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Summary 
This paper presents a procedure that uses an extension of Wang’s 
Recurrent Neural Network to solve the Transportation problem. 
The choice of Neural Network parameters is similar to Traveling 
Salesman and Assignment problems, and shown optimal or near-
optimal solutions in almost all cases randomly generated. An 
algorithm similar to Bisection method and Binary Search is 
presented in this paper to set the value of a parameter of Neural 
Network. The advantages of this technique are the easy 
computational implementation, the low computational 
complexity and good solutions obtained. 
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1. Introduction 

The Transportation problem is a classical problem of 
combinatorial optimization of Operations Research’s area. 
Its applications are found in problems of industrial 
supplies distribution, and a particular case is the 
Assignment problem. For example, a company produces at 
the units situated at various places, called origins, and 
supplies them to depots, called destinations [17]. 
The delivery of vehicles to dealers’ problem is showed in 
[16] with an integer programming formulation of the 
Auto-Carrier Transportation problem trough of a three-
step heuristic procedure based on the formulation. In [18] 
an alternative genetic algorithm is used to solve the linear 
transportation problem through of relationship between 
representation structures and genetic operators for 
constrained problems. A hybrid technique is used in [10] 
to solve linear transportation problem: a genetic algorithm 
find a feasible solution and this solution is used as a 
starting point in the Revised Simplex Method to find an 
improved solution. 
The extension of linear transportation problem called fixed 
charge transportation problem is solved by two genetic 
algorithms in [3], a tabu search approach in [15], and a 
branch and bound procedure with two subproblems in [11]. 
In [1] the special condition of transportation problem is 
showed when the transportation capacity is often poor and 
the mileages from some sources to some destinations are 
no definite. An alternative formulation to the assignment 

problem is showed in [5] as a special case of the fixed 
charge transportation problem. 
Transportation problems whose cost functions satisfy 
Monge properties appear in [2]. The transportation 
problem was solved by a permutation of variables with a 
greedy algorithm in [12]. A neural network approach for 
multicriteria solid transportation problems appear in [8], 
with an adaptation of the original multicriteria problem. A 
variant of Vogel’s Approximation Method with total 
opportunity cost and an alternative allocation costs is used 
in [7] to solve linear Transportation problem. 
The Wang’s Recurrent Neural Network can be applied to 
solve Assignment problem [6] and Traveling Salesman 
problem [13]. Some changes in matrix formulation and in 
choice of parameters allow the use of the same Recurrent 
Neural Network to solve the Transportation problem. The 
choice of parameters is similar to Traveling Salesman and 
Assignment problems, and shown optimal or near-optimal 
solutions in almost all cases randomly generated.  
An algorithm similar to the Bisection method and Binary 
Search is presented in this paper to find a parameter of 
Neural Network. The architecture of this neural network 
had n2 neurons and the advantages of this technique are: 
easy computational implementation; low computational 
complexity of O(n2) [20]; the problem of tuning of 
parameters is corrected by Bisection method; and good 
solutions obtained always near of optimal solution. 
This paper is divided into four sections, including this 
introduction. In Section 2, the Recurrent Neural Network 
to solve Transportation problem is presented. In Section 3 
some results of proposed technique and a methodology to 
define parameters of neural network are showed. Section 4 
presents the paper’s conclusions. 

2. Formulation of the problem 

The transportation problem is one of the simplest 
combinatorial problems of Operations Research. In this 
problem a shipper with supplies at various places must 
ship to the depots, each with a given demand with 
minimum cost of transportation [9].  
The transportation problem can be mathematically 
formulated as follow [17]: 
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where cij and xij are, respectively, the costs and the 
decision variables associated to the amount of supplies to 
be shipped from source i to destination j. 
The objective function (1) represents the total cost to be 
minimized. Constraint set (2) ensures that the shipments 
from a source cannot exceed its supply, while constraint 
set (3) guarantees that each destination must satisfy its 
demand with the sum of shipments.  
When m  n the slack variables xkl are added, with sources 
ak  0 to k  m + 1, ..., n, and l  1, ..., n. In cases where m 
 n the slack variables xkl are added, with destinations bl  
0 to k  1, ..., m, and l  n + 1, ..., m.  
Let p = max{m, n}. How we use the sigmoid function, the 
solution belongs to interval [0, 1]. Thus, the vectors a and 
b should have values in same interval of x, and the 
formulation of the Transportation problem becomes: 
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where q  max{ai, bi : i  1, 2, ..., p}, x qx , a qa  and 

b qb . 

The matrix form of the problem described in (5)–(8) is the 
following [6], [13]: 
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where vectors cT and x contains, respectively, all the rows 
from the cost matrix c and from the matrix with decision 
elements xij. 
Matrix A has dimension 3p  p2 and the following form: 

 

A  
pB B B

I I I

 
 
 
 
 

1 2

0 0 0







 

 
where 0 is null matrix, I is identity matrix and Bi has 0 in 
all lines with exception of line i that contain 1 in all 
positions.  

Vector d has dimension 3p and the following form: 
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where the vector a  had the p amounts of supplies of p 
origins and vector b  has the amount of supplies of 
demand to p destinations. 
Multiplying the set of constraints by AT we have: 
 

ATAx  ATd 
 ATAx  ATd  0. 

 
The matrix form of ATA is: 
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where P  I + 1 and vector ATd is: 
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and kl  k la b . 

The Recurrent Neural Network of Wang is defined by the 
following differential equation [6]: 
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where ijx   g(uij(t)), this neural network’s balance state is 

a feasible solution for the Transportation problem and g is 
the sigmoid function with parameter : 
 

ij
ij u (t )

x (t)
e 



1

1  
 
The matrix form of the Wang’s Neural Network is: 

 

 
tdu(t)

Wx(t) ce
dt

  


     

3. Results 

When Wx    0 the constraints of supply and demand of 
the Transportation problem have already been satisfied, 
and the solution x  is feasible.  
Figures 1, 2 and 3 shown sequences of solutions of 
Transportation problem randomly generated with 
dimensions 207  223, 177  165 and 122  98 
respectively. After a certain number of iterations the 
neural network is stabilized, and degree of infeasibility 
converge to zero as the mean errors. To find the solution x 
just do x  q x . 
 

 

Fig. 1 Infeasibility and mean error of a 207  223 transportation problem. 

3.1 Parameters of neural network  

Parameters ,   and  are fixed [14]:  = 2.5,  = 1 and  
= cmax, where cmax = max{cij: i, j = 1, 2, ..., p}. 
Parameter  produces different solutions to Transportation 
problem, acoording shown Figure 4 with five 9  16 
randomly generated problems with   [100, 1500]. 
 

 

Fig. 2 Infeasibility and mean error of a 177  165 transportation problem. 

 

Fig. 3 Infeasibility and mean error of a 122  98 transportation problem. 

From a certain  value, each problem stabilizes at a near 
optimal solution. To determine best value of  we can use 
an algorithm similar to Bisection method [19], used to find 
the root of a function, and Binary Search [4], used to find 
a value in an ordered vector.  

 

Fig. 4 Mean errors with 5 transportation problems with dimension 9  16. 

3.2 Algorithm 

The algorithm used to determine the parameter is defined 
by the following steps: 
 
1.  Define the interval of parameter :  

  [min, max].  
Define the initial values of:  
1 = min, 2 = max,  0 and   0. 

2.  Do while Wx      



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012 
 
 

 

53

 
t

du(t)
Wx(t) ce

dt
  



    1

 

u(t )
x (t)

e 


1

1
 

 Loop 
 Find z1 = cx (t) . 

Do while Wx      

 
t

du(t)
Wx(t) ce

dt
  



    2

 

u(t )
x (t)

e 


1

1
 

 Loop 
 Find z2 = cx (t) . 

3. If z1  z2 then  
1 = (1 + 2)/2.  

If z1  z2 then  
2 = (1 + 2)/2.  

4.  If z1  z2   or 1  2   then  
Stop: the best value of  was founded. 

Else  
Go to Step 2. 

End If 

3.3 Numerical example 

Consider the 9  6 transportation problem given below, 
with costs matrix c, demand vector a and destination 
vector b: 
 

cij 1 2 3 4 5 6 a
1 181 4 263 366 111 93 131
2 256 259 147 16 206 369 296
3 217 266 81 130 81 39 538
4 412 149 428 11 363 91 252
5 311 194 418 243 341 342 41 
6 199 67 15 96 160 4 482
7 298 399 40 10 271 355 1017
8 63 106 188 422 341 327 963
9 350 317 165 133 3 231 39 
b 688 719 631 264 591 866 3759

 
Matrix  verifies if the constraints are satisfied. 
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When parameter  = 100, the solution founded have cost z 
= 270543.5665, and mean error 0.07123%. The matrix of 
values x is: 

 
xij 1 2 3 4 5 6 a 
1 0 131 0 0 0 0 131
2 0 0.24 0 0 295.8 0 295.9
3 0 0 0 0 134.4 403.6 538
4 0 216.3 0 0 0 35.7 252
5 0 41 0 0 0 0 41 
6 0 55.4 0 0 0 426.6 482
7 0.13 0 631 264 121.9 0 1017
8 687.9 275.1 0 0 0 0 963
9 0 0 0 0 38.9 0 38.9
b 687.9 718.9 631 264 591 865.9 3759

 
When parameter  = 150, the solution has cost z = 
270398.1887, and mean error 0.01745%: 
 

xij 1 2 3 4 5 6 a 
1 0 131 0 0 0 0 131 
2 0 0 0 0 295.9 0 295.9
3 0 0 0 0 134 403.9 537.9
4 0 242.6 0 0 0 9.43 252 
5 0 41 0 0 0 0 41 
6 0 29.4 0 0 0 452.6 482 
7 0 0 631 264 121.9 0 1017 
8 687.9 275 0 0 0 0 963 
9 0 0 0 0 38.9 0 38.9 
b 687.9 718.9 631 264 591 865.9 3758.9

 
Parameter  = 300 define a solution with cost z = 
270351.4897, and mean error 0.00018%: 
 

xij 1 2 3 4 5 6 a 
1 0 131 0 0 0 0 131 
2 0 0 0 0 295.9 0 295.9
3 0 0 0 0 134 403.9 537.9
4 0 251.9 0 0 0 0.017 252 
5 0 41 0 0 0 0 41 
6 0 20 0 0 0 461.9 481.9
7 0 0 631 264 121.9 0 1016.9
8 687.9 275 0 0 0 0 963 
9 0 0 0 0 38.9 0 38. 
b 687.9 718.9 631 264 591 866 3759 

 
Finally, the solution obtained with parameter  = 450 have 
cost z = 270351.1871, and mean error 0.00007%: 

xij 1 2 3 4 5 6 a 
1 0 131 0 0 0 0 131 
2 0 0 0 0 295.9 0 295.9
3 0 0 0 0 134 403.9 537.9
4 0 252 0 0 0 0 252 
5 0 41 0 0 0 0 41 
6 0 19.9 0 0 0 462 481.9
7 0 0 631 264 121.9 0 1016.9
8 688 275 0 0 0 0 963 
9 0 0 0 0 38.9 0 38.9 
b 688 718.9 631 264 591 866 3759 
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Ten problems were randomly generated with the 

following types: 30  30, 30  25, 30  20, 30  15, 30  
10 and 30  5. Tables 1 and 2 shows the results of these 
problems, including the average number of iterations for 
each type of problem. Most of these problems generated 
have optimal or near-optimal solutions. 

Table 1: Results of 10 problems randomly generated of 3 types 

Problem 30  5 30  10 30  15 

Mean error 0.0108% 0.0105% 0.0359%

Iterations 6871.1 7460.9 7622.7 

Table 2: Results of 10 problems randomly generated of 3 types 

Problem 30  20 30  25 30  30 

Mean error 0.0143% 0.0000% 0.0254%

Iterations 8762.6 9908.6 11205.4 

4. Conclusions 

The results shown in demonstrate the efficiency of Wang’s 
Recurrent Neural Network to solve the Transportation 
problem. The choice of parameter  was made with the 
proposed algorithm, and show optimal or near-optimal 
solutions to all types of problems randomly generated. 
The advantages of presented technique in this paper are 
the low computational complexity of O(n2), easy 
implementation and good results to randomly generated 
problems. This technique can be adapted to solve other 
variations of Transportation problems. 
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