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Summary 
We propose a frame rate up-conversion algorithm using 
bidirectional optical flow estimation at each pixel based on a 
previously proposed Hierarchical Optical flow Estimation (HOE) 
algorithm. The HOE is extended from unidirectional flow 
estimation to bidirectional flow estimation in which a 3×3×2 
multi-dimensional filter and a motion compensated image 
method are used for high accuracy of flow estimation. PSNRs of 
30.29–45.99 dB were obtained for five test sequences with 
computer simulations. The PSNR improvements are 3.50–10.99 
dB compared to a simple bidirectional block matching method 
and 0.26–1.88 dB compared to an existing method based on a 
bidirectional block matching method. 
Key words: 
frame rate up-conversion ， optical flow, block matching, 
bidirectional flow estimation, motion compensation. 

1. Introduction 

In the field of consumer products in applications such as a 
digital television and personal computers, high-definition 
video contents on a large screen has been widely used 
because of the spread of digital broadcasting and the 
higher bandwidth of the internet. In parallel with this, 
high-quality video with a wide screen is penetrating into 
widely various industrial application fields such as 
automotive applications, surveillance cameras, and digital 
signage systems. Frame Rate Up-Conversion (FRUC) 
technology [1, 2], which generates intermediate frames 
from existing frames, has been developed as a means of 
realizing higher quality images in these application fields. 
Recently it has been applied in some classes of consumer 
products. 
Intermediate frame can be generated doubling the 

previous frame or using the average image obtained from 
previous and subsequent frames. However, to generate 
smooth motion, a standard method of generating an 
intermediate frame is to do so by estimating the motion 
based on information from previous and subsequent 

frames, and by executing motion compensation against the 
current frame based on the estimated motion. For such 
motion estimation, block matching (BM) [3–6] is 
generally used. BM motion estimation is suitable for 
spatially averaged motions. Nevertheless, it has a 
fundamental weakness for spatially inhomogeneous 
motions such as rotation and scaling because it cannot 
predict those motions accurately. It degrades image quality 
of the intermediate frame. When a motion estimation error 
occurs, block noise of the intermediate frame often 
appears as a flickering of the screen, which causes a 
discomfort feeling. In addition, in the BM mechanism, the 
intermediate frame composed of blocks might cause noise 
artifact at the boundary of the blocks. A pixel level 
process is often required in the boundary area [2, 7, 8]. 
Therefore, to obtain images with smooth movement, it is 
desirable to estimate the motion basically in units of pixels, 
and to generate intermediate frames at the pixel level. 
Optical flow technology has been proposed as a method 

to estimate motion at the pixel level [9–11], but some 
difficulties arise in motion estimation accuracy. Based on 
this basic concept, the Hierarchical Optical Flow 
Estimation (HOE) algorithm, which can realize high 
accuracy motion estimation, has been reported by the 
authors [12]. When this HOE method is applied to FRUC, 
a smoother intermediate frame is obtainable than when 
using estimation based on the BM method because the 
HOE method can estimate spatially heterogeneous motion 
with high accuracy. Moreover, the impact on the block 
boundary can be minimized. 
As described in this paper, we propose a new FRUC 

algorithm using pixel units. It is based on an algorithm 
extended from the conventional unidirectional HOE 
method to bidirectional estimation. In Section 2, we 
propose the FRUC algorithm. This algorithm can improve 
accuracy using a motion-compensated image and 
bidirectional flow estimation instead of conventional 
unidirectional flow estimation. In Section 3, the results of 
the computer simulation are described. By computer 
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simulation, we evaluate accuracy in the bi-directional flow 
estimation in section 2 and verify the effectiveness of 
using the motion compensation frame. Furthermore, this 
FRUC algorithm is executed for a typical standard 
sequence by simulation. We confirm the high efficiency of 
the proposed algorithm in comparison with other 
algorithms [5]. Conclusions are given in Section 4. 

2. FRUC by extended HOE algorithm 

HOE is an algorithm to estimate motions of pixels to be 
highly accurate. Fundamentally, it is unidirectional flow 
estimation. In estimation of motions of pixels on the frame 
at time t, three frames are used: the time t frame, its prior 
frame t-1 and its subsequent frame t+1. If the intermediate 
frame is generated between frame t and next frame t+1 
based on the estimated motions on the frame t as in the 
FRUC, the generated pixel does not correspond to the 
integer pixel on the intermediate frame. Bidirectional 
motion estimation around the intermediate frame used in 
BM method can be applied to the HOE and can make 
pixels with estimated motion correspond to the integer 
pixels. In this case, motions to be estimated are ones on 
the intermediate frame to be generated from now on. 
Therefore, we can no three frames in motion estimation. 
Thus, the advantage of HOE of high-precision motion 
estimation using three frames will be lost. 
 In this section, we resolve these issues by extending the 
HOE and we apply it to the FRUC. In the following, we 
describe a bidirectional flow estimation algorithm on the 
basis of the HOE. 

2.1 HOE-based bidirectional flow estimation 

Suppose that intermediate frame M is generated by 
predicted motions from the successive two frames: A and 
B. As shown in Fig. 1(a), the integer pixel of frame A 
corresponds to the decimal pixel on the intermediate frame 
because this motion is generally decimal precision. 
Therefore, the problem arises such that the integer pixel on 
the intermediate frame cannot be determined uniquely in 
unidirectional motion estimation [7, 13, 14]. Although we 
might adopt a nearest integer pixel to an estimated decimal 
pixel, an integer pixel might appear in double or as a hole. 
It causes unnatural boundary noises on the generated 
frame. 
In the proposed algorithm, as shown in Fig. 1(b), optical 

flows are estimated bidirectionally from frame A and 
frame B under constant velocity assumption. That is, 
frame A and frame B have movement of +d and –d to 
frame M, respectively.  
When we denote the luminance value M(x, y, t) at pixel 

(x, y) in the intermediate frame to be generated, then the 
luminance values of the corresponding frame A and B are 

given as A (x-u, yv, t-1), B (x+u, y+v, t+1). Here, d = (u, v) 
represents the flow and u and v signify the x and y 
components of the flow, respectively. Assuming the 
conservation law of luminance, eq. (1) is obtained. ξ 
represents luminance change unrelated to motion caused 
by environments [15–17]. 
 
 
 
 
 
 
 
 
 
 

Fig. 1 (a) Unidirectional flow estimation and (b) proposed bidirectional 
flow estimation. 

 
 )1,,()1,,( tvyuxAtvyuxB       (1) 

 
Taylor expansion gives eq. (2) in first order approximation 
when u and v are small. 
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Here, Ix, Iy, Iz are given as shown in eq. (3). 
 

 

)1,,()1,,(

)1,,()1,,(

)1,,()1,,(






tyxBtyxAI

tyxBtyxAI

tyxBtyxAI

t

yyy

xxx

              (3) 
 

Ax, Bx and Ay, By are the spatial luminance gradients of A 
and B respect to x and y, respectively. It corresponds to the 
temporal luminance gradient. Flows u and v are 
determined as values minimizing the error function 
defined by eq. (4). 
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ux, uy, vx, vy, ξx, and ξy are spatial derivatives of u, v, and  
for x and y and α and β are parameters. An integral is 
taken over the entire frame. u, v, and ξ which minimize eq. 
(4) are given as eq. (5). 
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In addition, the Laplacian Δuij at pixel (i, j) is 
approximated by eq. (6). 
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Applying the same approximation to v and ξ, the 
simultaneous linear equation is obtained as: 
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Therein, u and v are calculated by iteration. In eq. (7), the 
subscripts i and j are omitted. Finally, the intermediate 
frame is generated from eq. (8) using u and v. 

 

 )1,,()1,,(
2

1
),,(  tvyuxAtvyuxAtyxM

  
(8) 

 
Ix in eq. (2) is a spatial luminance gradient at a pixel of 

the generated intermediate frame M (x, y). Results show 
that Ix is expressed simply as an average of the spatial 
luminance gradient at pixel (x, y) of frames A and B. With 
calculation of Ix in HOE, the accuracy improvement of the 
motion estimation can be accomplished using a 3×3×3 
multi-dimensional gradient filter for the three frames: t-1, t, 
and t+1 [18]. 
In this algorithm, Ix should be calculated with high 

accuracy using another method because frame at t does not 
exist yet. Ix and Iy calculated with the usual two-point 
difference value do not yield high precision unlike the 
multi-dimensional gradient filter because Ix is simply an 
average of Ax and Bx. Using three frames such as A, prior 

A, and subsequent A for Ax calculation, four frames of  t-3, 
t-1, t+1, and t+3, are required because of the Bx calculation. 
This is undesirable with regard to frame memory capacity 
and frame delay. In addition, it is not well consistent with 
motion compensated frame in the lower layer. In this 
algorithm, a 3×3×2 multi-dimensional gradient filter (a 
slight modification of a 3×3×2 multi-dimensional filter) is 
used. This point will be described later. 

2.2 Improvement of flow accuracy using a motion 
compensated image 

Determination of highly accurate flow will improve the 
quality of the intermediate frame. The concept of 
modification flow using motion compensated image is 
followed to improve the flow accuracy. This algorithm is 
based on a linear approximation, so it can only support a 
small movement. For a large movement, the motion 
compensated image and hierarchical image are applied [19, 
20]. 
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Fig. 2 Intermediate frame generation with bidirectional flow estimation 
using HOE algorithm 

Figure 2 shows the flow of intermediate frame generation 
in the proposed bidirectional flow estimation based on the 
HOE. Firstly, applying the Gaussian filter and 2:1 sub-
sampling, hierarchy images of t-1 and t+1 for frame A and 
B each are obtained. After creating the top layer, both the 
spatial luminance gradient and the temporal luminance 
gradient are calculated using the 3×3×2 multi-dimensional 
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gradient filter. Flows are obtained by solving eq. (7) with 
iteration. Double of this flow is propagated to lower layer 
in the hierarchy. Using this propagation flow, motion 
compensated images, Comp_(t-1) and Comp_ (t+1), are 
generated from the frame of t-1 and t+1 [12]. 
Subsequently, the modification flow in this lower layer in 
the hierarchy is calculated again with application of the 
3×3×2 multi-dimensional gradient filter. The sum of the 
modification flow obtained in this layer and the 
propagation flow from the upper layer is the flow of this 
layer. Repeating this process to lowest layer, a final flow 
is obtained. Finally, A (x-u, y-v, t-1) and B (x+u, y+v, t+1) 
are calculated using the final flow obtained and 
intermediate frame is generated with its average. The 
luminance value of the decimal pixel of A and B are 
generated from integer pixels with the Lanczos3 filter. 
Introducing motion compensated image Comp_(t-1) and 

Comp_(t-1), the motion has been kept small at a lower 
layer in the hierarchy, which improves the estimation 
accuracy of flow together with hierarchical images. In 
creating the hierarchical image using 2:1 sub-sampling, a 
5×5 Gaussian filter shown in Fig. 3 is applied at the same 
time. 
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Fig. 3 5x5 Gaussian filter.  

2.3 Calculation of luminance gradient 

Both the spatial luminance gradient and temporal 
luminance gradient of frames A and B are necessary in the 
flow calculation. For simple approximation of difference 
at successive two points, the accurate flows are 
unobtainable because the process is too sensitive to subtle 
luminance changes and noises. The calculation of the 
spatial luminance gradient and temporal luminance 
gradient using a three-tap multi-dimensional gradient filter 
was proposed conventionally [12, 18]. As described in 
Section 2.1, the multi-dimensional gradient filter is 
inapplicable as it is. Therefore, 3×3×2 dimensional 
gradient filter (modified the multi-dimensional gradient 
filter) is used. Figure 4 shows pixels for use in this 3×3×2 

multi-dimensional gradient filter. Table 1 shows its 
coefficients. 
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Fig. 4 Pixels for spatial and temporal gradient calculations. 
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Table 1 LPF coefficients and gradient coefficients. 

In the calculation of the spatial luminance gradient, 
coefficients of Low Pass Filter (LPF) of the conventional 
multi-dimensional gradient is applied in the spatial 
direction. The average is taken in the temporal direction. 
In the same manner, temporal luminance gradient is 
calculated. The Low Pass Filter (LPF) coefficients of a 
conventional multi-dimensional gradient filter are applied 
in the spatial direction. Gradient coefficients as shown in 
Table 1 are applied to the calculation of temporal gradient. 
A conventional multi-dimensional gradient filter, even in 

the temporal direction, applies the spatial direction LPF 
coefficients shown in Table 1. In this filter, it is 
understood that the k1 coefficient is equal to 0.5 by 
sharing 0.276 each from P0 coefficient of 0.552 to frame 
for both side. As the bidirectional flow estimation is based 
on an assumption of constant speed, the image of the 
frame t-1, and t+1 are not so different. Consequently, 
almost identical precision is expected with conventional 
multi-dimensional gradient filters. It is consistent that Ix is 
expressed as average of Ax and Bx, as shown in eq. (3). In 
the calculation of temporal luminance gradient, there is no 
problem because the frame at t is not included in the 
conventional 3×3×3 multi-dimensional gradient filter. 
These values are calculated concretely as follows. First, 
we explain the spatial luminance gradient. ILt (x, y, t) is 
generated from frames A and B with eq. (9) using the 
coefficients of the temporal direction LPF filter as shown 
in Table 1. 
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By eq. (10) ILty (x, y, t) is obtained with application of the 
spatial LPF in the y direction against ILt (x, y, t). The final 
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spatial luminance gradient for the x direction Ix (x, y, t) is 
expressed from ILty (x, y, t) using gradient coefficients d1 

by eq. (11). 
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(10) 
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In the same manner, Iy (x, y, t) is also calculated from ILty 
(x, y, t) as eqs. (12) (13). 

 
 ),,1(),,1(),,(),,( 10 tyxItyxIptyxIptyxI LtLtLtLtx    (12) 

 .),1,(),1,(1 tyxItyxIdIy LtxLtx          (13) 
 

Second, we explain the calculation of temporal luminance 
gradient. As shown in eqs. (14) and (15), after applying 
the spatial LPF to A and B for the x and y directions, the 
luminance gradient for t is calculated as the eq. (16) using 
the gradient coefficient d1. ILyx (x, y, t +1) of eq. (16) is 
expressed for frame B. 
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3. Simulation results 

3.1 Accuracy of bidirectional flow estimation 

The accuracy of the proposed bidirectional flow 
estimation was verified by computer simulation. It is 
compared to the HOE algorithm, which realizes the 
highest level accuracy currently [12, 15]. 
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Fig. 5 (a) Bidirectional flow estimation in the proposed algorithm 
and (b) unidirectional flow estimation in the original HOE 
algorithm. 

In the proposed method, when the motion of the frame t is 
estimated, a 3×3×2 multi-dimensional gradient filter is 
applied with respect to the frame of previous t-1 and next 
t+1, as shown in Fig. 5(a). To prepare the magnitude of 
flow estimated, we used three frames at t-2, t, and t+2 in 
the HOE algorithm, as shown in Fig. 5(b). 

 

(b) Diverging

(c) Yosemite (316×252)

(d) Original (128×128)

Tree (150×150) (a) Translating

 

Fig. 6 Test sequences and its correct flows． 

Four test sequences with correct flow were selected: 
Translating Tree (Trans), Diverging Tree (Div), Yosemite 
(Yos), and originally created sequence (Org). Figure 6 
shows the test sequences and their correct flow. Trans is a 
sequence in which the entire image moves in 1.73–2.26 
pixels/frame in the right horizontal direction. Div zooms 
around the neighborhood of center with movements of 
1.29 and 1.86 pixels/frame on the left and right, 
respectively. Yos is a cloud sequence for which the entire 
image moves to right direction about 2 pixels/frame, 
whereas the lower-left portion is running about 4 
pixels/frame. In the original sequence (Org), the central 
rectangle object moves to right with 1 pixel/frame in the 
horizontal direction, while the background is moving 
upper in the 1 pixel/frame along the vertical direction. As 
an index of accuracy, the Mean Angular Error (MAE) and 
the Mean velocity Magnitude Error (MME) defined by eqs. 
(17) and (18) were used  [21, 22]. 
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Here, (uc, vc) is a correct flow and (ue, ve) represents the 
obtained flow. Iterations are terminated when it reaches 
the preset 150 times or when the amount of update of the 
flow reaches less than 0.0001. Here, parameters are α = 10 
and β = 5. 
Figures 7 and 8 show the MAE and MME in case of  L = 2, 
3, 4, respectively. The proposed method estimates the 
motion equivalent to 2d because two frames are used, 
while HOE estimates the motion d using three successive 
frames. In spite of this, almost equal accuracy is obtained 
from both the proposed method and HOE. Trans and Yos 
sequences include motion of about 3.0–4.0 pixels/frame. 
In this simulation, the proposed method must detect the 
motion of about 8 pixels/frame because the motion 
between two frames is twice. Results show that the flow 
accuracy with L=2 has degraded in both sequences. HOE 
is confirmed to detect the motion of about 3.5–4.0 
pixels/frame in two layers [15]. When executing FRUC 
actually, intermediate frames are generated between two 
frames that have a motion of 4 pixels/frame. Therefore, it 
is in a sufficient range for detection in two layers. The 
estimation accuracy of bidirectional flow estimation does 
not mean special degradation compared to the HOE. 
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Fig. 7   MAE (Mean Angle Error) of estimated flows in the proposed 
method and the original HOE algorithm. 

3.2 Effectiveness of motion compensated image 

In the proposed method, the accuracy of the flow 
estimation is improved by introducing motion 
compensated image in addition to hierarchical structure in 

order to suppress motions small in each layer. We 
confirmed an effectiveness of a motion compensated 
image using four sequences stated in the previous section. 
The flows were simulated in the proposed algorithm with 
and without the motion compensation. The results of the 
MAE and MME are shown in Figs. 9 and 10, respectively 
(L = 3). In the case of no motion compensated image, the 
propagation flow is used as the initial value of iteration in 
the lower layer. 
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Fig. 8   MME (Mean velocity Magnitude Error） of estimated flows in 
the proposed method and the original HOE algorithm. 
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Fig. 10     Improvements due to the motion compensation images: MME. 
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As shown in Figs. 9 and 10, it is readily apparent that 
applying the motion compensation image has engendered 
accuracy improvement. In case of not using a motion 
compensated image, the accuracy of the Trans was 
markedly degraded. This is the same reason that the flow 
of Trans with large movement deteriorated significantly in 
L=2 as described in Section 3.1. Similarly, in Yos with the 
same degree of movement, the accuracy in the case of no 
motion compensated image degrades greater than that in 
the case of using one. The introduction of motion 
compensated image together with the hierarchical method 
can be confirmed to realize profound improvement of flow 
accuracy in estimating large motion. 

3.3 FRUC with the proposed algorithm 

FRUC simulation was executed using the proposed 
algorithm. Five sequences were used for comparison with 
other existing algorithms: foreman, table tennis, flower, 
mobile, and Akiyo. All of these are CIF 30 fps. Flower is a 
250 frames sequence in all. The other four sequences are 
300 frames sequences. In these sequences, an odd frame is 
generated from the even frame. Table 2 shows computer 
simulation results. 

Foreman

Table

Flower

Frame
average

Mobile

Akiyo

Bidirec-
tional BM

MOFRUC
ref.  [5]

Proposed
method

32.88

32.47

32.01

30.29

45.99

32.62

32.17

30.40

28.41

46.78

25.45

28.97

24.50

19.30

37.18

28.40

27.99

19.19

23.88

46.24
 

Table 2    Comparison with other FRUC algorithms: PSNR.  

PNSR in Table 2 presents the average of the entire 
generated even frame (flower, 125 frames; the other four, 
150 frames). For comparison, the PSNR in other three 
method: the simple frame average, bidirectional BM 
method and in an earlier report [5] are also listed in Table 
2. In the BM method, the 8×8 block size and the 
bidirectional full search with search range of ±8 were used. 
This search range is equivalent to the hierarchical structure 
with four layers in the proposed method and both 
algorithms can detect the same degree of motion. 
Reference [5] gives the highest level PSNR compare to 
other existing methods to the best of our knowledge, 
although there are little differences among sequences. 
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Fig. 11    Comparison with other FRUC algorithms: PSNR. 

In the four sequences aside from Akiyo, the proposed 
method improves PSNRs of 3.5–11.82 dB compared to the 
simple frame average method and BM method. It was also 
confirmed that higher PSNRs of 0.26–1.88 dB were 
obtained compared to Ref. [5]. Figure 11 shows the PSNR 
of the proposed method and the Ref. [5]. The proposed 
method is particularly effective in images including fine 
structures or complex motions such as flower and mobile 
because the FRUC is executed at the pixel level. In the 
case of Akiyo, all methods give very high PSNR. There is 
no apparent difference in subjective evaluation because 
most images in the Akiyo sequence are still images. 
Figure 12 shows the 290th frame and the 48th frame in 

mobile sequence, which has the smallest and largest 
difference of PSNR between the BM method and the 
proposed method, respectively. As shown in Fig. 12(b), 
some objects are dropped in the upper center and in the 
lower left portion (ball). Seeing carefully, block noises 
appear in many parts. On the other hand, as shown in Fig. 
12(c), unnatural noises do not appear in the frame in the 
proposed method. However, the black ball at the left 
bottom is missed because the movement of the object is 
too large to capture. As setting the search range ± 8 in the 
BM method, this ball is also missed in the BM method. 
Compared with Fig. 12(e) and Fig. 12(f), which have a 
largest PSNR differences, almost all of characters on the 
calendar are lost completely in the BM method, while the 
proposed method generates them completely. 
Figures 13(a–c) shows expanded images of the areas 

encountered by white line at the left bottom in Figs. 12(d–
f), respectively. Many block boundary noises such as the 
surface of the ball and the leaves of the tree appear in the 
BM method as shown in Fig. 13(b). However, in the 
proposed method shown in Fig. 13(c), objects are 
reproduced almost completely, even in portions with the 
fine structure and object boundaries. 
Figure 14 shows the 164th frame of flower sequence with 

the smallest PSNR difference between the BM and the 
proposed method. Three images are shown in Fig. 14: (a) 
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the original image, (b) the image generated by the BM 
method (b), and (c) the image generated using the 
proposed method. Although the PSNR difference between 
image (b) and (c) is small, detailed portions such as birds 
and trees on the street are lost in the BM method, while 

these objects are completely generated in the proposed 
method as in Fig. 14(c). The proposed method is 
extremely effective. 
 

 

(c) Proposed method （PSNR:27.69 dB）(b) BM method （PSNR:24.58 dB）(a) Original image:290th frame

(d) Original  image:48th frame (f) Proposed method （PSNR:33.87 dB）(e) BM method （PSNR:18.34 dB）  

Fig. 12 Mobile: (a) Original image:290th frame, (b) BM method, (c) proposed method, (d) original image 48th frame, (e) BM method, and (f) proposed 
method． 

(a) Original  image:48th frame (c) Proposed method （PSNR:33.87 dB）(b) BM method （PSNR:18.34 dB）  

Fig. 13    Mobile: (a) Original image: 48th frame (b) BM method, and (c) proposed method. 

(a) Original  image:164th frame (c) Proposed method （PSNR:26.83 dB）(b) BM method （PSNR:24.30 dB）  

Fig. 14    Mobile: (a) Original image: 164th frame (b) BM method, and (c) proposed method
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4. Conclusion 

The FRUC algorithm in the pixel unit using optical flows 
was proposed. The optical flow estimation is based on the 
extended Hierarchical Optical flow Estimation (HOE) 
algorithm, in which the unidirectional flow estimation with 
successive three frames is extended to bidirectional one 
with successive two frames. In the proposed algorithm, the 
same accuracy was achieved to the original HOE in spite 
of using two frames. Owing to the bidirectional flow 
estimation, doubling or missing of the pixel does not 
appear on the generated frame in the FRUC. By computer 
simulation, the PSNR of 30.29–45.99 dB are obtained in 
five sequences: foreman, table tennis, flower, mobile, and 
Akiyo. The PSNR improvements are 3.50–10.99 dB 
compared to a simple bi-directional block matching 
method and 0.26–1.88 dB compared to an existing 
“Multiple Objective Frame Rate Up-conversion” method 
based on a bidirectional block matching method. 
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