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Summary 
A Mobile Ad Hoc Network is formed dynamically and self 
organizes. Every node acts as a sender, a receiver and a router. 
Due to its mobility, providing QoS is a challenge. IEEE 802.11e 
provides QoS by allocating differentiated Transmission 
Opportunity, Arbitrary Inter Frame Space and Contention 
Window sizes. Though many times QoS is obtained, sometimes 
priority reversal occurs due to misbehavior of certain nodes in 
the MANET which reduces the throughput of the high priority 
traffic significantly thus infringement of QoS. To diagnose this 
misbehavior of certain nodes, statistical methods are proposed to 
decide if a node is misbehaving or not at two stages by analyzing 
the parameters such as Transmission Opportunity and Contention 
Window sizes. The model is analytically verified using 
Diagnostic Statistics. The model is implemented using ns2 and 
the results are compared with the existing model. Result shows 
that the proposed model is sensitive for small samples and 
deviations and is able to diagnose 11% more skewed misbehavior 
and 23% more proportional misbehavior. 
Keywords: 
MANET, Misbehavior, Wilcoxon paired sample signed-rank test, 
Diagnostic Statistics. 

1. Introduction 

Mobile Ad Hoc Network (MANET) is an emerging 
technology which has received the attention of many 
researchers today. It has gained focus nowadays because 
they support information exchange between wireless 
devices that are widely being used today such as laptops, 
mobile phones and Personal Digital Assistants(PDAs). 
They are formed on the fly and can self configure and 
cooperate. They find their application in industrial, 
commercial and academic environments where data 
exchange or accessing certain applications is required. 
Providing QoS for MANET becomes a need because, it is 
utilized by people belonging to various hierarchical 
organizational structures who transact various types of 
data including Voice, Video, Best effort, Background data 
and Urgent messages. 
The Medium Access Control(MAC) Layer in a wireless 
network is pivotal to manage the connectivity of the nodes, 
optimize bandwidth allocation and utilization by 
employing proficient scheduling algorithms, efficient 
routing, managing transmissions, collisions and 

retransmissions. The hidden and exposed terminal problem 
has to be resolved as well. The mobile and ad hoc nature 
of the MANET makes it more complex to configure. 
Further to manage such a complex, infrastructure-less, 
self-configured, distributed network with less reliable link 
and power, it becomes necessary to design efficient, 
adaptable, differentiated and fair MAC protocol[1]. 
Though an optimal MAC is hard to design, researchers are 
doing their best to overcome the existing drawbacks. 
IEEE 802.11 Distributed coordination function(DCF) was 
originally proposed for MANETs and is used widely. 
Drawback is that, they do not support prioritization. In 
DCF all the nodes are considered to have the same priority 
and are treated alike. They contend with each other for 
channel access. When the number of node increases, 
degradation in QoS parameters such as throughput and 
delay are observed. To overcome this, IEEE 802.11e 
Enhanced Distributed channel Access (EDCA) [2], is 
proposed to meet the QoS requirements at the MAC layer, 
which favors real time applications. It supports up to eight 
access categories (AC). They are further mapped to 
support four ACs which are Voice, Video, Best effort and 
Background. It uses four parameters to achieve 
differentiation. They are 1.Transmission Opportunity 
(TXOPlimit) 2.Arbitrary Inter Frame Space (AIFS) 3. 
Minimum Contention Window(CWmin). 4. Maximum 
Contention Window(CWmax). These parameters vary for 
various ACs. IEEE 802.11e uses shorter AIFS and shorter 
Contention Window(CW) for high priority ACs. Each AC 
behaves as a virtual node and competes for channel access. 
If an AC has shorter AIFS and shorter CW then the 
probability of acquiring the channel access increases. Thus 
a high priority AC can access the channel before the low 
priority ones. To decrease delay and jitter, and increase 
bandwidth utilization, packet bursting is achieved through 
transmission opportunity(TXOP). With this, a time 
interval is allotted to every AC according to their priority, 
during which the AC has the right to transmit. The high 
priority AC is allotted long TXOP so that more packets 
can be transmitted at one burst. TXOPs are granted 
through contention. 
Any node that uses IEEE 802.11e should abide by the 
protocol standard and use the value of the parameter 
settings in the protocol. Since a MANET is formed 
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dynamically, and it is a self organized distributed network, 
it is allowed to operate without a central supervising entity. 
Hence no level of trust can be expected from the nodes and 
they are susceptible to attack by their peers. The tendency 
of a node to deviate from the accepted standard can be 
categorized as selfish and malignant. A node can be 
categorized as selfish when it does not forward the packets 
belonging to other nodes in order to conserve its battery 
power by increasing the waiting time of the packets 
resulting in packet loss. A node is considered malignant if 
it cheats its neighbors by pretending to be following the 
protocol standard but actually wastes resources or utilizes 
excess resources than assigned. Since all the nodes in a 
network share a common communication channel, using 
extra bandwidth or not cooperating in forwarding packets 
leads to network performance degradation. Hence 
enhancing and equipping MAC protocols to misbehavior 
becomes the need of the hour. 
Unlike the previous version of IEEE 802.11, IEEE 802.11e 
is more susceptible to attack because of its varying 
parameters used to achieve differentiation. The above 
mentioned protocol uses four queues to prioritize the 
packets belonging to various types of ACs. TXOPlimit, is 
a contention free burst, which specifies a maximum time 
limit for dequeuing the packets from the queue. The 
protocol defines a longer TXOPlimit for high priority 
traffic and a shorter one for low priority traffic. A node 
can behave malignant using TXOP to favor low priority 
traffic by assigning a longer TXOPlimit. AIFSN is one of 
the backoff procedures to avoid collision. IEEE 802.11e 
allocates short AIFS for high priority and Longer AIFS for 
low priority. A node can again misbehave to favor low 
priority traffic by assigning a shorter AIFS. Contention 
Window(CW) is another parameter used for Backoff.  
IEEE 802.11e EDCA uses prioritized contention window 
sizes. To resolve priority at contention, high priority traffic 
is allotted shorter window sizes than the low priority 
traffic. At every collision the contention window doubles. 
Backoff is a random integer value uniformly taking values 
in the range (0, CW[AC]) inclusive. The initial value of 
Backoff is set to CWmin[AC]. At every collision, the CW 
doubles and the maximum value it can take is 
CWmax[AC]. The protocol defines shorter CWmin for 
High priority AC and Longer CWmin for Low priority AC. 
A selfish node for its own benefit can assign longer 
Backoff to high priority forwarded packet, thus can delay 
the channel acquisition of High priority AC. This leads to 
QoS degradation. There are other misbehaviors addressed 
in literature. Misbehaviors using TXOP and CWmin are 
considered in this research paper. 
Techniques in statistics are so diverse and they can be 
classified into two broad categories: Descriptive and 
Inferential Statistics or also known as statistical inference. 
Statistical Inference is also applied in the branch of 
statistics called decision theory which helps decision 

makers in making a decision. Statistical inference deals 
with collection and analysis of data and can be made based 
on estimates or hypothesis testing. Hypothesis testing 
begins with an assumption called hypothesis that is made 
about the populations. The next step is to collect sample 
data. Then test statistic is applied. Depending on the 
sample either parametric or non-parametric test is chosen. 
If samples are from a known distribution, parametric test is 
chosen. Otherwise non-parametric test is chosen. Then 
based on the result of the test, a decision is made to either 
accept or reject the hypothesis. The significant part of the 
procedure is to choose the right tests. Since the distribution 
of the misbehavior cannot be determined earlier, non-
parametric test should be chosen.  
A sign test can be used to test the hypothesis of two paired 
samples. The only drawback is that, it does not take into 
account the magnitude of differences. Hence Wilcoxon 
test is chosen, which takes into account the magnitude of 
deviations in positives and negatives. Wilcoxon rank sum 
test, a variant, ranks the magnitude of differences in the 
increasing order of the difference and sums both the 
negative and positive ranks. Another variant Wilcoxon 
signed-rank test considers positive and negative ranks 
separately and then computes test statistics. This gives 
perfect inference about the data that is being analyzed 
whether it is significantly greater than or less than the 
standard. This test perfectly suits our requirements. 

2. Review of Literature 

Literature provides studies on the various types of 
probable misbehavior in a MANET[3].Though there are 
many detection and solution to misbehavior found in 
literature for the IEEE 802.11 DCF[4-9], they cannot be 
implemented directly for EDCA because of its variable 
QoS parameters which are quite different from DCF. 
Various threats and solutions from literature in cheating 
with Contention window sizes are discussed in [10].  
Misbehavior with IEEE 802.11e EDCA is rarely dealt with 
in the literature. Misbehavior with TXOP is addressed in 
[11]. They have assumed no RTS/CTS because they have 
considered Wireless Local Area Networks(WLANs), not 
MANETs. Further they have a central coordinator to 
decide on the misbehavior. This cannot be directly adopted 
for MANETs because they pose unique threats different 
from WLANs. There are few other studies by [12-14]. All 
have their own advantages and disadvantages.  
Statistical methods provide solutions that help decision 
makers to make the right decision through hypothesis 
testing. But, very few works have been done to detect 
misbehavior using statistical methods. Mean test is 
proposed by [15-17]. They are designed for infrastructure 
based WLANs. Authors in [15] also propose Entropy test. 
Sequential probability ratio test is adapted by [18,19]. 
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Kolmogorov-Smirnov(K-S) test is proposed in [20] to 
detect malignancy. It is not only sensitive to differences in 
the location of distributions (for example, differences in 
means) but is also greatly affected by differences in their 
shapes. It is proposed for detecting CW misbehavior of the 
IEEE 802.11e EDCA for WLANs. It can be adapted with 
modification for MANETs. But the only drawback is that 
since they check for means, in a group of collected 
samples, if a node misbehaves by decreasing the backoff 
of low priority AC and proportionally increases the 
backoff of high priority AC it cannot be detected. It would 
be efficient if the magnitude of deviation can be detected 
in positives and negatives separately, which is not possible 
with K-S test.  
Misbehavior with Contention Window for IEEE 802.11e 
EDCA is discussed with solution in [21]. They propose 
chi-square test to test for uniformity. They have verified it 
with other tests such as mean test and entropy test. 
Drawback is that it assumes samples belonging to a 
particular distribution and it is unreliable with very small 
frequencies. Proportional data cannot be used with the chi-
square test.  They have not specified any method for data 
collection which an integral part of a statistical test. They 
have one set of observed data to be compared against the 
standard one. Since they check for means, if an intelligent 
node opts for proportional misbehavior, it cannot be 
identified with means. This problem is similar to K-S test. 
Further they destine a node to monitor the detection which 
is not appreciable with MANETs because of its mobility. 
Wilcoxon rank sum test is proposed in [22] for detecting 
misbehavior with backoff in IEEE 802.11 DCF. They 
propose new method for generating random backoff and 
then do statistical testing. Only drawback is that, they have 
considered a scenario that a node chooses only a smaller 
backoff than the assigned. If a node chooses higher 
backoff than assigned for its forwarded node, it cannot be 
diagnosed. Further, when the ranks are summed, the 
proportional positive and negative values compensate and 
the sum becomes zero, thus showing no misbehavior. This 
leads to true Negative results. Further they do not consider 
binary exponential backoff which is adapted during 
retransmissions. 
To mitigate the drawbacks of the earlier methods and 
considering the possible misbehaviors, a diagnostic model 
(D4M) which considers a cumulative misbehavior with 
TXOP and CWmin is proposed. Since central monitoring 
is not possible in MANETs, distributed approach is 
considered. To achieve this, a neighbor list is maintained 
at every node to monitor the activity in the neighborhood. 
Diagnosing of misbehavior is done though Wilcoxon 
paired sample signed-rank test [23]. A node is classified as 
misbehaving by setting statistical hypothesis.  

3. Proposed Model – D4M 

Two types of misbehavior with respect to TXOP and 
CWmin are addressed in this paper. 
1. Misbehavior with TXOP: The node favors the low 

priority AC by allotting a longer TXOP than the 
prescribed allocation in the protocol standard.  This 
misbehavior is termed as T-MB for further reference.  

2. Misbehavior with CWmin: The node hinders the 
forwarded High Priority AC by assigning large CWmin 
than the prescribed allocation in the protocol standard. 
This misbehavior is termed as C-MB for further 
reference. 

The proposed model for diagnosing MAC misbehavior has 
two phases. They are: 
1. Data collection for Diagnosis 
2. Diagnosis 

3.1 Data collection for Diagnosis 

3.1.1 Expected Values 
Since there is no central control in MANETs, it is difficult 
to monitor the misbehavior of the nodes. Since nodes in 
the MANETs cooperate and self regulate among them, it is 
the responsibility of every node in the MANET to monitor 
each other’s behavior. IEEE 802.11e is a QoS protocol 
designed for infrastructure networks. At every interval the 
APs send a beacon frame to the nodes, notifying the QoS 
parameters. This beacon frame is used to interchange 
Expected QoS data between the neighbors. At every node 
two lists one Temporary QoS list(TQ-list) and another 
Neighbor List(N-List) are maintained. TQ-list stores 
temporary QoS information about the neighbors that is 
collected. The TQ-list contains the neighboring node’s 
identity, packet priority, Expected and Observed TXOP 
and Expected and Observed CWmin. Table(1) illustrates the 
TQ-list.  

Table 1. TQ-list 

Neighbor 
Node id 

Packet 
Priority
(0,1,2,3)

Expected 
TXOP 
(ms) 

Observed 
TXOP 
(ms) 

Expected 
CWmin 

Observed 
CWmin 

*1 0 3.264 3.264 7 15 

1 0 3.264 3.264 7 7 

*2 1 6.016 6.016 15 7 

… … ... …. … … … … .. 
#3 2 0 6.016 31 31 
3 2 0 0 31 31 

#3 1 6.016 0 31 31 
Note 1:  # - T-MB., Note 2: * - C-MB.  

Data is collected from the control frames such as Beacon 
frames. Every QoS enabled MAC Service Data Unit 
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(MSDU) consists of the identification source node 
identification and the priority of the data packet. The 
neighboring nodes cannot extract these data because they 
cannot see the MSDU addressed to other nodes. RTS is a 
control frame that initiates transmission. Apart from the 
receiver node, the neighborhood can listen to the RTS. 
Hence an additional Priority field is added to the RTS 
frame[24]. Whenever a node hears a RTS from its 
neighborhood, the Source node id and the packet priority 
are extracted from the RTS frame. The Expected TXOP 
value and CWmin value can be obtained from the QoS 
parameter set specified in the “EDCA parameter set 
element” of the beacon frames which is depicted in Figure 
(1)[2].  

 

Figure. 1 EDCA parameter set in the Beacon Frame – IEEE 802.11e 

The exponent form of CWmin and CWmax are represented in 
ECWmin and ECWmax fields. The ECWmin and ECWmax 
values are defined so that CWmin = 2ECWmin – 1 and 
CWmax = 2ECWmax – 1. The minimum encoded value of 
CWmin and CWmax is 0, and the maximum value is 32,767. 
The value of the TXOP Limit field is specified as an 
unsigned integer, with the least significant octet 
transmitted first, in units of 32μs. The expected CWmin is 
updated by multiplying with parameter 2k in times of 
retransmission, where k is the number of 
retransmissions[2]. 
 
3.1.2 Observed Values 
Every time the node wins the contention and acquires 
channel access, it can send data for the duration of the 
TXOP assigned in the Beacon frame. The nodes wait for 
an AIFS time followed by the backoff. Once the backoff 
reaches zero, after a RTS-CTS exchange, DATA is sent 
followed by ACK. DATA-ACK procedure is repeated 
until the duration of the TXOP. After the last ACK 
received by the source, the channel is now free for 
contention. The whole procedure is repeated again. 
Figure(2) depicts the procedure. 
The observed duration of the TXOP can be calculated as 
the duration of time when the transmission started by 
initiating a RTS(RTSstart) and the time of arrival of the last 
ACK frame(Last_ACKarr). If there are more data frames, 
the waiting time after ACK is SIFS. If it is the last ACK 
frame, then it waits for AIFS+backoff for the next 
contention. Thus it is assumed that the current TXOP has 
ended. The following Algorithm(1) depicts the calculation 
of observed TXOP. 

 

Figure 2: TXOP Duration – IEEE 802.11e EDCA 

 

Algorithm 1. Calculation of Observed TXOP 

Step 1: TXOPstart= RTSstart 

Step 2: 
If  waiting_time > SIFS then  

TXOPend= Last_ACKarr 

Step 3: TXOPdur =  TXOPend - TXOPstart 
 
The TXOPdur is the Observed TXOP. All the nodes in the 
neighborhood can hear the RTS and ACK. Hence they can 
calculate TXOPdur as in Algorithm(1). Table(1) of the 
receiver is updated after every burst with the observed 
TXOP value. All the neighboring nodes listening also 
update their Table(1).  
The node waits for the duration of AIFS+Backoff before 
the next contention. The arrival of the last ACK of the 
previous TXOP is taken as Prev_ACKarr. The observed 
backoff can be calculated as duration of time between last 
ACK received or sent of the previous TXOP and the 
following RTS for the next transmission minus the AIFS. 
The initial value of CW is CWmin. Backoff is calculated as 
a random number between 0 and CW. Hence backoff 
should be less than CWmin for a well behaved node. A 
malicious node may increase the size of the CW for high 
priority in favor of Low priority. Then the Backoff will be 
greater than CWmin. The following Eq.1 calculates the 
Backoff which is used as the observed CW.  
Backoff = RTSstart - Prev_ACKarr – AIFS     (1) 
At every diagnostic period Tchk, when enough samples are 
collected it is checked for misbehavior and the entries in 
the Table(1) such as Observed TXOP and Observed CWmin 
are cleared and entries are recorded from the beginning for 
the next diagnostic period Tchk. The data collection for the 
next diagnostic period starts. When a node leaves the 
neighborhood, it is removed from the Table(1).  
To diagnose misbehavior, expected value and the observed 
value are compared. This has to be done for the entire 

Element ID

(12)

Length

(18)
QoS Info Reserved

AC_BE

Parameters 

record

AC_BK

Parameters 

record

AC_VI

Parameters 

record

AC_VO

Parameters 

record

ACI/AIFSN
ECWmin/

ECWmax
TXOP Limit
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sample collected during one Tchk and to decide if a node is 
misbehaving or not. To arrive at a more realistic decision, 
statistical methods are proposed. Since the distribution 
function that would be used by the malicious node will not 
be known, non parametric test are preferred. The paired 
difference test is chosen, which differs from the difference 
of means of two independent samples because ours are 
dependent samples. In Table(1) it can be observed that the 
means of the expected TXOP and observed TXOP are the 
same. Hence misbehavior cannot be identified with 
statistical methods that are based on means. Hence, the 
most appropriate non parametric test that can be used for 
solving the problem would be Wilcoxon paired sample 
signed rank test. With this, the drawback faced with Chi-
Square can be overcome.  

3.2 Diagnostic Algorithm - Wilcoxon Paired Sample 
Signed-Rank Test(W-Test) 

The Wilcoxon paired Signed Rank test(W-Test) is a non-
parametric equivalent of one sample t-test, when the 
normality is questionable. So it requires looser conditions 
and works well with small samples. Further one can rank 
the magnitude of differences in a meaningful manner. The 
Wilcoxon test Algorithm is carried out for the two types of 
misbehaviors T-MB and C-MB. The results are aggregated 
using Logical AND. Hence if a node is diagnosed to be 
misbehaving in any one of the two identified misbehaviors, 
it is identified as a misbehaving node.  
Assume that the expected values of TXOP and CWmin 
based on priority are ݔ௜ , the observed values collected are 
 .௜ where i=1 to n and n is the number of samplesݕ
Hypothesis setting 
Diagnosis 1: Diagnosis for T-MB; Set null Hypothesis 
௜ݔ	:଴ܪ ൌ ௜ݕ	 ; Well behaved; (T-MB-), Alternate 
Hypothesis ܪ஺:	ݔ௜ ൐  .௜ ; Misbehavior; (T-MB+)ݕ
Diagnosis 2: Diagnosis for C-MB; Set null Hypothesis 
௜ݔ	:଴ܪ ൌ ௜ݕ	 ; Well behaved; (C-MB-), Alternate 
Hypothesis ܪ஺:	ݔ௜ ൏  .௜ ; Misbehavior; (C-MB+)ݕ
To diagnose the behaviour of every neighbour node, the 
W-test is carried out for all neighbouring nodes based on 
the TQ-List entries. A minimum of 5 samples(entries) of 
every node should exists in the TQ-list for realistic results. 
W-Test is run only when the sample size is greater than or 
equal to 5. Otherwise it waits for another Tchk to collect 
more samples. The following Algorithm(2) [22] describes 
the methodology of W-Test[23]. 

Algorithm 2: Wilcoxon Signed-Rank Test Algorithm 

Step 1: For  Mobile_Node = 1 to NN repeat Steps 2 to 12 ; 
NN = number of unique neighbour node ids 

Step 2: Let n be the number of samples observed, such that 
5 ൑ ݊ ൑ 20. 

Step 3: Assume  ݔ௜ are the n observations of the observed 
data, i={1,2,…n} 

Step 4: Assume  ݕ௜  are the n observations of the expected 
data, i={1,2,…n} 

Step 5: Set null Hypothesis ܪ଴:	ݔ௜ ൌ 	  .௜, Trusted nodeݕ

Alternate Hypothesis ܪ஺:	ݔ௜ ൐ ௜ݕ  , misbehaving 
node. 

Step 6: For each ሺݔ௜, ௜ሻݕ ݎ݅ܽ݌ , the signed difference 
݀௜ ൌ ௜ݔ െ ௜ݕ  is found. 

Step 7: Ignore the cases if ݀௜ ൌ 	0 . Arrange the ݀௜ in 
increasing order. Rank |݀௜| with indexi as its rank ݎ௜. 
Equal values of |݀௜| are assigned the average of the 
tied ranks. 

Step 8: To each rank prefix the sign of ݀௜	 to which it 
corresponds. Let ݏ௜ ൌ 	 ܵ݅݃݊ሺ݀௜ሻ ∗  ௜ݎ

Step 9: ݊ᇱ  is the number of  ݀௜ ൐ 	0, ݊ᇱ ൑ ݊ 

Step 10: Wilcoxon Test Statistic ܹା is calculated as the sum 
of the positive-signed ranks ݏା such that ܹା ൌ

∑ ௜ݏ
ା௡ᇲ

௜ୀଵ ,  ݊ᇱ ൑ 20 
Step 11: The critical value ܿ  of the Wilcoxon Signed-Rank 

Test Statistic can be obtained from the Wilcoxon 
table[23] for small samples, for the given ݊ᇱ	ܽ݊݀	 ∝. 
∝	is the significance level, which is set according to 
the tolerance level of misbehavior. Generally α is 
set to 0.05. Reject the null hypothesis if ܹା ൒ ܿ in 
favour of alternate hypothesis. The result of the 
diagnosis is, the Mobile_Node is ‘Tested positive 
for misbehavior’, T-MB/C-MB = (+). If otherwise, 
accept the null hypothesis. The result of the 
diagnosis is, the Mobile_Node is ‘Tested negative 
for misbehavior’, T-MB/C-MB =  (-). p-value is 
also calculated with ܹା from the table[23]. 

Step 12: Update N-List. If (T-MB AND C-MB) = + then 
Misbehavior Status=1 else Misbehavior Status=0 

 
Similarly, misbehavior with lowering contention window 
sizes and transmission opportunity can be diagnosed, by 
altering Algorithm(2) slightly. In Step 4, Alternate 
Hypothesis is set as  ܪ஺:	ݔ௜ ൏  ௜. Step 8 is modified whereݕ
݊ᇱᇱ  is the number of  ݀௜ ൏ 	0, ݊ᇱᇱ ൑ ݊  . In Step 9 and 10 
the Wilcoxon test statistic is calculated for sum of 

negatively-signed ranks ିݏ and ܹି ൌ ∑ ௜ݏ
ି	௡ᇲᇲ

௜ୀଵ . Then the 
critical value can be obtained and null hypothesis can 
either be rejected or accepted as in step 11. 
The results of the diagnosis are recorded in the N-list for 
further action. N-List in Table(2) is an adapted neighbor 
list of [4] tailored to support QoS parameters of IEEE 
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802.11e. It was originally designed to support IEEE 
802.11 DCF. The neighbor node id and current 
Misbehavior Status are stored in N-List. If a node 
misbehaves in the current diagnostic period, then status is 
set to 1, default is 0. At the beginning of every diagnostic 
period, status is initialized to default(0) first, then updated 
based on the W-test results after every diagnostic period. 

Table 2. N-List 

Neighbor Node id 
Misbehavior Status (MS)   

 (0- Well Behaved, 
1-Misbehavior) 

1 1 

2 1 
3 1 

4. Model Verification using Diagnostic 
Statistics 

Diagnostic Statistics plays a significant role in various 
diagnostic testing or screening tests and in the practice of 
clinical medicine. Our model is analytically verified using 
Diagnostic Statistics. First a 2 X 2 contingency table is 
constructed to tabulate the results of the test and actual 
data as in Table(3) [25]. 

Table 3. Contingency Table 

  Actual Misbehavior 

W-
Test 

Result 

 Yes No Total 

Positive 
a  

(Hit) 

b 
(False 
Alarm) 

a+b 

Negative 
c 

(miss) 

d 
(non-
event) 

c+d 

Total a+c b+d a+b+c+d=n

a = Number of times a "+"diagnosis was followed by a "+" 
Actual misbehavior. 

b = Number of times a "+" diagnosis was followed by a "-" 
Actual misbehavior. 

c = Number of times a "-" diagnosis was followed by a "+" 
Actual misbehavior. 

d = Number of times a "-" diagnosis was followed by a "-" 
Actual misbehavior. 

Among the various diagnostic measures, the following are 
the three performance analysis measures used in diagnostic 
statistics dealt with, in this paper. 
1. Sensitivity – This measures how good our test is in 

detecting those individual nodes which are truly 

misbehaving, i.e. detection of the True positives or True 
Positive Rate (TPR). Correct diagnosis is found using 
Formula(2). 
Sensitivity ൌ ୟ

ሺୟାୡሻ
                            (2) 

2. Specificity – This measures how our test is in detecting 
those nodes which are actually not misbehaving but 
detected misbehaving, i.e. detection of the False positive 
or False Positive Rate (FPR). False alarm is found using 
Formula(3). 

Speciϐicity	 ൌ ୠ

ሺୠାୢሻ
                           (3) 

3. Accuracy – indicates what proportion of all tests gives 
correct result; i.e. true positives and true negatives. 
Accuracy of the test is found using Formula(4). 

Accuracy	 ൌ ሺୟାୢሻ

ሺୟାୠାୡାୢሻ
                      (4) 

A good Diagnostic test is one with no false-positives 
results such that TPR>FPR 
Simulation result for analytical model is plotted in 
Figure(3) with 20 samples. 
 

 

Figure 3: Sensitivity and Specificity analysis of D4M 

Results show that, when the misbehavior is equal to zero, 
the sensitivity is one. The sensitivity increases with the 
increase in the percentage of misbehavior. When the 
percentage of misbehavior goes above 50, sensitivity is 
almost equal to 1. Sensitivity decreases for percentage of 
misbehavior above zero and below 50 because the W-test 
algorithm allows certain standard tolerance (α). Altering 
the value of α, can change the sensitivity values. 
Specificity is always equal to 1. This shows that there are 
no False alarms.  

5. Simulation and Results 

Performance measure is an important aspect of any 
proposed model. Hence the model is evaluated based on 
the accuracy of diagnosis for various scenarios. Our 
proposed model D4M is simulated in ns2 simulator by 
extending the available IEEE 802.11e standard. The result 
is compared with the existing Chi Square test (CHI-Test) 
proposed in [21]. User Datagram Protocol(UDP) is used as 
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the transport layer protocol and Constant Bit Rate(CBR) as 
the traffic source between the sender and receiver. The 
mobility model is chosen as the Random Way Point model. 
The simulation topology is generated randomly with 50 
nodes. The simulations were run for 10 times and the 
results were averaged. The model is studied with various 
percentage of misbehavior in the MANET and with 
varying sample sizes. Initially the percentage of 
misbehavior is adjusted to be 0(all well behaved nodes), it 
is increased to as 5, 10, 20, 30 and 40. The value of α is 
assumed to be 0.05(95% confidence interval). It is 
assumed that the misbehaving node uses T-MB or C-MB 
or both types of misbehavior. 
Two misbehavior scenarios are studied during simulation 
namely Skewed Misbehavior and Proportional 
Misbehavior. In Skewed Misbehavior, it is assumed that 
the node chooses values only higher than the standard. In 
Proportional Misbehavior scenario, it is assumed that the 
node chooses values both lower and higher than the 
standard. Hence the deviation from the mean is 
proportionally positive and negative. Say 50% sample 
shows positive deviation and 50% sample shows negative 
deviation. Zero Skewness does not imply that there are no 
deviations. 
Scenario I 
It is assumed that a node chooses misbehaving values only 
higher than the standard values (Skewed). The magnitudes 
of deviations are varied as 5, 10, 20, 30 and 40[21]. The 
sample size taken for diagnosis is 5, 15 and 20. Probability 
of diagnosis accuracy for varying percentage of 
misbehavior and sample sizes for CHI-Test and D4M is 
plotted in Figure(4).  

 

Figure 4: Comparison of Diagnosis accuracy of D4M and CHI-Test with 
Skewed samples 

Results of CHI-test depends largely on the sample size and 
then on the percentage of misbehavior. Results are good 
only when the misbehavior percentage is beyond 25% and 
sample size more than 15. This is also discussed in their 

paper [21]. In reality one fourth misbehavior will make the 
system unstable. D4M overcomes this problem. It is very 
sensitive on magnitude of deviation. Hence the smallest 
deviation can be detected. Results improve with number of 
samples. When the sample size is more than 10, results are 
consistent which is because of the confidence interval α. α 
can be altered to improve the sensitivity of the test. The 
cumulative results show that the diagnosis accuracy of 
D4M is 11% more than the CHI-test with skewed 
misbehavior samples. 
Scenario II 
It is assumed that in a group of samples collected from a 
node, 50% samples choose values higher than the standard 
values and 50% samples choose values lower than the 
standard values (proportional). The magnitude of 
deviations is denoted as percentage of misbehavior and it 
is chosen as 5, 10, 20, 30 and 40. The sample sizes taken 
for diagnosis are 5, 15 and 20. Probability of diagnosis 
accuracy for varying percentage of misbehavior and 
sample sizes for CHI-Test and D4M is plotted in Figure(5).  

 

Figure 5: Comparison of Diagnosis accuracy of D4M and CHI-Test with 
proportional samples 

Results show that the diagnosis accuracy of CHI-test 
varies with samples and relatively lower than D4M. It 
cannot make accurate diagnosis because it cannot identify 
and detect proportional misbehavior since it sums 
deviations. The test is not sensitive to positive and 
negative deviations because it squares the differences 
between observed and expected frequencies to eliminate 
the sign. Performance of D4M is consistent with the 
varying percentage of misbehavior because it is sensitive 
to signed magnitudes. In Algorithm(2) test statistic is 
computed for values greater than the standard. Since 
signed ranks are considered, proportional behavior does 
not affect the diagnostic accuracy. The cumulative results 
show that the diagnosis accuracy of D4M is 23% more 
than the CHI-test with proportional misbehavior samples. 
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6. Conclusion 

IEEE 802.11e supports prioritization and there are chances 
that a node misbehaves by varying the sizes of the 
Contention window and Transmission opportunity. In this 
paper a novel statistical method to diagnose misbehavior 
in IEEE 802.11e EDCA is proposed. Misbehavior with 
contention window and transmission opportunity is 
identified. Procedure to collect expected and observed 
samples, maintenance of temporary QoS list and neighbor 
list are enumerated. Results are verified with methods 
from diagnostic statistics. The model is simulated in ns2 
and results show that the model detects 11% more 
misbehavior than CHI-test with skewed samples and 23% 
more misbehavior with proportional samples. Only two 
misbehavior strategies are considered in this paper. As a 
future work, it is proposed to design novel methods to 
identify other misbehavior strategies. 
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