
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

101

Manuscript received July 5, 2012
Manuscript revised July 20, 2012

Agile Process:An Enhancement to The Process Of Software
Development

Ms Ramandeep Kaur[1], Mrs Manmohan Choudhary[2], Mr Rahul Mehta[3]

[1] Institute of Information Technology& Management ,Janakpuri, New Delhi, India
[2] Institute of Information Technology& Management ,Janakpuri, New Delhi, India

[3] M/s Billionix, New Delhi, India

ABSTRACT
In last decade, various agile methods have been introduced and
used by software industry. It has been observed that many
practitioners are using hybrid of agile methods and traditional
methods. Agile was created in large part in reaction to the
predominant waterfall model, and to a lesser extent to all
"traditional" methodologies. Thus, there is strong need of agile
software development life cycle that clearly defines the phases
included in any agile method and also describes the artifacts of
each phase. The generalization of agile software development
life cycle provides the guideline for average developers about
usability, suitability, applicability of agile methods. This paper
presents a coherent strategy for continuous integration of some
good features of classical / traditional methods of software
development with the agile methodology viz., Extreme
Programming, Scrum etc. to enhance the current software
development techniques. This inturn can be used in a highly
adaptive software environment.
Keywords
Agile software development, extreme Programming , Adaptive
software environment, Scrum, Continuous Integration.

1. Introduction

Agile methods generally promote a disciplined project
management process that encourages frequent inspection
and adaptation, a leadership
philosophy that encourages teamwork, self-organization
and accountability, a set of engineering best practices
intended to allow for
rapid delivery of high-quality software, and a

business approach that aligns development with customer
needs and company goals. Agile Methods (AMs) have
been adopted by many IT organizations and have
generated many quality
products of software industry. These methods have gained
higher edge on traditional software development by
accommodating frequently changing requirements in high
tight schedules.
Agile software development is a conceptual framework for
undertaking software engineering projects that embraces

and promotes evolutionary change throughout the entire
life-cycle of the project. There are a number of agile
software development methods, such as those espoused by
The Agile Alliance. Most agile methods attempt to
minimize risk by developing software in short time boxes,
called iterations, which typically last one to four weeks.
Each iteration is like a miniature software project of its
own, and includes all of the tasks necessary to release the
mini-increment of new functionality: planning,
requirements analysis, design, coding, testing, and
documentation. While an iteration may not add enough
functionality to warrant releasing the product, an agile
software project intends to be capable of releasing new
software at the end of every iteration. At the end of each
iteration, the team reevaluates project priorities.

Agile methods promote an iterative mechanism for
producing software, and they further increase the iterative
nature of the software lifecycle by tightening design-code-
test loop to at least once a day as opposed to once per
iteration. Agile visionary Kent Beck challenged the
traditional cost of change curve evidenced by Barry
Boehm over twenty years ago. Beck’s model espouses that
the cost of change can be inexpensive even late in the
project lifecycle while maintaining or increasing system
quality. Beck’s idealistic “flat” cost of change curve has
since been revised and softened by Alister Cockburn and
Scott Ambler to reflect modern corporate realities.
Nevertheless, Agile ideals can be applied to reduce the
cost of change throughout the software lifecycle even if
the cost of change is not perfectly flat .

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

102

2. Agile Software Development Life
Cyclle(ASDLC)

Agile Software Development Life Cycle (ASDLC) has
been designed on the basis of common practices and
principles used in all existing AMs. It has various phases
in it and activities performed in each phase along with
artifacts required in each phase. Complete ASDLC is
shown in Fig. 1 and discussed as follows:

A. Vision and Project Approval

ASDLC starts with the vision or inception phase that deals
with the need of new system by analyzing problems in
existing system. Management, product manager, users and
team
members establish the scope and boundary conditions of
proposed system. At this level, objective is apparent but
the features fulfilling the objectives may be uncertain.
Main objective of this phase is to identify critical uses of
the system, level of uncertainty of the system, overall
estimation of size and duration of the system using
algorithmic or non algorithmic approach. Further,
systematic analysis is performed to identify the feasibility
of the system at operational and economical level with
clear specified requirements. It is concerned with technical
possibility of the system with incurring risk associated
with it. At same level, feasibility of particular AM is
assessed. This assessment is based on project type, and
personnel and organizational issues etc. Business study of
the system is required to analyze the essential
characteristics of the business and technology. For
example, a website for income tax submission must
require its technicalities involved in it. Major objective of
business study is identification of class of affected users.
This affected class of users is useful source of information
in software development cycle. It has been noticed that
early estimation is useful in project approval. It is a non
iterative phase and generally completed in two three
weeks time. High level description of the system, early
estimates are mandatory documents produced in this phase.

B. Exploration Phase

Exploration phase is an iterative and incremental phase to
reduce the uncertainty and ambiguities in requirements by
continuous meeting of stakeholders in the form of
workshops and brainstorming. Some of the AMs have
preferred customer as team member but proposed ASDLC
recommends the maximum communication between team
and customer to resolve the requirement related issues by
using any preferred mode of communication between
customer and team. Requirements may be captured in
form of stories and documented in story cards that can be
referred for future references. Typical format of story
cards contains information about author, story id, story
description, further changes in story and details of related
stories etc. Artifacts produced are informal requirements
description in the form of stories. Team starts with
selected experienced team members on agile software
development. Selected team members start
communicating with the customers to understand the
problems and requirements of the proposed system.
Generally, while experienced team members are working
on requirements, process and technology used for training
and enhance the ways to improve quality of product being
developed.
Further,feedback of the last release is also accommodated
in this phase and major changes in the last releases are
defined as new requirements.

C. Iteration Planning

Iteration planning is most important phase
 of ASDLC and possesses many activities of software
development required to schedule the project. First
activity in this respect is review of the working software
released in last iteration. Participants assess the progress
and increment of the work product and discuss the future
plan of the project. At the same time, requirement
prioritization is performed to get maximum ROI from
working software. In iteration planning, list of
requirements in stack is updated depending on the
feedback and requirements received from customers. This
list is reviewed for prioritization of requirements.
Prioritization is based on various factors mainly; value,
knowledge, financial returns etc. For example, a feature
that requires team to improve their technical skills has
been developed in later stage but a feature that has higher
financial returns must be kept at higher priority. This
prioritization stack is useful in increasing ROI and
producing working software in shorter time period.
Prioritization has been done for only those features that
are clear and unambiguous. Project manager, customer
representative and team members sit together to decide the
priority of requirements. Moreover, iteration plan phase
possesses iterative estimation activity to estimate size, cost

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

103

and duration of the project. It also re-estimates efforts
depending on team velocity. This phase also ensures the
resource requirements of the system. Artifacts produced in
this phase are prioritized stack requirements and set of
requirements from the stack is selected for current
iteration.

D. ADCT Phase

This phase is an iterative phase that deals with Analysis,
Design, Coding, and Testing (ADCT). In this phase,
functionality of the system is produced and enhanced in
new increments. It requires several iterations before
releasing the product. Decided schedule in iteration
planning is decomposed in several small iterations of one
to four weeks. First iteration develops the architecture of
whole system by enforcing the selection of stories that
form the system. In successive iterations, designing and
coding along with testing is performed. In last iteration,
product is ready to deploy at customer site. It incorporates
designing and coding with unit testing using the concept
of pair programming. ASDP always possesses simple
design to incorporate changes in the requirements. Design
guidelines include metaphors, CRC cards, Spike solution
and re-factoring. CRC card is an index card that is used to
represent responsibilities, relations of classes used in
designing a particular story. Spike solution is small
focused effort used to explore solution to the problem. It
has been observed that adding more functionality in early
stages of the software leads to a poor design document.
For example, system can work for any database. This type
of independency of code and design provide lesser burden
when changes are triggered. Thus, ASDP use design
patterns to maintain low coupling and high cohesion

among modules. Functionality testing and rigorous
integration testing is performed by team of customer and
developers before release the product. Main activities of
this phase are simple designing, maintaining coding
standards and rigors testing by Test Driven Development
(TDD) and functional testing. Extra care is taken to design
a code simply by code and data re-factoring. Major
artifacts in this phase are design documents and codes of
system.

E. Release Phase

This phase can be decomposed in two sub-phases
 namely; pre-release and production as shown in Fig 1.
Pre-release phase recommends extra testing (i.e.
integration and acceptance testing) and checking of
functional and nonfunctional requirements of the system
to be released. It has
been advised to include some minor changes expected by
the user in the release and major changes are expected to
accommodate in next iteration. On the other hand,
production phase deals with releasing the product for
customer use. At this time, training for users of the system
is provided for operation ease. It has been observed that
team handles two responsibilities after first release of the
system. Firstly, team is involved in enhancing the
functionalities of product. Secondly, team has to take
responsibility of system in running state thereby providing
customer helpdesk. We have attempted to define the
ASDLC after reviewing the all phases of software
development of existing AMs. We have also included the
phases introduced by other researchers thereby increasing
the trust and faith on agile software development.

3. The Agile Methods

 �Adaptive Software Development (ASD) is based on
Complex Adaptive Systems theory and treats software
development as a collaborative learning exercise. ASD is
based on the “Adaptive Life Cycle” (which continually

cycles through three phases named “Speculate,”
“Collaborate,” and “Learn) and the “Adaptive
Management Model” (also called “Leadership-
Collaboration” management).
� Dynamic System Development Method (DSDM) is not
properly a “method” because it does not provide guidance
about how development projects should be run. Rather, it

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

104

is mainly a philosophy about system development that
consists of nine principles. DSDM focuses on system
development and does not get into the details of writing
software, so it can be used in conjunction with any of the
more software-intensive Agile methods, like XP.
� Extreme Programming (XP) is a collection of 12
practices that focus specifically on the mechanics of
developing software. These practices include such topics
as The Planning Game, Pair Programming, Refactoring,
and Testing.
� Feature-Driven Development (FDD) treats software
development as a collection of features that are
implemented one at a time.
� Lean Software Development (LD) is not really a
software development method. Based on the principles of
lean manufacturing, LD provides a set of seven principles
for making software development more efficient, and it
amplifies those principles with 22 tools.
� Scrum is primarily a product development method. Its
seven practices focus on planning and managing a
development project but do not address any specifics
about software. Therefore, it can be used in conjunction
with any software development method.

4. Agile Development and Teamwork

A Clear, Elevating Goal

Iterative and incremental development along with user
collaboration plays a central role in keeping the goal
visible and clear. The usage of incremental development
allows the developers and the customer to define and work
on smaller but clear goals. An important part of the
increment is the definition of—often automated —
acceptance tests. Their definition is what really makes the
goal clear to the team. The usage of, preferably short,
iterations allow the team to have the feedback necessary to
understand if what they have done is what the customer
expected. In fact, acceptance tests are very helpful, but the
experience of using the software gives the customer a
better understanding of her needs. This, often, leads to a
refinement of the goal without a loss in clarity.

A Results-Driven Structure

Agile teams are structured in order to deliver valuable
software on time and on budget in a context of frequent
changes in requirements. An effective team structure has
four necessary features
1. Clarity of roles and accountabilities: For agile
development some of them are defined by means of the
rights that the customer and the development team have.
2. Effective communication system: Agile development
puts an emphasis on face to- face communication .The
team members tend to be located close to each other,

possibly in the same room, so the speed of communication
is optimized; the customer is encouraged to interact
closely with the developers, so the feedback loop is
shortened and the goal remains visible and clear.
3. Monitoring individual performance and provide
feedback: In agile development this is a consequence of
the high level of interaction between the parties involved.
If someone is not doing his best, this becomes very clear
very early to everybody.
4. Fact-based judgments: Agile development methods
submit all activities and products—including software—to
a usefulness test: they must contribute in some way to the
achievement of the goal, otherwise they are dropped. The
process is streamlined by executing only the activities that
simplify the work of the team. Documentation is written
only if there are people willing to read it. Software is kept
as simple as possible, so it is easier to change. Future
extensions will be examined when the need will arise.
Gold plating is loathed and avoided. Code quality is kept
as high as possible. Finally, technology is used only when
necessary—very often using a whiteboard or CRC cards
during a design session is more effective than using the
latest CASE tool.
All these techniques allow the development team to travel
light and focus only on what matters for the achievement
of the goal.
Unified Commitment
Agile methods tend to involve the entire team in all phases
of development. The customer is in close contact with the
team, so everybody can better understand the requirements,
and have the goal clear. Design sessions make extensive
usage of techniques such as CRC cards and whiteboards
that bring the whole team together to discuss design and
programming issues, in which everybody can give a
contribution. All these things help greatly in fostering
unified commitment.
External Support and Recognition
Agile methods recognize explicitly the importance of
external support. In fact one of the principles of the Agile
manifesto states “build projects around motivated
individuals. Give them the environment and support they
need, and trust them to get the job done.” They recognize
that,without appropriate resources, software development
is simply not possible.

4. ADVANTAGES OF AGILE

 Agile methodology has an adaptive team which is
able to respond to the changing requirements.

 The team does not have to invest time and effort and
finally find that by the time they delivered the
product, the requirement of the customer has changed.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.7, July 2012

105

 Face to face communication and continuous inputs
from customer representative leaves no space for
guesswork.

 The documentation is crisp and to the point to save
time.

 The end result is the high quality software in least
possible time duration and satisfied customer.

In a nutshell this means that you can get development
started fast, but with the caveat that the project scope
statement is "flexible" and not fully defined. Hence this
can be one of the major causes of scope creep if not
managed properly.

5. Challenges with Agile Methodology

 In case of some software deliverables,
 especially the large ones, it is difficult to assess the

effort required at the beginning of the software
development life cycle.

 There is lack of emphasis on necessary designing and
documentation.

 The project can easily get taken off track if the
customer representative is not clear what final
outcome that they want.

 Only senior programmers are capable of taking the
kind of decisions required during the development
process. Hence it has no place for newbie
programmers, unless combined with experienced
resources.

6. Ever Changing Scope

1. Traditional Software Development

Processes are based on scenarios that are envisioned in the
planning phase. New scenarios, or changes to existing
ones are often considered "bad" for the project plan.
Change in scope lead to slippage of schedule, increase in
cost and lot of frequent changes to the project plan
baseline.This happens because scope, cost and schedule
baselines are predicted early on in the planning phase.
Project is “expected” to stick on this baseline there after.
Changing the baseline plan is an option but it is not very
desirable neither is it always possible (especially late in
the project).

2. Agile Approach

Agile model welcome change. Change is looked at as the
driving force towards delivering a better product/ service.
Change and new requirement help to define the
deliverable for the next iteration. Changes fuel
incremental growth of the application in a direction
desired by the customer. It drive the design and

development. Customer is always happy with the end
product because he has had active participation in the
development process. Cost and time baselines are fixed in
the beginning of the project. Scope is never base lined and
is added incrementally. Agile process encourages the
business to learn about their need as the software is build.

References
[1] Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J.

(2002). Agile Software Development Methods: Review and
Analysis. VTT Publications 478

[2] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J.,
“New Directions on Agile Methods : A Comparative
Analysis”, In Proceeding of 25th International conference
on Software engineering 2003.

[3] Aoyamma, M., “Agile Software Process and its
Experiences”, In IEEE Transaction 1999.

[4] Bhalerao, S., and Ingle, M., “Formalizing Communication
Channel in Agile Methods”, In Proceedings of International
Conference on Trends in Information Science and
Computing (TISC07), Dec. 2007.

[5] Cockburn, A., Agile Software Development, Reading, MA:
Addison-Wesley, 2002, p. 215.

[6] Craig Larman, “Agile & Iterative Development: A
Manager’s Guide”, Addison-Wesley, 2003.

[7] Highsmith, J., Agile Software Development Ecosystems,
Addison Wesley, 2002

[8] Pressman, R., Software Engineering A Practitioner Guide,
McGraw- Hill 6th Edition.

[9] Sommerville, Ian (2007) [1982]. "4.1.1. The waterfall
model". Software engineering (8th ed.). Harlow: Addison
Wesley. pp. 66f..

Ramandeep Kaur, currently working as
an Assistant Professor received Bsc(Hons),
MCA from Delhi University &Guru
Gobind Singh Indraprastha University in
2006 & 2009 respectively. She has worked
for 6 months as a Software Programmer at
National Informatics Center, Yojna Bhavan,
New Delhi. She has also worked as a
Lecturer(IT) in IITM,Delhi for 1 year. Her

area of interests are Software Engineering, Computer Networks,
Network Security, Java, Operating System, Asp.Net,Front End
Design Tools, etc.

Manmohan Chaudhary ,currently working as an Assistant
Professor , received B.A(Economics) & MBA(Marketing) from
Guru Nanak Dev University, Amritsar. She has also
worked as a Lecturer in IITM,Delhi for 1 year.

Rahul Mehta ,currently working as a Senior Trainer in M/s
Billionix received BCA , MCA from Guru Gobind Singh
Indraprastha University in 2006 & 2009 respectively. His area of
interests are Software Engineering, Computer Networks,
Network Security, Java, Operating System, Asp.Net,Front End
Design Tools, etc.

