
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

59

Manuscript received July 5, 2012
Manuscript revised July 20, 2012

Comparative Study on Main and Sub-code Reusabilities

A.N.Swamynathan* and Dr. K.Nirmala#

*Research Scholar, Research & Development Centre, Bharathiar University, Coimbatore-641 046, India

#Associate Professor, Dept. of Computer Science, Quaid-E-Millath Govt. College(w), Chennai-600 002, India

Summary:
Most of the coding and reused coding of south Indian IT
companies are based on object oriented programming
environment (OOP). In OOPs, it is possible to use certain code
again for different modules through inheritance. While calling
class member function in objects of a particular class, interface
and dependency related problems are encountered. To
overcome these kinds of problems, we propose a general
purpose code reusable model that analyzes language structure
through two possible reusing environments. The common and
traditional approach is the main to sub-coding. For different but
similar projects sub-codes can call main with appropriate
logical checks. The paper justifies model based approach for
code reusability under OOPs for these two approaches. Unless
a comparative study is performed on these two approaches, a
generalized model would not be possible to construct. However
the descriptive presentation of reusability model is beyond the
scope of this paper. The paper is a part of another whole
research. The whole research attempts to investigate different
levels of programmers that form pairs in pair programming on
reusable coding. However this paper limits its scope only to the
comparative study on these two coding approaches. The paper
presents comparison studied through experiment on a few
application areas. Risk factors are obtained through trials while
attempting reused coding.
Keywords:
Interface conformance, Reusability, Inheritance, Segment
dependency.

1. Introduction

The current trend in software development towards reuse
of coding has indicated the need for quality reusable
code. In particular, the intent of reusability guidelines is
to treat source code components as isolated, encapsulated,
modular units that are totally independent from other
units [7][9]. That is each unit or module is designed to be
independent of how or when it can be used or reused
while correctly implementing it. Software is unique in its
own way and may differ from each other in its coding or
other interfaces. Based on its coding or interface, the
software development complexity may also vary. While
developing new software, some previously developed
modules of old software may be adapted to the new one.
In general software packages are developed by various
developers by adapting different development life cycles

[4]. In that situation it is necessary to analyze the
interface risk and access rights.
 The primary goal of software development life cycle
model is to develop software in a methodical manner.
The organization should therefore prepare accurate
document based life cycle models for the development.
Large projects are usually splitting into many modules
based upon divide and conquer technique. Finally all the
modules are grouped together and checked for their
efficiency. Many problems come to pass in interfacing
components and managing the software development.
In traditional programming library functions or archival
functions known as sub-codes are reused for different
applications, say through one main coding. However
ANSI C allows sub-codes to call main function in a
recursive fashion [3]. It is very important to use
appropriate logical checks in such a case.
 The paper presents comparative study performed on the
above two approaches through trial runs for different
projects. In both the approaches, the number of trials
required for every error detected is counted as a risk
factor in this experiment. A generalized model is
proposed from this study.

1.1 Inheritance concept in OOPS

Inheritance concept is the most important property of
OOPS. It is a technique that creates a new class from an
already defined class. The new class contains all the
attributes of the old class [1][9] in addition to some of its
own attributes. Additionally it can override some of the
attributes and features of old class. When there is a need
for some functionality, user can inherit those related
functions of the base class and use it. Once the class is
defined then it can also be reused several times by other
applications after being inherited into the class which
suits that particular application. Through inheritance all
the applications can be made to inherit the designed class
into a new class and can be used in new class. The object
class should be at the zenith of the class hierarchy. Every
class should descend from it in a direct or indirect
manner. In general the derived class inherits some or all
of the traits from the base class and a class may inherit
properties of more than one class in a single or more than
one level [2]. As described earlier two types of calls are
popular. Each type is described below.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

60

In type I, a sub code is used by a main code. The same
sub code may be reused by another main code also. In
such situations, we call the invoking code a main code
and the invoked code one sub code. For each invocation
of a sub code, a main code represents first use or reuse of
the sub code, and the reusability of a sub code is related
to the number of main codes in which it can sensibly be
used (see Fig 1.0).

Fig 1.0 Several main codes reuse a sub code

Fig 2.0 Main code reuse: one main code invokes different

Another aspect of this structure is that it can also work in
the reverse order. The first case is as shown in fig 1.0.
However, sometimes we work the other way around: we
have a main code, and use it with different sub code
similar to recursive calls, as shown in fig. 2.0. For
example, we might have main code that calls a procedure
for a particular application, but in a different setting we
may need the same sub code but this time to a different
procedure say another application. We call this as main
code reuse. In general, mechanisms that support
reusability allow main code reuse, but some mechanisms
specifically support main code reusability [8]. Main
code and sub code are really roles played by sections of
code. Sometimes a section of code can play both the
roles.
In OOP, this organizational technique is known as
aggregation. Use of aggregation allows the definition of
the new class by reusing existing classes. The new class,
as main code, provides functionality in part by using the
services of the existing classes, as sub codes.
The interface as shown in Figs 1.0 & 2.0 is the most
critical part for reusing the codes. The main and sub code
can affect each other’s behavior only through the

interface dependency. Different times at different
programs runs, two segments can affect each dependency,
representing the fact that each segment depends on the
other during the execution. We describe the interface
between the sub code and main code by enumerating all
the dependencies between them. Note that not only one
can be the main code that depends on the sub code, but
the sub code can also be dependent on the main code.
Finally, the interface of a single segment can also be
described as the dependencies that must be satisfied. The
dependencies of OOP are elaborated below.
Main code 1.
int main() //Application I
{
 int z;
 z=addition(5,4);
 cout <<”the result is”<<z; Sub code:
 return 0; int addition(int a,int b)
 } { int r;

r=a+b;
return (r);}

Main code 2. //Application II
int main() {

 int x;
 x=addition(5,4);
 cout <<”the result is”<<x;
 return 0;}
 }

Figure 3.0 an illustration of type I

In the above coding it is illustrated that the sub-code
more or less acts like a library function, while the main
codes are meant for different applications.

Main code: Sub code 1:
 int main() int sub(int x, int y)
 { {
 int a; int z;
 a=sub(10,5); z=x-y;
 cout<<”the result is”<<a; //call main with
appropriate a=mul(a=mul(10,5); //inheritance

(Application I)
cout<<”the result is”<<a; }
 //inheritance are checked Sub code 2:
 // for appropriate int mul(int x, int y)
 // applications {

 return 0 } int z;
 z=x*y;

//call main with appropriate inheritance
 //(Application II)
 }

Figure 4.0 an illustration of type II

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

61

1.2 Segment dependencies

We classify segment dependencies in two ways: contract
or noncontract, and explicit, implicit, or informal.
Contract dependencies [3] are those that have been
intentionally introduced by the programmer, this
dependency sometimes voluntarily required for the code
segment. Whereas non-contract dependencies are taken
accidentally. Code that relies on non-contract
dependencies is less likely to be reusable. Encapsulation
[2][9] can be seen as reducing such dependencies in
object oriented programs. Explicit dependencies are
those that are described directly in the language. Implicit
dependencies are those for which there is no language
support for describing them, but which can nevertheless
be checked in some way or other. Informal dependencies
cannot be described in the language, nor can they be
checked. Informal dependencies are not as helpful as
implicit dependencies because there is no way to ensure
they have been met. Implicit dependencies are not as
helpful as explicit dependencies because, it is not
obvious what must be done to meet them. We give
examples for each of the resulting categories in Table 1.0

Table 1.0 Categories of dependencies

We can describe how language features affect the
reusability of code by focusing on dependencies. For
example, in most languages, the use of an actual
parameter in a sub code represents a dependency by the
sub code on the name from the main code. This is an
informal dependency. By introducing a parameter to
replace the use of the global variable, we replace the
implicit dependency by an explicit dependency now the
sub code depends on the main code to supply a value to
the parameter. As another example, pass-by-value can be
seen as a dependency by the sub code on the values
supplied by the main code, but note that the main code in
no way depends on the formal parameter used by the sub
code: the dependency is one-way. On the other hand,
pass-by reference also introduces a dependency by the
main code on the sub code the main code now relies on
the sub-code changing the value of the formal parameter
in the “expected” way.
Removing non-contract dependencies and making the
rest explicit does not necessarily mean we make the code
more reusable. We need to know which dependencies
should be made explicit. For this we need the concepts of

safety and generality of code. Safety represents how and
when the obligations introduced by the existence of
dependencies are met. Generality consists of flexibility,
how to relax any checking while considering safety, and
customizability, how to introduce useful dependencies.
The creation of reusable code can then be described as
increasing generality while maintaining safety.

2. Experiment

Our model is useful to us in improving our understanding
of reusability particularly on the comparative
performance of these two types. In particular, we have
gained a new perspective on mechanisms involved in
OOP. The discussion above shows how the model
encompasses several key concepts of OOP: classes,
encapsulation, and composition. All these affect the two
types of approaches. Our next step was to consider the
role of inheritance and related mechanisms in the two
types for comparison.
As with composition, inheritance allows definition of the
new class (derived) by reusing an existing class (old).
What is different about inheritance is that it can affect
the interface of the new class: the interface to the derived
class can include the interface to the old class. For
reusability, this is the important aspect of inheritance:
interface conformance. The new class interface conforms
to the old class interface if it includes all the parts of the
old class interface. This implies that instances of the
derived class may be used anywhere instances of the old
class may be used.

Table 2.0 Experiments of selected types

This is an example of main code reuse, which we
discussed in the previous section. Of course, main code
reuse is possible using the class mechanism alone: we
can take an existing main code and implement the class it
uses differently. With inheritance, however, we can use a
main code with several different classes, even in the
same program. This is the primary connection between
inheritance and software reusability. This observation
has important consequences: it provides guidance about
when to use inheritance, and guidance about how to use
it.
An important form of inheritance involves abstract
classes. The advantage of abstract classes is that context
code can be written in terms of the abstract class, and
then used with any inheriting concrete class. In this way

 contract Non-Contract
Explicit

Implicit

Informal

Public interface of
a class

Use of Extern
functions in C++
A list that keeps

the items in order

Modula-2 interface (exposes
type declarations)

Non-static global variables
that should be static

The order that an iterate
produces items from a set

S.No Applications
No. of risks in trial runs
Type I Type II

1 Finance/Accounting 2 4
2 Banking Applications 3 7

3 Travel Management 6 8

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

62

the main code will be reusable with any implementation
of the class, even if several implementations are used
within one program.
If the derived class interface has extra features, this is
fine: any main code will still work with the derived class.
If the derived interface conforms to the old class
interface, but with different behavior, this also fine,
because the main code will also work with the derived
class. This is an alternative explanation of
polymorphism: where main code is used with different
classes that conform to one interface, but where each has
different behavior. Polymorphism reduces the strictness
of the type checking, and so makes type dependencies
more flexible. In a similar way, propagation patterns [2]
can be seen as making dependencies more flexible.
Abstract classes are also the basis of object-oriented
frameworks. In this approach, a high-level design is
written as a program that consists only of abstract classes,
and the design is applied to particular situations by
providing implementations of the abstract classes.
Frameworks can be seen as providing reusable main
code. Just as reusable macros enable macro libraries, and
reusable procedures enable procedure libraries, we
speculate that in a similar way abstract class and
frameworks could lead to “context libraries”.
We prepared coding on three applications, namely
1.Finance/Accounting 2.Banking applications & 3.Travel
management. For these three experimental applications
we coded in the selected two types. The main code of 1
& 2 are similar. The number of trial runs (risk factors) is
presented in table2.0

3. Conclusions

In this paper we have performed a comparative study
aimed to understand the nature of software reusability
and presented an outline for adapting the selected two
types. Our model consists of two main roles for code:
main code and sub code, where reuse each way is of
interest using the same interface. Our trial runs on
different applications has assisted us in understanding
the connection between OOP and reusability by
clarifying the effects of inheritance and some other
related techniques particularly for the two approaches.
We also use our study to assist analyze various strategies
that support reusability. We hope to develop a model
further and are interested in applying for adaptability
analysis. Finally we feel that the main concept is how
dependencies govern reusability, and believe better
understanding of this is important to develop more
reusable codes particularly for the two approaches. We
conclude that risk factors are more in type II approach.

References
[1] M.Coram, and S.Bohner,”The Impact of Agile Methods

on Software project Management”, Proceedings of the
12th IEEE International Conference and Workshops on
the Engineering of Computer based Systems (ECBS’05),
IEEE Computer Society, 2005, Pp 363-370.

[2] Robert Biddle and Ewan Tempero. Understanding OOP
language support for reusability. In Seventh Annual
orkshop on Institutionalizing Software Reuse
(WISR7),August 1995.

[3] Karl J. Lieberherr, Ignacio Silva-Lepe, and Cun Xiao.
Adaptive object-oriented programming using graph based
customization. Communications of the ACM, pages 94–
101,May 1994.

[4] IEEE Software. Special issue on systematic reuse,
September 1994.

[5] G.Chin, “Agile Project Management: How to Succeed in
the Face of Changing Project Requirements” American
Management Association (AMACOM), New York, USA,
2004.

[6] L.Angelis, and I.Stamelos, “Investigating the Extreme
Programming System-An Empirical Study”, Empir
Software Eng,Springer Science+Business Media, 2006, Pp
269-301.

[7] William B. Frakes and Kyo Kang”Software Reuse
Research: Status and Future” IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY
2005.

[8] Boehm B. W. (1991), ‘Software Risk
Management:Principles and Practices’, IEEE Software,
vol.8, no 1, pp.32-41.

[9] Fairley R (1994), ‘Risk management for Software Projects’
IEEE Software, vol. 11, No.3, pp.57-67.

A.N.Swamynathan received his B.Sc.,
Degree in Computer Science from
Adhiparasakthi College of Science,
Kalavai, University of Madras, Chennai
and M.Sc., Degree in Computer Science
from Thanthai Hans Roever College,
Perambalur, Bharathidasan University,
Tiruchirappalli. He also received his
M.Phil. Degree in Computer Science from

Manonmaniam Sundaranar University, Tirunelveli. He is now
doing his Ph.D in Computer Science at Research and
Development Centre, Bharathiar University, Coimbatore. His
field of interest is Software Engineering, Operating System and
Computer Architecture.

Dr. K.Nirmala received her Ph.D
Degree in Computer Science from
NITTTR, Taramani, University of
Madras, Chennai. She has fifteen years
of teaching experience in the field of
Computer Science education at College
level. Since 1997 she has been working
in various capacities in the Department
of higher education, Tamilnadu. She is

now working as Associate Professor , Computer Science in
Quaid-e-millath Govt. College for women, Chennai. Her field
of interest is Data mining, Software Engineering and Neural
Networks. She has been published many technical papers at
various national and international conferences and journals.

