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Summary  
The collective and self-organization behaviors of social insects 
have inspired researchers to reproduce them. Methods inspired 
by ants are a great promise for clustering problems. In the 
clustering algorithm based on Ants, patterns are spread out on a 
grid and each ant has assigned a pattern. The ants are responsible 
for picking, transporting and dropping patterns on the grid. After 
the algorithm converges, the recovery of clusters is done using 
the patterns’ positions on the grid. The purpose with this paper is 
to present changes and improvements to the Ant-based Clustering 
algorithm originally proposed by [2], hereinafter called proposed 
algorithm, evaluating its performance relatively to the Ward 
Method, the Kohonen Maps and the ACAM algorithm (Ant-
based Clustering Algorithm Modified), proposed by [1]. The 
major changes in the proposed algorithm were: the introduction 
of a comparison between the probability of dropping a pattern at 
the position chosen randomly and the probability of dropping this 
pattern at its current position; the introduction of an evaluation of 
the probability of a neighboring position when the decision to 
drop a pattern is positive and the cell in which the pattern should 
be dropped is occupied; and the substitution of the pattern carried 
by an ant in case this pattern is not dropped within 100 
consecutive iterations. To assess the performance of the proposed 
algorithm three real and public databases were used (ÍRIS, WINE 
and PIMA Indians Diabetes). The results showed superior 
performance of the proposed algorithm over the ACAM for two 
of the three databases and equality with other methods. 
Keywords: 
Data Mining; Metaheuristics; Ant-Based Clustering. 

1. Introduction 

Many researchers have focused their attention on a new 
class of algorithms called metaheuristic. According to [7], 
a metaheuristic is a set of algorithmic concepts that can be 
used to define heuristic methods applicable to a wide range 
of different problems. 
A particularly promising metaheuristic was inspired by the 
behavior of real ants. Starting with the Ants System, 
several algorithmic approaches based on these ideas were 
developed and implemented with considerable success for 

a variety of combinatorial optimization problems, 
academic and real [7]. 
Ant colony optimization – ACO is a metaheuristic in 
which the artificial ants colony cooperates to find good 
solutions to difficult discrete optimization problems [7]. 
Dorigo, Caro and Gambardella [5] present an assessment 
of recent works about ant algorithms for discrete 
optimization and introduce the ACO metaheuristic. Dorigo 
and Blum [4] present a research about the theoretical 
results of the optimization of ant colonies. 
According [1], many researchers have applied the Ants 
Colony Optimization mechanism based on the ideas of 
Dorigo and Stützle to many combinatorial optimization 
problems and then extended it to an entire class of 
optimization problems. 
Socha and Dorigo [18] present an extension of the ACO 
for continuous domains. In this article, the authors show 
how the ACO, initially developed for combinatorial 
optimization, can be adapted to continuous optimization 
with no conceptual changes in its structure. The authors 
present the general idea, the implementation and results 
obtained, which were compared with other methods for 
continuous optimization. 
According to Dorigo, Maniezzo and Colorni [8], in 
choosing a path an ant is influenced by the intensity of the 
pheromone trails. A higher level of pheromone gives an 
ant stronger stimulus and thus, higher likelihood to choose 
it. The result is that an ant will find a stronger trail on 
shorter paths. As a result, the number of ants that follow 
these paths will be higher. This will cause the amount of 
pheromone on the shortest path to grow faster than on the 
longest, so the probability with which any ant chooses a 
path to follow rapidly tends to the shorter. The end result 
is that very rapidly all ants will choose the shortest path. 
The Traveling Salesman Problem – TSP is a problem that 
is quite studied in the literature. The TSP also has an 
important role in the research of ACO: the first ACO 
algorithm, called Ant System - AS was first tested in the 
TSP [7]. 
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The Ant Colony System – ACS described by Dorigo and 
Gambardella [6] differs from the AS in three main aspects. 
First, it explores more closely the search experience 
accumulated by ants. Second, the evaporation of 
pheromone and pheromone deposit only occur in arches 
that belong to the best way so far. Third, each time an ant 
uses an arch it removes some of its pheromone, thus 
increasing the exploration of alternative pathways [7] 
The study of ant colonies has given outstanding 
contribution, not only in combinatorial optimization, but 
also offering new ideas for clustering techniques [1]. Ant-
based Clustering was initially proposed by [2]. In contrast 
to the ACO, no artificial pheromone is used and the 
environment itself serves as a stigmergy variable [9]. 
Among the behaviors of social insects the most widely 
recognized is the ability of ants to work together in order 
to develop a task that could not be performed by a single 
agent. Also seen in human society, this ability of ants is a 
result of cooperative effects. These cooperative effects 
have recourse to the fact that the effect of two or more 
individuals or coordinated parts is higher than the total of 
their individual effects. The high number of individuals in 
ant colonies and the decentralized approach for 
coordinated tasks (performed simultaneously) mean that 
ant colonies show high levels of parallelism, self-
organization and fault tolerance. These characteristics are 
desired in modern optimization techniques [1]. 
The Clustering algorithm based on Ant Colonies was 
chosen for this study, analysis and new proposals due to 
several factors. First, it is a relatively new metaheuristic 
and has received special attention, mainly because it still 
requires much investigation to improve its performance, 
stability and other key characteristics that would make 
such an algorithm a mature tool for data mining [1]. 
Moreover, this algorithm can automatically “find” the 
number of clusters within patterns. 
The purpose with this paper is to present an algorithm, 
hereinafter called proposed algorithm, through changes 
and improvements to the Ant-based Clustering algorithm 
originally proposed by [2], evaluating its performance 
relative to the Ward Method, the Unidimensional Kohonen 
Maps and the ACAM algorithm (Ant-based Clustering 
Algorithm Modified) proposed by [1].  
The use of the method from the Multivariate Statistics area 
(Ward Method) is justified because it is one of the most 
established methods in the literature [14]. On their turn, 
the One-dimensional Kohonen Maps were used because, 
as the Ant-based Clustering, they simultaneously perform 
the clustering and topographic mapping tasks. And finally, 
the ACAM because it is a method similar to the proposed 
algorithm, very recent. 
This paper is structured as follows: section 2 presents a 
theoretical background to the Ant-based Clustering, 
describing the algorithm, how to carry out the cluster 
recovery and some possible measures to evaluate clusters. 

Section 3 presents the databases used, computational 
implementation details for the methods that were used, as 
well as the major contributions (modifications and 
improvements) for the Ant-based Clustering. Section 4 
presents the results and discussions and finally, section 5 
presents the final considerations. 

2. Theoretical Foundation 

In the Ant-based Clustering proposed by [2], ants were 
represented as simple agents that moved randomly on a 
square grid. The patterns were scattered within this grid 
and the agents (ants) could pick, transport and drop them. 
These operations are based on similarity and on the density 
of the patterns distributed within the local neighborhood of 
agents, isolated patterns - or those surrounded by 
dissimilar ones - are the most likely to be picked and then 
dropped in a neighborhood of similar ones. 
The decisions to pick and drop patterns are made by the 
Ppick and Pdrop probabilities given by equations (1) and (2), 
respectively. 
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In these equations, f(i) is an estimate of the fraction of the 
patterns located in the neighborhood and that are similar to 
the current Ant’s pattern, and kp and kd are real constants. 
In [2], the authors used kp = 0.1 and kd = 0.3. The authors 
obtained the estimate f through a short-term memory of 
each ant, in which the content of the last cell in the 
analyzed grid is stored. This choice of the neighborhood 
function f(i) was primarily motivated due to its ease of 
implementation with simple robots. 
Lumer and Faieta (1994, apud [11]) introduced a number 
of modifications to the model, which allowed the 
manipulation of numeric data, and improved the quality of 
the solution as well as the algorithm’s convergence time. 
The idea was to define a measure of similarity or 
dissimilarity between patterns, since in the algorithm 
initially proposed objects were similar if objects were 
identical and dissimilar if objects were not identical. In 
that work, topographic mapping has its first appearance. 
The general idea with this algorithm is to have similar data 
in the original n-dimensional space in neighboring regions 
of the grid, this is, data that are neighbors on the grid 
indicate similar patterns on the original space. 
In this work, the decision of picking patterns is based on 
the Ppick probability given by equation (1) above, and the 
decision to drop patterns is based on the probability Pdrop 
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given by equation (3) below, where f(i) is given by 
equation (4). 
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In equation (4), d(i, j) is a function of dissimilarity 
between patterns i and j belonging to interval [0,1]; α is a 
scalar parameter that dependents on the data (patterns) and 
belongs to the interval [0,1]; L is the local neighborhood of 
size σ2, where σ is the perception radius (or neighborhood). 
Lumer and Faieta (1994, apud [11]) used kp = 0.1, kd = 
0.15 and α = 0.5 in their work. 
The Ant-based Clustering algorithms are mainly based on 
the versions proposed by [2] and Lumer and Faieta (1994, 
apud [11]). Several modifications were introduced to 
improve the quality of a cluster and, in particular, the 
spatial separation between the clusters on the grid [1]. 
Changes that improve the spatial separation of clusters and 
allow a more robust algorithm were introduced by [11]. 
One of them is the restriction on the f(i) function, given by 
equation (5) below, which serves to penalize high 
dissimilarities. 
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According [25], a difficulty in applying the Ants 
Clustering algorithm to complex problems is that in most 
cases they generate a number of clusters that is much 
larger than the real one. Moreover, usually these 
algorithms do not stabilize in a cluster solution, this is, 
they constantly construct and deconstruct clusters during 
the process. To overcome these difficulties and improve 
the quality of results, the authors proposed an Adaptive 
Ant Clustering Algorithm - A2CA. A modification 
included in the present approach is a cooling program for 
the parameter that controls the probability of ants picking 
up objects on the grid. 

2.1 Parameters of the Neighborhood Function 

The clusters’ spatial separation on the grid is crucial so 
that individual clusters are well defined, thus allowing 
their automatic recovery. Spatial proximity, when it occurs, 
may indicate the premature formation of the cluster [11]. 
Defining the parameters for the neighborhood function is a 
key factor in cluster quality. In the case of the σ perception 
radius it is more attractive to employ larger neighborhoods 
to improve the quality of clusters and their distribution on 
the grid. However, this procedure is computationally more 

expensive, once the number of cells to be considered for 
each action grows quadratically with the radius, while it 
also inhibits the rapid formation of clusters during the 
initial distribution phase. A radius of perception that 
gradually increases in time accelerates the dissolution of 
preliminary small clusters [11]. A progressive radius of 
perception was also used by [25]. 
Moreover, after the initial clustering phase, [11] replaced 

the scalar parameter 2

1
σ

 by 
occN

1
 in equation (5), where 

Nocc is the number of grid cells occupied, observed within 
the local neighborhood. Thus, only similarity (not density) 
was taken into account. In his ACAM algorithm, [1] 

proposed to replace the scalar 2

1
σ

 in equation in (5) by 

the scalar 
2
0
2

σ

σ
, in which 0σ is the initial radius of 

perception. 
 
According to [11], α determines the percentage of patterns 
on the grid that are rated as similar. The choice of a very 
small value for α prevents the formation of clusters on the 
grid. On the other hand, choosing too large a value for α 
results in cluster merging. 
Determining parameter α is not simple and its choice is 
highly dependent on the data set’s structure. An inadequate 
value is reflected by an excessive or extremely low activity 
on the grid. The amount of activity is reflected by the 
frequency of successful operations of an ant in picking and 
dropping. Based on these analyses, [11] proposed an 
automatic adaptation of α. Boryczka [1] proposed a new 
scheme for adapting the value of α. 
Tan, Ting and Teng [20] examined the scalar parameter of 
dissimilarity in Ant Colonies approaches for data 
clustering. The authors show that there is no need to use an 
automatic adaptation of α. They propose a method to 
calculate a fixed α for each database. The value of α is 
calculated regardlessly of the clustering process. 
To measure the similarity between patterns, different 
metrics are used. Handl, Knowles and Dorigo [11] use 
Euclidean distance for synthetic data and cosine for real 
data. Boryczka [1] tested different dissimilarity measures: 
Euclidean, Cosine and Gower measures. 

2.2. The Basic Algorithm Proposed by [2] 

In an initial phase of the basic algorithm proposed by [2] 
all patterns are randomly scattered on the grid. Then, each 
ant randomly chooses a pattern to pick and is placed at a 
random position on the grid. 
In the next phase, called the distribution phase, in a simple 
loop each ant is randomly selected. This ant travels the 
grid running steps of length L in a direction randomly 
determined. According to [11], using a large step size 
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speeds up the clustering process. The ant, then, 
probabilistically decides if it drops its pattern at that 
position. 
If the decision to drop the pattern is negative another ant is 
randomly chosen and the process starts over. If the 
decision is positive, the ant drops the pattern at its current 
position on the grid, if it is free. If this grid cell is occupied 
by another pattern, the pattern must be dropped at an 
immediate free neighboring cell through a random search. 
The ant then seeks for a new pattern to pick. Among the 
free patterns on the grid, this is, patterns that are not being 
carried by any ant, the ant randomly selects one, goes to its 
position on the grid, evaluates the neighborhood function 
and probabilistically decides if it picks this pattern. This 
choosing process of a free pattern on the grid runs until the 
ant finds a pattern that should be picked. Only then this 
phase is resumed, choosing another ant, until a stop 
criterion is satisfied. 

2.3. Cluster Recovery  

Hierarchical clustering methods include techniques that 
hierarchically seek clusters and therefore, admit obtaining 
multiple clustering levels. The hierarchical methods can be 
subdivided into agglomerative and divisive. The 
hierarchical agglomerative method considers, in principle, 
each pattern as a cluster and iteratively groups the pair of 
clusters with greater similarity into a new cluster until it 
forms a single cluster containing all patterns. The divisive 
hierarchical method, in contrast, begins with a single 
cluster and performs a process of successive subdivisions 
[3]. 
This work will address only the agglomerative hierarchical 
method. The process begins with each pattern forming a 
cluster. After calculating the distances between all clusters, 
the two clusters with smaller distance should be connected. 
The most common types of connections are: Simple Link, 
Complete Link, Average Link and the Ward Method [14].  
The distances between clusters are defined in terms of 
their distances on the grid. Each pattern is now composed 
of only two attributes that position it on the two-
dimensional grid. The distance between any two patterns is 
then the Euclidean distance between two grid points. This 
process repeats until a stop criterion is satisfied. 
When patterns around the clusters’ edges are isolated, [11] 
introduced a weight that encourages the fusion of these 
patterns with the clusters. 

2.4 Clustering Evaluation 

In the evaluation of clusters different aspects can be 
observed: determine the clustering trend of a set of data, 
compare results of a clusters analysis with results 
externally known, assessment of how well the results of a 
clusters analysis fit the data without reference to external 
information, compare the results of two different sets of 

clusters analysis to determine which one is better, or even 
determine the correct number of clusters [19]. 
According to [19], the numerical measures applied to 
assess different aspects of cluster evaluation are classified 
into three types: external ones that are used to measure the 
extent to which cluster labels correspond to class labels 
provided externally, the internal one that is used to 
measure how good the clustering structure is unrelated to 
external information and the relative, which is used to 
compare two different clusters. 
Boryczka [1] used two internal indices (the Intra-Cluster 
Variance and the Dunn Index) and two external indices 
(Measure F and the Random Index). These last two 
measures are described here because they were used in this 
paper as well. 
Measure F uses the idea of accuracy and memory of 
information retrieval. Each class i is a set of ni desired 
patterns; each cluster j (generated by the algorithm) is a set 
of nj patterns; nij is the number of patterns in class i 
belonging to cluster j. For each class i and cluster j, 

precision p and memory r are defined as ( , ) ij
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given by equation (6). 
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The value of b should be "1" to give equal weight to 
precision p and memory r. In equation (6), n is the size of 
the dataset. Measure F is limited to the interval [0, 1] and 
should be maximized. 
In its turn, the Random Index (R) is given by equation (7), 
where a, b, c and d are calculated for all possible pairs of i 
and j patterns and their respective clusters U (correct 
classification - cU(i)  and cU(j ) and V (solution generated 
by the clustering algorithm - cV(i)  and cV(j )). Measure R is 
limited to the interval [0, 1] and should be maximized. 
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2.5 Other Clustering Methods Used 

In this work, as already mentioned, three methods were 
selected for comparison with the algorithm here proposed: 
Ward Method (classical statistical method); One-
dimensional Kohonen Neural Networks (performs 
topographic mapping and clustering simultaneously) and 
the ACAM (analogous to the method proposed here). All 
three methods are briefly described below. 

2.5.1 Ward Method 

According to [14], the Ward Method used in this work 
connects two clusters based on "information loss". The 
sum of the square error (SSE) is considered the criterion 
for "information loss". For each cluster i, the cluster’s 
mean (or centroid) is calculated, as well as the sum of the 
square error of cluster i (SSEi), which is the sum of the 
square error of each pattern in the cluster in relation to the 
mean value. For k clusters there are SSE1, SSE2, ..., SSEk, 
where SSE is defined by equation (8). 
 
      SSE = SSE1 + SSE2 + ... + SSEk      (8) 
 
For each pair of clusters m and n, the mean (or centroid) is 
first calculated for the cluster formed (cluster mn). Next, 
the sum of square error for cluster mn (SSEmn) is calculated 
according to equation (9). The m and n clusters that show 
the smallest increase in the sum of square error (SSE) 
(smallest “loss of information”) will be merged. 
 
SSE = SSE1 + SSE2 + ... + SSEk – SSEm – SSEn + SSEmn

   (9) 

2.5.2 One-dimensional Kohonen Neural Networks 

According to [10], in 1982 Teuva Kohonen developed the 
method of self-organizing maps that makes use of a 
topological structure to cluster units (patterns). Self 
Organizing Maps - SOM, also known as Kohonen Neural 
Networks, form a class of neural networks in which 
learning is unsupervised. 
According to [12] the main purpose with the Kohonen 
Neural Networks is transform input patterns of arbitrary 
dimension into a discrete map. The neurons are placed at 
the nodes of a grid, which can have any number of 
dimensions. Usually two-dimensional grids are used 
(called 2D-SOMs). There are also the 1D-SOMs (used 

here) and 3D-SOMs, which use grids (or maps) of one and 
three dimensions, respectively. 
The learning process of a Kohonen Neural Network is 
based on competitive learning in which the grid’s output 
neurons compete to be activated. The output neuron that 
wins the competition is called the winning neuron. All 
neurons on the grid should be exposed to a sufficient 
number of input patterns to ensure proper ripening of the 
self-organization process [12]. 
According to [12], besides the competition process to form 
the map, the cooperation and adaptation processes are also 
essential. In the cooperation process, the winning neuron 
locates the center of a topological neighborhood of 
cooperative neurons. For the self-organization process to 
occur the excited neurons have their synaptic weights set 
in the adaptation process. The adjustment made is such 
that the winning neuron's response to the application of a 
similar input pattern is enhanced. 
According to [17], several error measures can be used to 
determine the quality of a map. In his work, the author 
uses the quantization error, which represents the average 
error that corresponds to the difference between the 
patterns and the weights of the winning neurons, the 
topological error, which represents the percentage of 
winning neurons that lack the second winner in a 
neighborhood of unitary radius centered on the winning 
neuron and the square mean error. 
There are several approaches to variants of Kohonen 
Neural Networks. The algorithms, inspired by the original, 
modify some aspects as, for instance, neighborhood 
criterion, how to choose the winning neuron, the use of 
hierarchical maps and accelerated learning, among others 
[15]. 

2.5.3 ACAM Method  

Boryczka [1] presented a modification of the clustering 
algorithm proposed by Lumer and Faieta. To increase the 
robustness of the clustering based on ants, the author has 
incorporated two major changes compared to the classical 
approach: 1. an adaptive perception scheme occurred in 
the density function and 2. a cooling scheme of α-
adaptation, this is, a cooling scheme for the adaptation of 
parameter , modifications already mentioned in section 
2.1.  

3. Material and Methods 

The databases used in this paper, which were meant to 
compare the methods mentioned here, were: Iris, Wine and 
Pima Indians Diabetes, available at 
http://mlearn.ics.uci.edu/databases. Table 1, at the end, 
shows the number of patterns, the number of attributes and 
the number of clusters for each one of these databases. The 
data were standardized before the clustering methods were 
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applied. Standardization was done by dimension. 

3.1 Ward Method 

The Ward Method [14] was applied to the three databases 
with the aid of the computer software MatLab2008 [16]. 
The number of clusters (last column of Table 1) was 
provided for the evaluation of this method. The 
dissimilarity measurement used was the Euclidean 
distance because it is the best known of the dissimilarity 
measures and because it has been employed in previous 
works for all methods used here. 

3.2 Kohonen Maps 

Clustering with One-dimensional Kohonen Maps applied 
to the databases was implemented in computer software 
MatLab2008 [16] and ran 10 times for each database. 
Implementation details can be obtained in [21]. 
In this method it is necessary to set the number of neurons, 
which was defined here as being equal to the number of 
clusters (k). The parameters for this method were defined 
as follows: the initial learning rate = 0.5, the minimum 
learning rate = 0.05, initial neighborhood radius = max [1, 
¼ k], initial synaptic weights [0, 1], maximum number of 
iterations N = 500. At each iteration all patterns are 
presented to the network at random. The stopping criterion 
was defined as the maximum number of iterations. In the 
implemented algorithm, two phases (initial and final) were 
defined in which the parameter settings are modified. The 
initial phase was defined as tinicial = 0.2 N. In the final 
phase, the initial neighborhood radius is equal to the radius 
of the neighborhood at the end of the first phase. 
The training involves all competitive, cooperative and 
adaptive phases in which each pattern must be presented to 
the network. In the competitive stage, the distances of the 
pattern to all neurons (Euclidean distance) are computed 
and the winning neuron is determined. In the cooperative 
phase, winning neuron's neighbors are located and in the 
adaptive phase, the synaptic weights of neurons 
neighboring the winning neuron are updated. The updating 
of synaptic weights was made according to equation (10) 
with neighborhood function defined by equation (11). This 
update takes into consideration the distance from the 
neighbor to the winning neuron and the learning rate. 

wj(n  1) = wj(n) + η(n).hji(x)(n) . (x  wj(n))         (10) 

                     hji(x)(n) =

2

22 ( )

jid

n
e

 
 
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Then, the learning rate and the neighborhood radius should 
be updated according to equations (12) and (13), 
respectively. 
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In these equations, 1
0log( )

N
 


 and τ2 = N, where N is 

the maximum number of iterations and 0  is the 

neighborhood’s initial radius. These values were defined 
based on the values used by [12], where τ2 = 1000. 

3.3 ACAM Method 

This method, unlike the others (Ward, Kohonen and 
proposed), was not implemented. The comparison was 
made directly to the results presented in [1]. 

3.4 Proposed Algorithm 

The proposed algorithm, based on the basic algorithm by 
[2] and presented in section 2.1, was implemented with 
computer software MatLab2008 [16]. For this, the LCPAD 
computational grid resources were used: Central 
Laboratory for High Performance Processing/UFPR, 
partially financed by FINEP project CT-
INFRA/UFPR/Modeling and Scientific Computing.  
The implemented algorithm used the number of iterations 
as stopping criterion and the algorithm was run 10 times. 
Here, n is the number of patterns and m is the number of 
attributes, the number of iterations Nmax was set to Nmax = 
500.n.m. Several tests were performed to set the maximum 
number of iterations. In the implemented algorithm two 
phases (initial and final) were defined in which the 
parameter settings are modified. The initial phase was 
defined as tinicial = 0.2.Nmax. 
In defining the size of the grid, the number of cells was 
chosen as 10 times the number of patterns and 10 ants 
were used (p=10), as in [11]. It was observed that 
changing these values is not essential for the clustering 
process and, for this reason, the same values were used. A 
square neighborhood was used when searching for 
pattern’s neighbors. 
As in [11], the initial neighborhood radius was defined as 
being equal to "1", with the use of value increment during 
the initial phase. Since an equation for the increase of this 
value was not explicitly found in other studies, this was 
done according to equation (14), where t is the current 
iteration of the initial phase. During the final phase, this 
value decreases in 0.05 per 100 substitutions of the pattern 
carried by an ant (a suggested modification that is detailed 
below). The value of the neighborhood radius is always 
the integer value smaller than or equal to the one defined 
in any of the phases. This automatic adjustment during the 
final phase aims to "relax" the neighborhood size when 
ants are not being able to drop the patterns they carry. 
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 4 inicial

t

t         (14) 
 
In defining the neighborhood to calculate the probability 
of dropping a pattern in its current position and to 
calculate the probability of picking a pattern, the 
neighborhood’s radius was always considered equal to "1". 
In seeking a new position, the direction of the step is 
random. Set the direction, the maximum possible size of 
the step is calculated. A random number belonging to 
interval [0, 1] was used to determine this size, multiplying 
this number by the maximum step size. 
The used probabilities of picking (ppick) and dropping 
(pdrop) are described by equations (1) and (2), respectively, 
where kp = 0.1 and kd = 0.3, the same values used by [2]. A 
pattern is picked if probability pp is greater than a 
minimum picking value (pickmin). A pattern is dropped if 
probability pd is greater than a minimum dropping value 
(dropmin). 
The values of dropmin and pickmin were set to 0.13397 
during the initial phase. This value was defined by making 
the picking probability (ppick) equal to the dropping 
probability (pdrop). Figure 1, at the end, shows the graph of 
the picking and dropping probabilities. The definition of a 
random value greater than 0.13397 during the final phase 
was made to restrain the change in position during this 
phase without "immobilizing" the process, however. The 
definition of a value that increases in time in the long term 
would prevent the ants from moving the patterns. 
To calculate function f, function f* was used, defined by 
equation (5) already presented and proposed by [11], 

substituting the scaling parameter 
2

1


 by 

1

occN
, where 

Nocc is the number of grid cells occupied within the local 
neighborhood, as shown in (15). 



    
            




1 ( , ) ( , )
1 , 1 0

*( )

0,
occ j L

d i j d i j
if j

Nf i

otherwise

 (15) 

Parameter α0, after some preliminary tests, was set to 0.8. 
Its updating, during the initial phase, was defined 
according to equation (16); for the final phase, this value 
decreases to 0.001 every 100 substitutions of the pattern 
carried by an ant. This decrease during the final phase was 
made to prevent ants to fail to move their patterns. 

                        

 
0

2
0,01

. inicial

t

p t
                             (16) 

It is noted that any change in the values of kp, kd and α 
directly influences the clustering process. It was decided to 
keep the values of kp and kd and use only an adaptation for 
α. If the values of kp and kd are changed, the adaptation for 

α, as well as the values pickmin and dropmin, should be 
reviewed. 
When a pattern is dropped onto the grid a new pattern 
should be picked. The search for this pattern is random, 
but each free pattern is evaluated only once, until all of 
them has been evaluated. If no pattern shows probability 
ppick greater than pickmin, the pattern that has the highest 
ppick probability is picked. 
When a pattern has no neighbors, function f is set to zero. 
This makes probability pd equal to "0", this is, the pattern 
should not be dropped at that position, and probability pp 
equal to "1", this is, the datum must be picked and later 
leave this position. 
The dissimilarity measure used was the Euclidean distance. 
The distance matrix was calculated according to equation 
(17) and then was standardized. In this equation, the 
weight refers to the attribute and is calculated by dividing 
the standard deviation by the average, calculated for each 
attribute of the data matrix already standardized (Q). 
 

 


 
  

2

1

( , ) ( , ) ( , ) . ( ,1)
m

a

d i j Q a i Q a j weight a  (17) 

For cluster recovery the Ward Method was used and a 
maximum number of clusters was defined. It is noteworthy 
that in [22] other methods have been tested and the Ward 
Method showed better results. 
As for the evaluation of results, two external indexes were 
used (Measure F and Random Index), as shown in Section 
2.4, as well as the misclassification percentage. 

3.4.1. Proposed Changes to the Ant-based Clustering 

During the study of the Ant-based Clustering, it was 
observed that many of the changes in position of patterns 
occur unnecessarily. It is considered an unnecessary 
change when a pattern is among similar ones on the grid 
and, in this case, there is no need to change this pattern to 
another position. Aiming to avoid these unnecessary 
changes, was introduced a comparison of the probability of 
dropping a pattern in the position chosen randomly with 
the probability of dropping this pattern at its current 
position. The pattern is only dropped at the position 
chosen randomly if this probability is greater than the 
probability of dropping this pattern at its current position. 
The occurrence of fusion of close clusters on the grid was 
also observed. When a decision to drop a pattern is 
positive and the cell where that pattern should be dropped 
is occupied, a free random position close to this one is 
searched for. However, this new position may also be 
close to another pattern cluster on the grid. This may be 
one reason for the merger of close clusters. As an 
alternative to prevent the merger of close clusters on the 
grid, in this paper was proposed an assessment of the 
probability for the new position. The pattern is only 
dropped at the position chosen randomly if this probability 
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is greater than the probability of dropping this pattern at its 
current position. All free neighboring positions are 
evaluated. If at no free neighboring position the probability 
of dropping the pattern is higher than the probability of 
dropping the pattern at its current location, the pattern is 
not dropped and the process starts again by choosing 
another ant. 
Another issue observed in the Ant-based Clustering is that 
an ant can carry a pattern that is among similar ones on the 
grid. An ant only carries a pattern when it is not among 
similar ones on the grid. However, since the ant carries a 
pattern until it is drawn to attempt to drop the pattern, 
changes occur in this neighborhood and then can it leave it 
among the similar ones. Therefore, this ant is inactive 
because the operation of dropping the pattern is not 
performed. In this case, it was proposed to replace the 
pattern picked by an ant, if this pattern is not dropped in 
100 consecutive iterations. The new pattern was chosen by 
lot, but it was only picked by the ant if the probability of 
carrying this pattern is greater than 0.13397. The value 
0.13397 was defined by making the pick probability (ppick) 
equal to the drop probability (pdrop). If there is no pattern 
with a picking probability higher than 0.13397, the ant 
picks the last pattern drawn. This could also be a stopping 
criterion. 

3.4.2 Pseudo-code 

Initial phase 
Patterns are randomly scattered on the grid. 
Each ant randomly chooses a pattern to pick and is 
placed at a random position on the grid. 

Distribution phase 
Each ant is selected randomly. 
This ant moves randomly on the grid and evaluates 
its neighborhood function f (i) (equation 15). 
The ant decides probabilistically if it drops its 
pattern at this position (equation 2). The pattern is 
only dropped at the position chosen randomly if 
this probability is greater than the probability of 
dropping this pattern at its current position. 
If the decision is negative, another ant is selected at 
random and the distribution phase starts over again. 
If the decision is positive, the ant drops the pattern 
at its current position on the grid, if it is free. 
If this grid cell is occupied, the pattern must be 
dropped at a free neighboring cell through a 
random search. The evaluation of probability of 
dropping the pattern at the new position is made 
and the pattern is only dropped at that neighboring 
cell if the probability of dropping the pattern at this 
position is still higher than the probability of 
dropping this pattern at its current position. If at no 
free neighboring position the probability of 
dropping the pattern is higher than the probability 
of dropping the pattern at its current location, the 
pattern is not dropped and the process starts again 
by choosing another ant. 

The ant randomly searches for a new pattern to pick 
(among the free patterns), goes to its position on the 
grid, evaluates the neighborhood function (equation 
15) and decides probabilistically whether it picks 
this pattern or not (equation 1). 
This choosing process of a free pattern on the grid 
runs until the ant finds a pattern that should be 
picked. 
The pattern an ant picks will be replaced if this 
pattern is not dropped after 100 consecutive 
iterations. Another pattern is randomly chosen, but 
the ant only picks it if the probability of picking 
this pattern is higher than 0.13397, a figure 
previously discussed in section 3.4. If there is no 
pattern with a picking probability higher than 
0.13397, the ant picks the last pattern drawn. 

Cluster recovery phase 
The process begins with each pattern forming a 
cluster. 
After calculating the distances between all clusters, 
the two clusters with smaller “loss of information” 
should be merged (equation 9). 

4. Results 

The proposed Clustering algorithm based on Ants was 
applied to three real and public databases listed in Table 1. 
Because it is a metaheuristic, this method was applied 10 
times to each database, as already mentioned. Preliminary 
results for the Iris and Wine databases have been published 
in [23] and [24]. 

4.1. Results of the Application of the Proposed 
Algorithm to the Databases 

Table 2, at the end, presents the average and the standard 
deviation of the evaluation measurements for the 
databases, using the proposed algorithm, in addition to 
measurements to evaluate the clustering for the best result.  
As can be seen, the results were quite satisfactory for 
databases IRIS and WINE (11.9% and 12.7%, on average, 
of wrong ratings). As for the PIMA database, the results 
were not as good; below it is shown that the other methods 
also showed no satisfactory results for this database. 
Figures 2 and 3 show the grid for the best result (whose 
evaluation measurements are presented in Table 2) for 
databases IRIS and WINE, respectively. In these figures, 
the patterns in red belong to cluster 1, patterns in black 
belong to cluster 2 and patterns in blue belong to cluster 3. 
It is worthy to point out that cluster 1 contains all the 
patterns assigned to it. 
Table 3 (confusion matrix) shows the pattern distribution 
for the IRIS database, where one can observe the patterns 
correctly assigned to clusters and patterns erroneously 
assigned to clusters. In this database there are only nine 
patterns (*) in wrong clusters from a total of 150 patterns. 
Cluster 1 contains all the patterns assigned to it. 
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Similarly, Table 4 shows the pattern distribution for the 
WINE database. In this database there are only 18 patterns 
(*) in wrong clusters from a total of 178 patterns. 

4.2. Evaluation of the Proposed Algorithm in relation 
to the Ward Methods, the One-dimensional Kohonen 
and the ACAM 

Table 5, at the end, shows the comparisons of the average 
evaluation measurements for the three methods (Ward, 
Kohonen, ACAM and proposed algorithm) for the IRIS, 
WINE and PIMA databases. The best results are in bold. 
In the IRIS database, the Ward Method was the best for the 
three assessment measures (about 3% of errors); in the 
WINE database, the proposed algorithm was better for two 
of the three assessment measures (about 12% of errors) 
and with the PIMA database, the Uni-dimensional 
Kohonen Networks technique was the best for  two of the 
three assessment measures (about 34% of errors).  
It is worthy to point out that [11] claim that no algorithm 
dominates the others forever. According to [13], according 
to the “NO-FREE-LUNCH” theorem, if there is no prior 
assumption about the optimization problem one is trying to 
solve, it is expected that no strategy has better performance 
than others when tested on a large set of databases with 
different characteristics. 
When comparing the measures averages for evaluating 
clustering for the proposed algorithm and for the ACAM 
algorithm, the results show that the proposed algorithm is 
better than the ACAM for two of three databases (IRIS 
and WINE). The best results are marked with (+). As 
already mentioned, for the PIMA database the results show 
that none of the methods showed satisfactory results. 

5. Conclusions 

The proposed clustering algorithm based on Ants was 
applied to three databases, and to assess its performance it 
was compared with three other methods: Ward, One-
dimensional Kohonen and ACAM. 
Comparing the proposed algorithm to the Ward and 
Kohonen methods (columns 2, 3 and 4 of Table 5), the 
results show no superiority of any of them. On the other 
hand, when comparing the mean clustering evaluation 
measurements through the proposed algorithm and the 
ACAM algorithm (columns 4 and 5 of Table 5), the results 
show that the proposed algorithm showed a better 
performance for two of the three databases. 
Therefore, although the proposed algorithm has shown no 
superiority in relation to the already established Ward and 
Kohonen methods, it showed improvements in relation to 
one of the latest approaches involving the ant colonies 
(ACAM, by [1]), thus certifying the importance of this 
paper. 

It is intended to continue this work, using additional 
databases for testing and the use of additional indexes for 
clustering evaluation so that then, additional improvements 
to the algorithm here proposed may be introduced. 
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Table 1. Databases used to evaluate the proposed algorithm 
Database Patterns Attributes Clusters 

Íris 150 4 3 
Wine 178 13 3 

Pima Indians Diabetes 768 8 2 

 
Table 2. Results of applying the proposed algorithm, run averages for 10 times,  

for real databases (IRIS, WINE and PIMA). 
Results R F Misclassification (%) 

Iris 

Average: 0.871 0.877 11.9 

Standard deviation 0.039 0.050 4.6 

A) Result VH-RT3c. 0.927 0.940 6.0 
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Wine 

Average: 0.843 0.871 12.7 

Standard deviation 0.019 0.021 1.9 

A) Result VH-RT3c. 0.871 0.899 10.1 

Pima 

Average: 0.510 0.583 43.6 

Standard deviation 0.010 0.022 4.0 

A) Result VH-RT3c. 0.531 0.623 37.5 

 
Table 3. Confusion matrix showing the Pattern distribution for the IRIS database – best result 

Iris Generated Solution 

Correct Clustering Cluster 1 Cluster 2 Cluster 3 

Class 1 50 0 0 
Class 2 0 48 2* 
Class 3 0 7* 43 

 
Table 4. Confusion matrix showing the Pattern distribution for the WINE database – best result 

WINE Generated Solution 

Correct Clustering Cluster 1 Cluster 2 Cluster 3 

Class 1 55 4* 0 
Class 2 4* 64 3* 
Class 3 2* 5* 41 

 
Table 5. Comparison of average results from the application of clustering methods: Ward, One-dimensional Kohonen 

Networks, ACAM and Proposed Algorithm, for the IRIS, WINE and PIMA databases. 

Database Ward 1D-SOM 
Ants 

Algorithm ACAM

Iris 

R (higher is better) 0.96 0.86 0.87+ 0.82 

F (higher is better) 0.97 0.86 0.88+ 0.81 

Misclassification (%) (smaller is better) 3.33 12.8 11.9+ 18.7 

WINE 

R (higher is better) 0.82 0.76 0.843 0.85+ 

F (higher is better) 0.85 0.76 0.87+ 0.87 

Misclassification (%) (smaller is better) 15.17 22.42 12.7+ 13.9 

PIMA 

R (higher is better) 0.53 0.55 0.51 0.52+ 

F (higher is better) 0.62 0.66 0.58+ 0.57 

Misclassification (%) (smaller is better) 37.37 34.57 43.6 33.7+ 
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Figure 1. Graph of the probabilities of picking and dropping patterns 

 

 
Figure 2. Result of the proposed algorithm for the IRIS database – best result. 

 
 

 
Figure 3. Result of the proposed algorithm for the WINE database – best result. 

 
 


