
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.6, June 2012

134

Manuscript received June 5, 2012
Manuscript revised June 20, 2012

Enhanced Traveling Salesman Problem Solving using Genetic
Algorithm Technique with modified Sequential Constructive

Crossover Operator

Dr.Sabry M. Abdel-Moetty
 Chief of Researches and Development Center, EAF, Egypt.

Asmaa O. Heakil,

Associate lecture, Faculty of Science, Al-Azhar University Cairo, Egypt.

Abstract
This paper proposes Genetic Algorithm (GA) with a new
crossover operator, Modified Sequential constructive crossover
(MSCX), to solve the Traveling Salesman Problem (TSP). The
proposed algorithm constructs an offspring from a pair of
parents using better edges on the basis of their values that may
be present in the parents' structure maintaining the sequence of
nodes in the parent chromosomes. The results of the proposed
algorithm (MSCX) are compared with others GA algorithms
which use different crossover operations, MSCX achieve a
better solution for TSP.
Keywords:
Traveling Salesman Problem (TSP), Sequential constructive
crossover (SCX), Sequential constructive crossover (MSCX).

1. Introduction

In 1975, Holland described how to apply the principles of
natural evolution to optimization problems and built the
first Genetic Algorithms in his book “Adaptation in
natural and artificial systems”. Holland’s theory has been
further developed and now Genetic Algorithms (GAs)
stand up as a powerful tool for solving search and
optimization problems. Genetic algorithms are based on
the principle of genetics and evolution. The power of
mathematics lies in technology transfer: there exist certain
models and methods, which describe many different
phenomena and solve wide variety of problems. GAs is an
example of mathematical technology transfer: by
simulating evolution one can solve optimization problems
from a variety of sources. Today, GAs is used to resolve
complicated optimization problems, like, timetabling, job-
shop scheduling, and games playing [1]. Traveling
Salesman Problem (TSP) optimization problem is one in
which the aim is to find the best way to order elements
according to the minimum total cost, (e.g., visit a set of
cities according to the minimum total distance to travel.)
There are many possible ways to order these elements, but
some combinations will be better than others. Each
possible answer, or combination, is considered to be a
“solution”. The best solution is called the “optimal
solution”. The answer the problem requires that a solution

should be proved to be the optimal solution. Often, this
means that a very large number of solutions need to be
tested in order to determine which solution is optimal.
Given a set of cities along with the cost of travel between
each pair of them, TSP, is to find the cheapest way of
visiting all the cities and returning to the starting point.
The “way of visiting all the cities” is simply the order in
which the cities are visited; the ordering is called a tour or
circuit through the cities [2].

2. Background

2.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the
important subjects which have been widely addressed
extensively by mathematicians and computer scientists. It
is a permutation problem with the objective of finding the
path of the shortest length (or the minimum cost) on an
undirected graph that represents cities or node to be
visited. The Traveling Salesman Problem (TSP) is one of
the important subjects which have been widely addressed
extensively by mathematicians and computer scientists [3].
It is a permutation problem with the objective of finding
the path of the shortest length (or the minimum cost) on
an undirected graph that represents cities or node to be
visited. The traveling salesman starts at one node, visits
all other nodes successively only one time each, and
finally returns to the starting node. The objective is to find
the path, which follows following constrains [4]:

1. Salesman has to visit each city. He should not
leave any city unvisited.
2. Each city should be visited only one time.
3. The distance that has been traveled till returns
back to the City that started with should be the
shortest distance.

2.2 Genetic Algorithm

Genetic Algorithms (GA's) are relatively new paradigms
in artificial intelligence which are based on the principles

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.6, June 2012

135

of natural selection. The formal theory was initially
developed by John Holland and his students in the 1970’s
[5-6]. The continuing improvement in the
price/performance value of GA’s has made them attractive
for many types of problem solving optimization methods.
An initial population called genome (or chromosome) is
randomly generated then successive populations, or
generations, are derived by applying genetic operators
such as selection, crossover and mutation to evolve the
solutions in order to find the best one(s). The selection
operator chooses two members of the present generation
in order to participate in the next operations: crossover
and mutation. The crossover operator recombines the
alleles of the two parents to obtain an offspring. The
mutation operator occurs a short period of time after
crossover and as in nature it exchanges alleles randomly.
The three most important aspects of using genetic
algorithms are: (1) definition of the objective function, (2)
definition and implementation of the genetic
representation, and (3) definition and implementation of
the genetic operators [3]. It is essential to modify the
Genetic Algorithm when it is used to solve any specific
problem .This modification is basically done in the
Encoding Method and GA operator (Selection ,Crossover,
Mutation).The way of encoding technique and
selection ,crossover, mutation process vary problem to
problem, still basic logic behind each operator is same. So
to solve domain specific problem specialized GA
operators are required [7].

2.2.1 Encoding

In conventional approach a chromosome which is devised
to represent a solution constitutes of N (counts the no of
cities) genes. Each gene holds a number which is a label
of a city. So the nth gene holds the label of the city which
is visited nth in that particular tour. In other words the
chromosome is a direct coding of a permutation of the
sequences 1, 2…….N. To start with a population of valid
chromosome gene repairing is needed where each invalid
chromosome (with repetition of cities) are fed into an
intermediate process which transform them into valid
once.

2.2.2 The Fitness Function

A fitness function evaluation is incorporated to assigns a
value to each organism, noted as fi. Organisms are chosen
using the fitness value as a guide, where those with higher
fitness values are chosen more often. Selecting organisms
based on fitness value is a major factor in the strength of
GAs as search algorithms. The method employed here
was to calculate the total Euclidean distance Di for each
organism first, then compute fi by using Eq. (1)

 fi = D max − Di (1)

Where Dmax is the Euclidean distance, should be longest
organisms in the chosen population.

2.2.3 Selection Operations

The selection operator chooses two members of the
present generation to participate in the next operations of
crossover and mutation.

2.2.4 Crossover

Crossover is nothing but recombination of parents. It is
the most important operation of a GA because in this
operation, characteristics are exchanged between the
individuals of the population. the main constraints on
crossover operators for TSP is that there should not be any
repetition of cities in a particular chromosome, that’s why
it is not possible to use 1 point,2 point crossover . Since
the crossover operator plays a vital role in GA, so many
crossover operators have been proposed for the TSP [7].
The used crossover operator for TSP is order crossover
(OX) and modified order crossover (MOX), as described
briefly below.

2.2.4.1 Order Crossover

Two random cross points are selected. Alleles from
parent1 that fall between the two cross points are copied
into the same positions of the offspring. The remaining
allele order is determined by parent2. Non duplicative
alleles are copied from parent2 to the offspring beginning
at the position following the second cross point. Both the
parent2 and the offspring are traversed circularly from
that point. A copy of the parent′s next non duplicative
allele is placed in the next available child position [3].

2.2.4.2 Modified Order Crossover (MOX):

Apply order crossover, then the allele of offspring from
start to first cross point will be flipped, the allele from
second cross point to end of offspring will be flipped. For
example, consider parent tours:

Parent1 (1 2 3 4 5 6 7 8 9)
Parent2 (7 4 1 9 2 5 3 6 8)

Suppose that the two selected crossover points are (4 and
6), applying order crossover (OX) the offspring is

Child (1 9 2 4 5 6 3 8 7)
Applying modified order crossover (MOX) the offspring
will be

Child (2 9 1 4 5 6 7 8 3)

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.6, June 2012

136

2.2.5 Mutation Operator

The simple inversion mutation (SIM) is used for TSP, this
operator selects randomly two cut points in the string, and
it reverses the substring between these two cut points [3].
For example consider the tour:

(2 5 8 7 1 3 4 6 9)

And suppose that two cut points are (4 and 6) then the
resulting strings will be

(2 5 8 3 1 7 4 6 9)

3. The proposed Genetic Algorithm to solve
TSP with modified SCX

Sequential Constructive Crossover (SCX) is
unconventional crossover operator which conserves the
good sequential structure of the parent’s chromosomes
during creation of new child chromosomes. In this
approach the child chromosome are constructed by
sequentially choosing the nodes with minimum cost from
parent chromosome [7].

3.1 The Modified SCX Crossover

MSCX different from SCX as shown in the proposed
algorithm:
Step 1: Start from 'First Node’ of the parent 1 (i.e.,
current node p = parent1 (1)).
Step 2: Sequentially search both of the parent
chromosomes and consider
The first ‘legitimate node' (the node that is not yet visited)
appeared after 'node p’ in each parent. If no 'legitimate
node' after node p’ is present in any of the parent, search
sequentially the nodes from parent 1 and parent 2
(the first ‘legitimate node' that is not yet visited
from parent1 and parent2), and go to Step 3.
Step 3: Suppose the 'Node α' and the 'Node β' are found in
1st and 2nd parent respectively, then for selecting
the next node go to Step 4.
Step 4: If Cpα < Cpβ, then select 'Node α', otherwise, 'Node
β' as the next node and concatenate it to the partially
constructed offspring chromosome. If the offspring is a
complete chromosome, then stop, otherwise, rename the
present node as 'Node p' and go to Step 2.

3.2 The structure of MSCX crossover is:

1. P=parent1 (1)
2. For i=1: n (number of cities) offspring (i) =p
/* search the first ‘legitimate node' (the node that is not
yet visited) appeared after 'node p’ in each parent.*/

Node α, node β are the first ‘legitimate node' from parent1
and parent2
If α, β € offspring node α, node β are the first ‘legitimate
node' (the node that is not yet visited) from parent1 and
parent2 respectively
/* selection the next node of offspring*/
If Cpα < Cpβ then node α is the next node p = α

Else node β is the next node p= β
End;

4. Test and Results

Input Data (coordinates of each city (X, Y)) are
shown in Table 1. After running programs by using the
Genetic Algorithm with Order Crossover Operator (OX)
and Modified Order Crossover (MOX), the results show
that OX and MOX give the same results for TSP (the
same solution with different starting city) but from No. of
cities 15 cities achieve different results (short path) as
shown in the Table 2 and Fig. 1 MOX achieve the best
results from OX. MSCX achieve the best results from
OX, MOX and SCX Table 3, Table 4, Fig.2 and Fig. 3.
Show these results.
Sample 1:

Input Data
City X Y

1 0 3
2 1 5
3 4 5
4 5 2
5 4 0
6 1 0
7 3 7
8 6 2
9 8 4

10 7 6
11 10 0
12 9 2
13 5 3
14 4 6
15 6 1
16 11 2
17 7 4
18 8 3
19 2 9
20 3 10

Table 1 X, Y coordinate of cities

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.6, June 2012

137

Note

The results show that using GA with MOX
crossover gives results better than using OX crossover as
shown in fig.1, which show that the results at no. of cities
5 to no. of cities 10 is the same solution (with different
starting city), but the results at no. of 15 to 20 show that
using GA with MOX gives solutions (short paths) better
than using OX crossover. This means that when number
of cities increases the number of solutions, population size
and number of iterations increase. Fig. 1 show that
solution at 20 using MOX is the best solution(short
path)from using OX crossover and at population size and
number of iterations less than using OX crossover.	
Sample 2:

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

S
h

or
t

p
at

h

No. of Cities

Short Path

Short path-OX

Short path-MOX

Fig. 1 Short Paths of MOX and MSCX

Note
Applying GA with MSCX crossover achieve best short
paths (shorter) from using SCX crossover as shown in
fig.2, which shows that GA with MSCX crossover gives
good solution for TSP at no. of 15 to 20 , and at
population size and number of iterations less than using
SCX crossover. The solution at 20 using MSCX is the
best solution (short path) from using SCX crossover.
Sample 3:

Output Data

Number
of cities

Short path
GA(OX)

Short path
GA(MOX)

5 15.6344 15.6344
6 16.7967 16.7967
7 18.8612 18.8612
8 20.3045 20.3045
9 23.6504 23.6504
10 24.9257 24.9257
15 34.5500 33.9444
16 36.9362 35.944

17 37.825 37.1805

18 38.226 38.048

19 42.3098 42.1952

20 44.3428 42.4478

Table 2 Short paths by using GA with OX

 Output Data

Number
of cities

Short path
GA(MOX)

Short path
GA(MSCX)

5 15.6344 15.6344
6 16.7967 16.7967
7 18.8612 18.8612
8 20.3045 20.3045
9 23.6504 23.6504
10 24.9257 24.9257
15 37.9843 33.2849
16 39.095 35.285
17 37.1805 36.0488
18 38.6543 36.2269
19 42.6673 41.6533
20 43.8575 41.9358

 Table 3 Short paths by using GA

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25

S
h

o
rt

 p
at

h

No. of Cities

Short Path

Short path-
SCX

Short path-
MSCX

Fig. 2 Short Paths of SCX and MSCX

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.6, June 2012

138

Note
The results show that using GA with MOX crossover
gives results better than using OX crossover as shown in
fig.1, which show that the results at no. of cities 5 to no.
of cities 10 is the same solution (with different starting
city), but the results at no. of 15 to 20 show that using GA
with MOX gives solutions (short paths) better than using
OX crossover. This means that when number of cities
increases the number of solutions, population size and
number of iterations increase. Fig. 1 show that solution at
20 using MOX is the best solution(short path)from using
OX crossover and at population size and number of
iterations less than using OX crossover.

Conclusion

 This paper proposed GA which can be effective to
solve TSP with its new crossover MOX and MSCX. The
results show at no. of cities 5 to 10 the short path is the
same with using any crossover (with different starting
city) and from no. of cities 15 to 20 using MSCX achieve
good results better than the others compared GAs (PMX,
OX, MOX, and SCX). The population size and number of
iteration increase as number of cities increases. The GA
with using MSCX crossover for solving TSP gives best
solutions at small population size and iterations from
using PMX, OX, MOX and SCX for the same problem.

References
[1] S. N. Sivanandam, S. N. Deepa "Introduction to Genetic

Algorithms", Springer, ISPN 10: 354073189X, 2007.
[2] David L. Applegate, RobertG.Bixby, Vasek Chvatal &

Villiam J.Cook "The Traveling Salesman problem: a
Computation study" 2007

[3] Buthainah Fahran Al-Dulaimi andHamza A. Ali,
"Enhanced Traveling Salesman Problem Solving by
Genetic Algorithm Technique (TSPGA)" World Academy
of Science, Engineering and Technology 38 2008.

[4] D. Graupe, "Implementation of Traveling Salesman's
Problem using Neural Network" Final Project Report (fall
2001) ECE 559 Neural Networks.

[5] B. P. Buckles, P. E. Petry and R. I. Kuester, “Schema
Survival Rates and Heuristic Search in Genetic
Algorithms”, IEEE, 1990, PP 86-91.

[6] S. Ray, S. Bandyopadhyay and S. Pal, “New operators of
genetic algorithms for traveling salesman problem”
Cambridge: s.n., 2004, Vol. 2.

[7] Zakir H. Ahmed, “Genetic Algorithm for the Traveling
Salesman Problem Using Sequential Constructive
Crossover Operator”, Journal of [8] Biometrics &
Bioinformatics (IJBB) Volume (3): Issue (6) pp.96-105

Output Data
Number
of cities

Short path
GA(MOX)

Short path
GA(MSCX)

5 15.6344 15.6344
6 16.7967 16.7967
7 18.8612 18.8612
8 20.3045 20.3045
9 23.6504 23.6504
10 24.9257 24.9257
15 33.9444 33.2849
16 35.944 35.285
17 37.1805 36.0488
18 38.048 36.2269
19 42.1952 41.6533
20 42.4478 41.9358

Table 4 Short paths by using GA With MOX and
MSCX at number

f i i i i

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25

S
h

o
rt

 p
at

h

No. of Cities

Short Path

Short path-
MOX

Short path-
MSCX

Fig. 3 Short Paths of MOX and MSCX

