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Summary 
Visual communication is becoming increasingly important with 
applications in several areas such as multimedia, communication, 
data transmission and storage of remote sensing images, satellite 
images, education, medical etc….The image data occupies large 
space.  Meeting bandwidth requirements and maintaining 
acceptable image quality simultaneously is a challenge. Hence 
image compression is required. There are mainly two types of 
compression systems- lossy and lossless. When quantization is 
involved in compression process, compression will be a lossy 
compression. Lattice Vector Quantization is a simple but 
powerful tool for vector quantization. After quantization of 
vectors using lattice structure, indexing of lattice vectors is 
required. In this work our attention is on the problem of efficient 
indexing. MSE and PSNR of different images using proposed 
method are calculated. Perceptual performance of image coding 
is also shown in the result. 
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1. Introduction 

Vector Quantization has been applied in many wavelet 
based image coding algorithm due to its superior 
performance over scalar quantization. But the LBG 
algorithm [1] which is commonly used to design vector 
quantizer causes high computational cost and coding 
complexity especially as the vector dimension and bitrate 
increase. LVQ is simple but powerful technique for vector 
quantization and can be viewed as a vector generalization 
of uniform scalar quantization.  Whatever the source 
distribution is, LVQ will always outperform uniform 
scalar quantizers. Fast encoding and decoding algorithms 
making use of simple rounding operations for lattice 
quantizers have been proposed by Conway and Sloane [2] 
and [3]. Consequently the encoding and decoding speed 
does not depend on the number of codewords within the 
codebook. Its computational simplicity and codebook 
robustness make it attractive and widely used in the lossy 
data compression field.  Even though the idea behind LVQ 
being quite simple, the indexing of lattice codevectors is 
not a trivial operation. To solve the indexing problem, 
methods have been introduced for indexing Laplacian or 

Gaussian distributions, as for example in [5], [6]. A large 
number of important sources of data, including subband 
image and speech coefficients, especially those obtained 
from wavelet transformation, can be modeled by the 
probability density function (pdf) of type Laplacian or 
Gaussian or Generalized Gaussian. One interesting 
property of the sources with these distributions is that 

shells of norm 1l  or 2l  or pl corresponds to surface of 

constant probability. It leads to the development of 
effective product codes. In [7] indexing is based on leader 
and makes use of the theory of partitions. The use of 
theory of partition overcomes the complexity and storage 
requirement for generating and indexing the leaders. 
The indexing operation must be as fast as possible at the 
coding stage, as well as at the decoding one. In this paper 
we propose a low complexity indexing method for four 
dimension vectors. This method directly calculates the 
index of the vector, not depends on the  leaders and 
cardinalityof the vector.  

2. Lattice Vector Quantization 

The computational complexity and large storage is one of 
the drawbacks of simple, unstructured VQ in practical 
implementation. To overcome this problem, structured 
codebooks are developed with different structure i.e. 
different lattices corresponding to different types of LVQ. 
A lattice is the set of all vectors of the form  

 


n

i ii auL
1

------------------------------(1) 

 
where { u1 , u2, -------------, un }  are all integers and  {a1 , 
a2 ,------------- ,an } is a set of n  linearly independent 
vectors. In lattice vector quantization (LVQ), the input 
data is mapped to the lattice points of a certain chosen 
lattice type.  

2.1 Optimum Lattice  

In [4] properties of different lattices are investigated and 
the optimal lattices for several dimensions are determined. 
Optimum lattice in a specific dimension is the lattice by 
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which we can best cover that space.  The optimum lattice 
problem finds a strong analogy with the sphere packing 
theory, where it is searched to arrange the maximal 
number of equal non overlapping spheres in a given 
volume in n-dimensional space. The best packing lattice 
will be the one providing the densest packing of identical 
spheres together. In this paper we have used the D4 lattice. 
This lattice is having densest packing in four dimension. It 
consists of all points with integer coordinates (x1, x2, x3, x4) 
with x1 +x2 +x3 + x4 even. 

2.2 Lattice Codebook 

LVQ codebook is a set of finite number of lattice points 
out of infinite lattice points. Lattice points in a codebook 
are called code vectors or code words.  The finite number 
of lattice points selected from the truncation of the lattice. 
In our case spherical shape is used for truncation. For 

selecting the lattice points for spherical truncation 2l is 

used . 

If txxxxx ,,, 321  is a codeword or codevector 

closest to the point (0, 0, 0, 0), then 2l norm is given by 

following equation. 
22

2
2
12 txxxl   ------------------- (2) 

The elements of the codevector are quantized values of the 
input samples. The same codebook must be maintained 
both at the transmitter and the receiver. The codebook is 
searched to find the codevector closest to the input vector 
based on a distortion error measure. The index of the 
selected codevector is transmitted to the receiver. The 
receiver requires a simple table lookup, the index received 
is used to select the reproduction code vector that 
approximates the input vector. 

2.3 Quantization Algorithm 

Conway and Sloane [3] developed a fast quantization 
algorithm which makes searching of the closest lattice 
point to a given vector extremely fast. For a given vector x, 
the closest point of D4 is whichever of f(x) and g(x) has an 
even sum of components (one will have an even sum, the 
other an odd sum). This procedure works because f(x) and 
g(x) differ by one in exactly one coordinate, and so 
precisely one of ∑f(xi) and ∑g(xi) is even and the other is 
odd. For example find the closest point of D4 to x= (0.2, 
1.8, -0.7, 0.4) 
f(x)=(0, 2, -1, 0) and g(x)= (0, 2, -1, 1) since the last 
component of  x is the furthest from an integer, so it is  
changed from 0 to 1 in g(x). ∑f(xi)=odd, while that of 
∑g(xi)=even. Therefore g(x) is the point of D4 closest to x. 

3. Indexing of Lattice Vectors 

Once the vectors are quantized into lattice vectors, we may 
assign a unique and decodable index for each lattice vector.  

3.1 Indexing based on product code 

When indexing the lattice vectors by a product code, the 
index is constructed by the concatenation of two other 
indices: one corresponding to the index of the norm of the 
vector (prefix) and the other corresponding to the position 
of the vector on the given shell of constant norm (suffix). 
Even if the computation of the prefix is trivial, the suffix 
needs the enumeration and indexing of the lattice vectors 
lying on given hypersurfaces. Furthermore, increasing the 
dimension of the space can make the indexing operation 
prohibitive since the number of vectors lying on a shell 
grows dramatically with the norm. The indexing of the 
suffix is usually done according to two different 
techniques. The most common attributes an index taking 
into account the total number of vectors lying on a given 
hyper-surface (cardinality) [1], [2] ,[9]. Another approach, 
proposed in [5], exploits the leaders of a lattice.  

3.2 Indexing based on enumeration 

A number of  enumeration solutions have been proposed 
for the case of laplacian and gaussian distributions and for 
different lattices. A recursive formula to compute the total 

number of lattice vectors lying on a 1l  norm hyper 

pyramid has been intoduced in [1] . This enumeration 
formula has been extended in [6] for generalized gaussian 
source distributions with shape factor p between 0 and 2. 
However the work of [6] proposes a solution to count the 

number of vectors lying inside a given pl  norm, but it 

does not propose an algorithm to assign an effective index 
to the vectors of the Zn lattice. Furthermore, it does not 
count the number of vectors lying on a given hyper-surface, 
which makes difficult the use of product codes. In addition, 
because the cardinality of an hyper-surfaces can rapidly 
achieve non tractable values for practical implementations. 

3.3 Indexing based on leaders 

The method proposed in [6] presents the advantage that the 
vectors have an effective indexing algorithm on the shells 
of constant norm and does not attribute the index based on 
the total number of vectors of the lattice, but based on a 
small amount of vectors called leaders. On the contrary, 
the approach used in [12] allows one to design good 
product codes for indexing the vectors. In [6], the authors 
have shown that indexing vectors using leaders can save 
much more memory than LBG-based algorithms. However, 
this method in its original conception is not so attractive. 
Indeed, in order to avoid a heavy computational 
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complexity to index the leaders and allow direct 
addressing of the leaders’ coordinates, one must construct 
a look-up-table in the dimension of the hyper-space 
containing all the leaders. This means that for each norm 
and each lattice dimension, one should store a table which 
actually is a tensor of high order n (i.e. which is as high as 
the dimension of the vectors). Furthermore, in order to 
attribute an index to a leader it is necessary to generate all 
leaders, which remains a highly complex operation, 
especially for high dimensions and norms. For applications 
where one needs high-dimensional vectors with large 
dynamic ranges (implying many shells), as for example in 
the multiresolution data compression context, to generate 
and store a large amount of huge tensors is quite 
prohibitive for practical purposes. 
 In [8] and  [11] a partition function q(r,n) is used which 
not only gives the total number of leaders lying on a given 
hyper-pyramid but can also be used to provide unique 
indices for these leaders. This function gives the number 
of partitions of r with atmost n parts(in partition number 
theory it is equivalent to say number of partitions of r with 
no element greater than n with any number of parts). It is 
more realistic for LVQ where the vector dimension is 
fixed. By this method indexing a leader can be done even 
for large vector dimension which is impossible when 
indexing is done directly on all the vectors of a hyper-
surface. In [10] author describes a new alternative for 

indexing 
nZ  lattice vectors lying on generalized gaussian 

distribution shells.  

4. Proposed Method for indexing of lattice 
vectors 

In this method there is no need to find out the index of 
leader, norm of the vector and finally the rank of the 
vector in a group of similar norm. Following steps are 
followed to get the encoded data. 
Step1- Apply wavelet decomposition 
Step 2-Reshape last level Subbands into Rx4 shape, where 
value of R depends on the DWT composition level and the 
size of input image. For example if the size of subband is 
8x8  then it is reshaped into 16x4 size. 
Step3-  Apply quantization algorithm of D4 lattice to 
quantize vectors (result will be a matrix of Rx4) 
Step4- Indexes are assigned to the quantized vectors, at the 
output of encoder  Rx1 matrix is generated. Following 
procedure is followed to get index of the vector [A B C D] 
[A B C D] = quantized vector (QV) + │minimum Value of 
Rx4 quantized vector (QV) │ 
 base = maximum Value of Rx4 quantized vector (QV) + 
│minimum Value of Rx4 quantized vector (QV) │ + 1 
index = (A * base^3) + (B * base^2) + (C * base) + D 

5. Simulation Results 

The following test images of size 512x512 are  
decomposed into 2 DWT levels. 2x2 block size is used for 
truncating the last level subbands which determine the 
vector size. In this case 2x2 block size results in four 
dimensional vectors. Quantization algorithm is used to 
find the closest point of lattice D4. Index to the closest 
lattice points are assigned using proposed indexing method. 
Indices of the vectors works as input to the decoder, at the 
decoder reverse logic is applied to get the reconstructed 
image.  

Table 1:MSE and PSNR of different test images using proposed method 
of indexing for lattice vectors  

Table 2: Values of MSE and PSNR for different quantization levels for 
Barbara image  

Wavelet Decomposition level is 2 

No. of 
quantiz

ation 
levels 

105 2x105 3x105 5x105 
10x10

6 
10x108

MSE 
1.2514

e+003

339.97

26 

256.1

905 

216.1

534 

192.7

291 

192.65

46 

PSNR
17.157

0 

22.816

4 

24.04

52 

24.78

32 

25.28

13 

25.283

0 

Wavelet Decomposition level is 3 

MSE 
1.6500e

+003 
599.9
965 

432.9
028 

376.0
863 

337.4
696 

337.36
06 
 

PSNR 15.9560
20.34

93 
21.76

69 
22.37

79 
22.84

85 

22.849
9 
 

Original Image  
 
 
 
 
 
 
 
 
 
 
 
 
 

Test Image MSE PSNR 

Peppers 72.0748 29.5530 

Barbara 192.6546 25.2830 
Scenary 113.7380 27.5717 
Goldhill 65.1658 29.9906 
Scenary 113.7380 27.5717 
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Reconstructed image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Original Image  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reconstructed image 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Perceptual Performance of  Pepper and Barbara  image coding 
using proposed indexing method for Lattice Vector Quantization  

6. Conclusion 

In this paper we have proposed a solution for indexing 
lattice vectors. In our work, indexing of vectors is not 
based on leaders, direct index is assigned to the vectors.  
There is no need to store the codebook thus reducing the 

memory usage. We have applied this method with D4 
lattice and spherical truncation.  As future works we will 
extend the use of this method for lattices Dn (n>4)and E8. 
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