE

Trans Software, January 1989, vol.15, No.1, pp .10-17

[5] Farajzadeh. N, Hashemzadeh. M, Mousakhani.M ,

Haghighat,"An Efficient Generalized Deadlock Detection

and Resolution Algorithm in Distributed Systems",In:

Proc.5th IEEE Int'l Conf. Computer and Information

Technology (CIT'05),2005.

[6] Knapp ,E, "Deadlock Detection in Distributed Databases".

ACM Computing Surveys,Dec.1988, vol.3, no. 4, pp.303-

328.

[7] Kshemkalyani AD, Singhal M, ”Distributed detection of

generalized deadlocks”. In: Proceedings of the 17th

International Conference on Distributed Computing System,

IEEE Computer Society Press, 1997, pp 553–560

[8] Kshemkalyani, A. D , Singhal, M , “Invariant based

verification of a distributed deadlock detection algorithm,”

IEEE Trans. Software Eng , Aug. 1991, vol 17, pp. 789-799.

[9] Lee.S ,"Fast, Centralized Detection and Resolution of

Distributed Deadlocks in the Generalized Model", IEEE

Transaction on Software Engineering, September 2004, Vol.

30 , No.9 ,pp. 561-573

[10] Lee, S., Kim, JL,"An Efficient Distributed Deadlock

Detection Algorithm". In: Proc. 15th IEEE Int'l Conf.

Distributed Computing Systems, pp. 169–178 (1995)

[11] DP Mitchell and MJ Merritt,“A Distributed Algorithm for

Deadlock Detection and Resolution”, Proc. Third ACM

Symp. Principles of Distributed Computing, pp. 282-284,

Vancouver, Canada, Aug. 1984.

[12] MK Sinha and N. Natarjan, "A priority-based distributed

deadlock detection algorithm", IEEE Trans. Software Eng.,

Vol. SE-11, No. 1, Jan. 1985, 67-80.

[13] Singhal, M, "Deadlock Detection in Distributed Systems",

IEEE Computer, Nov.1989, No 22, pp. 37-48.

[14] Tanenbaum ,A."Modern Operation Systems", 3 e, (c)

Prentice-Hall, Inc. 2008

[15] H.Zheng, Y.Yue Du and Sh. Xia Yu,”Modeling Non-

Repudiation in Distributed Systems”, Information

Technology Journal, 228-230,2008.

[16] N.A.Kofahi, S.Al-Bokhitan and A.Al-Nazar,”On Disk-

based and Diskless Checkpointing for Parallel and

Distributed Systems: An Emprical Analysis”, Information

Technology Journal,367-376,2005.

