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Summary 
The risk of privacy breaches by malicious programs has been 
increasing, and these programs have used more elaborate 
techniques to circumvent detection. Attacks using a collaboration 
of applications are especially difficult to find since distinct 
applications obtain privacy-sensitive data and send the data to 
the outside. Current mobile platforms have a security 
enforcement mechanism based on a sandbox to prevent direct 
data sharing between applications. Furthermore, several schemes 
have been proposed to improve the security against the attacks 
caused by two or more applications that communicate with each 
other. However, these schemes cannot monitor all the possible 
data-sharing methods. A security analysis that covers a wider 
range of possible data-sharing methods between applications is 
required for protecting leakage of privacy-sensitive information. 
In this paper, we present a detailed manual analysis regarding a 
wider range of possible methods for sharing data in the Android 
OS, and show how to detect actual privacy breaches using 
existing frameworks. Our analysis contributes to the 
enhancement for the security of the Android OS. 
Key words: 
Information-flow analysis, Software Verification, System Security, 
Software Security, Android Security 

1. Introduction 

The risk of privacy breaches by malicious programs has 
been increasing, and these programs have used 
increasingly elaborate techniques to circumvent detection.  
Symantec [31] has reported a security issue caused by 
collaboration of two or more malwares. For example, a 
malicious program that can obtain privacy-sensitive data 
interacts with other programs that play the role of sending 
data outside. We have to track the information-flow of 
these programs to prevent these privacy breaches. 
  Existing mobile platforms, such as Android OS, iOS, and 
Windows 8 have a security enforcement mechanism based 
on a sandbox to prevent direct data sharing between 
applications. 
Each Android application runs on an instance of Android 
Dalvik virtual machine that is a distinct sandbox executed 
as an independent Linux process. If an application needs 
to access the resources beyond the boundary of the 
sandbox, the application has to request permissions from 

the Android OS. An application declares all permissions in 
the Manifest file, and these permissions are authorized by 
users at the time of its installation. After the user 
authorization, the Android OS grants the permissions to 
the application. Several existing systems that enhance the 
original security enforcement mechanism of the Android 
OS can track information-flows between applications; 
however, the system cannot monitor all the possible data-
sharing methods. Accurate detection of the information 
leakages to establish a more accurate detection mechanism 
of privacy breaches. Accurate detection of privacy 
breaches requires fine granularity information-flow 
analysis. 
  In this paper, we study a wide range of possible cases of 
data-sharing between components of Android applications 
and extract the check points for them. Then, we consider 
concrete detection mechanisms of privacy breaches based 
on these check points.  Our results contribute to enhance 
the current security enforcement mechanism in Android 
OS. 

2. Related Work 

Information-flow tracking systems have been proposed for 
source code in C and Java, or binary programs [6, 7, 24, 
17, 21, 10, 18, 8, 30, 29, 32, 26]. These systems can be 
used to detect malware that leaks privacy-sensitive data to 
third parties, as well as memory corruption attacks, e.g., 
buffer overflow attacks against programs implemented in 
C. 
 

public class Main extends Activity{ 
  @Override 
  public void onCreate(Bundle savedInstanceState){ 
    super.onCreate(savedInstanceState); 
    setContentView(R.layout.main); 
    final SharedPreferences pre = getSharedPreferences 
        ("Main", MODE_WORLD_READABLE); 
    final Button button = (Button)findViewById 
        (R.id.button); 
    button.setOnClickListener(new OnClickListener(){ 
      @Override 
      public void onClick(View view){ 
        Editor editor = pre.edit(); 
        EditText editText = (EditText)findViewById 
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            (R.id.editText); 
        editor.putString("Data", editText.getText(). 
            toString()); 
        editor.commit(); 
      }});  }} 

Fig. 1  Source code of source application. 

public class Main extends Activity{ 
  @Override 
  public void onCreate(Bundle savedInstanceState){ 
    super.onCreate(savedInstanceState); 
    setContentView(R.layout.main); 
    TextView readData = (TextView)findViewById 
        (R.id.readData); 
    try{ 
      Context context = createPackageContext("preference. 
          source.app", CONTEXT_IGNORE_SECURITY); 
      SharedPreferences pre = 
          context.getSharedPreferences 
          ("Main", MODE_WORLD_READABLE); 
      readData.setText(pre.getString("Data", "")); 
    } catch (NameNotFoundException e){ 
      e.printStackTrace(); } }} 

Fig. 2  Source code of target application. 

 

  
   (a) Source application.          (b) Target application.  

Fig. 3  Screenshots of sample applications. 

  On the other hand, mobile platforms, including Android 
[3], iOS [4], Windows 8 [22, 23], and Access Linux 
Platform (ALP) [28, 1] have security enforcement 
mechanisms based on sandboxes and permissions. Several 
security analyses of the Android OS have been carried out, 
and potential attacks were discovered [27, 11, 5, 16]. Enck 
[14] proposed the Kirin security service for the Android 
OS, which executes malware detection at the time of 
installation. Fuchs et al. [25] presented SCanDroid, which 

statically analyzes the information-flow in Android 
applications [9] to provide automated security certification. 
Enck et al. [13] presented TaintDroid, which is an 
extension to the Android OS and tracks the flow of 
privacy-sensitive the data in applications. Luo [19] 
proposed an approach based on static analysis focusing on 
program slicing. Zhou et al. [33] developed TISSA, which 
can protect the privacy-sensitive data by sending fake data. 
Bugiel et al. [5] proposed a security system for Android 
that monitors application communication channels in the 
middleware and Linux kernel. Mann and Starostin [20] 
applied static information-flow analysis to the Dalvik 
bytecode of Android applications in order to detect 
privacy violations. 

3. Our Approach 

We have to grasp a wide range of possible cases of the 
information leakages to establish a more accurate 
detection mechanism of privacy breaches. Several 
schemes have been proposed to improve the security 
enforcement mechanism of the Android OS by monitoring 
communications between applications. SCanDroid [25] 
can track information-flow based on intents that are used 
for communication between activities of Android 
applications, and TaintDroid [13] can track intents and file 
files in an Android device and SD card. However, these 
schemes cannot monitor all the possible data-sharing 
methods between applications, and privacy-sensitive data 
can be leaked via unexpected channels. We show a 
scenario of an information breach where applications 
interact using a preference, which is used to store the 
configuration of an application. The source application 
that has a privilege to access privacy-sensitive data saves 
the data into the preference. The target application that has 
a privilege to use the Internet reads the preference of the 
source application and displays the data. Figure 1 and 
Figure 2 show the source code of these sample 
applications, and the screenshots of the applications are 
shown in Figure 3. 
  In the Android OS, only applications with an appropriate 
privilege can access to privacy-sensitive data or send these 
data via the Internet. Thus, we can detect most of privacy 
breaches by checking data sharing between activities in 
applications. In this paper, we present a detailed manual 
analysis regarding a wide range of possible methods for 
sharing data in the Android OS, Data-sharing methods 
between activities in both the same and distinct 
applications are considered. Data-sharing methods within 
the same application are not dangerous themselves; 
however, we need to monitor them for accurate tracking of 
privacy-sensitive data. To achieve our goal, we need a 
technique to check whether privacy breaches are caused 
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by data-sharing; however, this issue is outside the scope of 
this paper. We discuss possible solutions in Section 7. 

 

Fig. 4  Data-sharing models. 

Table 1: Taxonomy of data-sharing methods in the Android OS 
Category Data-sharing method 
(1) IPC Intent, Remote method 
(2) File system Preferences, SQLite database 

Files 

(3) Resources 

Internet server 
(4) IAC Native code, Static fields,  

Singleton classes, Application classes 

 

4. Data Sharing 

We consider possible data-sharing methods in activity 
level. An activity is a core component of the Android OS, 
and each activity represents the task that an Android 
application can do. A detailed information-flow tracking 
can be achieved by monitoring data-sharing between 
activities rather than applications. Thus, we need to check 
the data-sharing between activities within the same 
applications as well as distinct applications. 
  There are four prominent types of data-sharing methods 
in platforms with a sandbox-based security enforcement 
mechanism: data sharing based on (1) inter-process 
communication (IPC), (2) file system, (3) resources, and 
(4) intra-application communication (IAC). Figure 4 
shows these data-sharing models1. 
  In the Android OS, ten methods of sharing data are 
available as shown Table 1. Note that the Android file 
                                                           
1 The type 1 method using inter-process message, the type 
2 method uses file system managed by the operating 
system, the type 3 method uses resources protected by the 
sandbox. The type 1, 2, and 3 methods enable data sharing 
between activities in both the same and distinct 
applications. The type 4 method supports only data 
sharing within the same application; however, it makes 
difficult to trace the information-flow by combining with 
other methods. 

system is managed and protected by a permission system 
of the Linux kernel. On the other hand, applications that 
write to an external storage have to declare an appropriate 
permission in order to cross the boundary of the sandbox. 
Thus, the data-sharing method based on files fits into both 
the file system and resources categories. 

4.1 Inter-Process Communication 

Data-sharing methods based on intents and remote 
methods in services fit into the IPC category. 
 
Intent.  An intent is an abstract description of an operation 
to be performed. It is used to launch an activity, send data 
to any BroadcastReceiver components, and start or bind a 
service to communicate with a background service.  
  The source activity generates an intent using the 
constructor of the android.content.Intent class. Next, the 
activity sets the package and class name of the target 
activity using the setClassName() method. 
Then, the activity sets the data using the 
put[Datatype]Extra() method. Then, the activity sends the 
intent using the startActivity() method of the 
android.content.Context class to launch the target activity.   
The target activity obtains the intent using the getIntent() 
method of the android.content.Intent class. 
Then, the activity extracts the data using the 
get[Datatype]Extra() method. 
 
Remote Method.  The Android OS supports remote 
procedure calls (RPC) between an activity and a service. 
The interface of a method in the service is described in 
Android Interface Definition Language (AIDL). An 
activity can send data to the service, and another activity 
can receive the data from the service. 
  The source activity generates an instance of the 
android.content.ServiceConnection class. Next, the 
activity generates an intent using the constructor of the 
android.content.Intent class. Then, it connects to the 
service using the bindService() method of the 
android.content.Context class. This method takes three 
arguments: an intent, the receiver of information returned 
by the callback methods, and operation options. 
We can pass BIND_AUTO_CREATE as the third 
argument to start the service. Finally, the activity sends 
data to the service using the data setter method. 
  The target activity connects to the service in the 
bindService() method, and receives the data from the 
service using the data getter method. We assume that 
appropriate data setter and getter methods are 
implemented in the service. The interface of these methods 
should be declared in an AIDL file. 
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4.2 File System 

Data-sharing methods based on files, preferences, and 
SQLite databases are in the file system category. 
 
Files.  Files in mobile phones and external storage, e.g. an 
SD card, can be used for data sharing. Activities in distinct 
applications can exchange data via files in external storage. 
Note that files under the directory /data/data/[Application 
name] are used as private storage for each application; 
thus, only activities within the same application can share 
data via these files. 
  The source activity obtains the output stream by the 
openFileOutput() method of the android.content.Context 
class. This method takes two arguments: the filename and 
operating mode. The operation mode should be set to 
MODE_WORLD_READABLE or 
MODE_WORLD_WRITEABLE in order to support data 
sharing between activities of distinct applications. Then, 
the activity writes the data to the file via the output stream 
using write() method of the java.io.OutputStream class. 
  The target activity obtains the input stream by the 
openFileInput() method of the android.content.Context 
class. This method takes the file name as an argument. 
Then, the activity writes the content of the input stream to 
a buffer with the write() method. Finally, the target 
activity reads the data in the buffer. Furthermore, the 
source/target activity can use native code to write/read 
data to/from the external storage. 
 
Preferences.  A preference is used to store persistent data 
such as configuration information. It stores the pairs of 
data and key name in an xml file. 
  A source activity gets an instance of a preference using 
the getSharedPreferences() method of the 
android.content.Context class. This method takes two 
arguments: the preference name and operating mode. The 
operation mode should be set to 
MODE_WORLD_READABLE or 
MODE_WORLD_WRITEABLE in order to support data 
sharing between activities of distinct applications. 
Alternatively, the source activity can get the default 
preference using the getDefaultSharedPreferences() 
method in the android.preference.PreferenceManager class 
or the getPreferences() in the android.app.Activity class. 
Then, the activity gets the instance of the editor for the 
preferences using the edit() method of the 
android.content.SharedPreferences class. Finally, the 
source activity writes the data to the editor for the 
preference using the put[Datatype]() methods of the 
android.content.SharedPreferences.Editor class. 
 
The target activity obtains the context object of the source 
activity using the createPackageContext() method of the 

android.content.Context class. Next, the activity obtains 
the instance of the preference by the 
getSharedPreferences() method or the 
getDefaultSharedPreferences() method. Then, the activity 
reads the data from the preference using the 
get[Datatype]() method of the 
android.content.SharedPreferences class. 
 
SQLite Database.  The Android OS supports SQLite, 
which is a lightweight database management system 
implemented via C library. Activities can share data via 
the database. 
  The source activity generates a database using the 
openOrCreateDatabase() method of the 
android.database.sqlite.SQLiteDatabase class. This 
method takes a path to the database file, an optional 
factory class, and database operating mode. The operation 
mode should be set to MODE_WORLD_READABLE or 
MODE_WORLD_WRITEABLE in order to support data 
sharing between activities of distinct applications. 
Alternatively, the activity can use the 
openOrCreateDatabase() method of the 
android.content.Context class. Then, the activity generates 
a table by sending the create table SQL query using the 
execSQL() method. Finally, the source activity adds the 
data to the database by sending the insert SQL query using 
the execSQL() method. 
  The target activity opens the database using the 
openDatabase() method of the 
android.database.sqlite.SQLiteDatabase that has the same 
arguments as openOrCreateDatabase(). 
Then, the activity receives the data from the database 
using the query() method. 

4.3 Resources 

Data-sharing based on files and Internet servers fit into the 
resources category. The usage of external storage and the 
Internet are managed by permissions in the Android OS; 
thus, applications that use the data-sharing methods in this 
category must declare appropriate permissions. We omit 
the description of the method using files since it was 
shown in Section 4.2. 
 
Internet Servers.  Activities can exchange data via an 
external server. We demonstrate data sharing using the 
HTTP connection. The activity sends the data to a server. 
Several classes are available to execute the HTTP protocol. 
 
DefaultHttpClient Class 
The target activity generates the instance of the 
org.apache.http.impl.client.DefaultHttpClient class using 
the constructor. Then, the activity generates the HTTP 
request containing the data with the constructor of the 
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org.apache.http.client.methods.HttpGet class. Finally, the 
activity uses the execute() method of the 
org.apache.http.impl.client.DefaultHttpClient class to 
execute the request to the target host. 
 
HttpRequestExecutor Class 
The target activity generates the instance of the HTTP 
request executor using the constructor of the 
org.apache.http.protocol.HttpRequestExecutor class. Then, 
the activity generates the HTTP request containing the 
data with the constructor of the 
org.apache.http.message.BasicHttpRequest class. Finally, 
the activity executes the methods preProcess(), execute(), 
and postProcess() of the 
org.apache.http.protocol.HttpRequestExecutor class in 
order to execute the request to the target host. 
 
HttpURLConnection Class  
The target activity generates the URL of the external 
server using the constructor of the java.net.URL class. 
Next, the activity creates a new connection to the server 
by the openConnection() method of the java.net.URL class. 
Then, the activity gets the output stream that connects to 
the server with the methods getOutputStream() of the 
java.lang.Process class. The java.io.OutputStreamWriter 
class is used to convert a character stream into a byte 
stream. Finally, the activity calls the write() method of the 
java.io.OutputStreamWriter class to write the data to the 
output stream. 
 
AndroidHttpClient Class  
The target activity obtains the instance of a HTTP client 
using the newInstance() method of the 
android.net.http.AndroidHttpClient class. Then, the 
activity generates the HTTP request containing the data 
with the constructor of the 
org.apache.http.client.methods.HttpGet class. Finally, the 
activity uses the execute() method of the 
android.net.http.AndroidHttpClient class in order to 
execute the request to the target host. 
 
DownloadManager Class 
The target activity obtains the instance of the 
DownloadManager using the getSystemService() method 
of the android.content.Context class. Then, the activity 
generates the URI with the parse() method of the 
android.net.Uri class, and the request containing the data 
with the constructor of the 
android.app.DownloadManager.Request class. Finally, the 
activity registers the request to the download manager 
using enqueue() methods in order to issue the request to 
the target host. 
  The target activity receives the data from the server. The 
activity can use the classes described above. 

  Furthermore, the source/target activity can use native 
code to send/receive data to/from the Internet server. 

4.4 Inter-Application Communication 

Data-sharing methods based on native code, static fields, 
singleton classes, and application classes are in the intra-
application communication category. 
 
Native Code.  Android application can call native code via 
Java Native Interface (JNI). Native code is implemented in 
a shared object (.so) file. In the native code, activities 
within the same application can share data using global 
variables. 
  The source activity sets the data using the data setter 
method. The target activity gets the data using the data 
getter methods. We assume that the application has a 
native library storing data in a global variable, and the 
library has appropriate data setter and getter methods. 
 
Static Fields.  Fields with a static public modifier can be 
accessed from any class. Activities within an application 
can share data using these fields. 
  The source activity sets the data to static public fields. 
The target activity gets the data from the field. We assume 
that the application has a class for data sharing, and the 
class has a field with the static public access modifier. The 
static field can be accessed from any activities within the 
application in the form of [Class name].[Field name]. 
 
Singleton Classes.  A singleton class is a class that 
provides only one instance. Activities within an 
application can share data via the instance of a singleton 
class. A singleton class has a static field to store the 
instance of the class itself. The getter of the singleton 
instance is implemented as a static method. If the static 
field is null, the getter generates the singleton instance and 
returns it. Otherwise, the getter returns the existing 
instance. 
  The source activity gets the singleton instance by the 
instance getter method. 
Then, the source activity sets the data by the data setter 
method. The target activity gets the singleton instance by 
the instance getter method. Finally, the source activity gets 
the data by the data getter method. 
 
Application Classes.  The android.app.Application class is 
used as a fundamental class to share the status of the 
application globally. The activities can share data via the 
instance of this class. However, the original class has no 
data setter or getter methods, and it is not convenient for 
sharing of a large amount of data. Thus, we can extend the 
class by adding appropriate data setter and getter method. 
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The name of the extended class and the activity that uses 
the class should be declared in the manifest file. 
  The source activity obtains the instance of the class using 
the getApplication() method of the  android.app.Activity 
class. The activity sets the data to the instance using the 
data setter methods implemented by the developer. 
  The target activity gets the instance of the class using the 
getApplication() method. The activity gets the data from 
the instance by data getter methods. 

5. Exploring the Real World 

We studied the data-sharing methods used in actual 
Android applications. In Google Play [15], applications 
are classified into 27 categories including games, business, 
and social. We downloaded 81 applications using Nexus 
One with Android OS 2.3.6. Then, we selected the top 
three applications for each category. Table 2 shows the 
number of applications that has the possibility to use each 
data-sharing method. 
  Data sharing based on intents was used in more than 90 
percent of the applications. Activities in more than 80 
percent of the applications had a possibility to interact 
with other applications using preferences. The SQLite 
database and Internet connection were used in about 70 
percent of the applications. Many applications potentially 
use data-sharing methods based on static fields or 
singleton classes. These methods enable data-sharing with 
the same application and are not critical by themselves. 
However, they can make difficult to trace the information-
flow by combining with other methods. The rate of 
applications that have native code was a mere of 13.6 
percent. However, data sharing based on native code is 
difficult to find, and these applications have the potential 
to become most serious breaches. 

Table 2: Data-sharing methods in Android applications 
Method  Number of application 
Intent 74 (91.4%) 
Remote method 35 (43.2%) 
File 20 (24.7%) 
Preferences 72 (88.9%) 
SQLite database 53 (65.4%) 
Internet server 57 (70.4%) 
Native code 11 (13.6%) 
Static fields 71 (87.7%) 
Singleton classes 57 (70.4%) 
Application classes 17 (21.0%) 

6. Check Points for Detection 

We describe ten possible data-sharing methods in four 
categories in Section 4. This section shows how to find the 
data sharing between activities in Android applications 
based on Android APIs and access modifiers. 

Table 3: Methods for intent manipulation 
Type Method name 
1 putExtra(), putExtras() 
2 get[Datatype]Extra() 
3 startActivity(),startActivityForResult() 
4 sendBroadcast(), sendOrderedBroadcast(),  

sendStickeyBroadcast() 

6.1 Inter-Process Communication 

Data-sharing methods in the IPC category can be found by 
the Android APIs for intent manipulation. 
Intents. Data sharing based on intents can be found by 
methods that manipulate intents. There are 38 methods in 
the classes android.content.Intent, android.content.Context, 
and android.app.Activity. These methods can be 
categorized as 1) methods to set the data to an intent, 2) 
methods to get the data from an intent, 3) methods to 
launch an activity, and 4) methods to broadcast an intent. 
Table 3 shows these methods. Note that there are 29 
variations of type 2 methods based on the type of target 
data.  
For example, the methods getStringExtra(), 
getIntArrayExtra(), and getDoubleArrayListExtra() are 
available. 
Remote Methods.  An activity launches a service using 
startService() method in the android.content.Context class. 
A connection between an activity and service is 
established by the bindService() method in the same class. 
Using these methods, we can find data sharing via a 
remote method in a service. 

6.2 File System 

Data-sharing methods in the file system category can be 
found by the Android APIs for file manipulation. We can 
find the data sharing between activities of different 
application by checking the operation mode of files. The 
operation mode should be MODE_WORLD_READABLE 
and MODE_WORLD_WRITABLE. 
 
Files.  Data sharing using the file system can be found 
using the file manipulation methods. The 
android.content.Context class has eight methods: 
getCacheDir(), getDir(), getExternalCacheDir(), 
getExternalFilesDir(), getFileStreamPath(), getFilesDir(), 
openFileIutput(), and openFileOutput(). 

Table 4: Methods for preference manipulation 
Type Method name 
1 edit(), apply(), clear(), commit(), remove(), put[Datatype]() 
2 contains(), get[Datatype]() 
3 getSharedPreferences(), getPreferences(), 

getDefarultSharedPreferences() 
4 registerOnSharedPreferenceChangeListener(), 

unregisterOnSharedPreferenceChangeListener() 
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Table 5: Methods for preference manipulation 
Method name 
execSQL(), getSyncedTables(), delete(), insert(),  insertOrThrow(), 
insertWithOnConflict(),  markTableSyncable(), query(), 
queryWithFactory(),  rawQuery(), rawQueryWithFactory(), replace(),  
replaceOrThrow(), update(), updateWithOnConflict()  

 
Preferences.  Data sharing based on preferences can be 
found using methods that manipulate preferences. Twenty-
four methods belong to the classes 
android.content.SharedPreferences.Editor, 
android.content.Context, 
android.preference.PreferenceManager, 
android.app.Activity, and 
android.content.SharedPreferences. 
These methods can be categorized as 1) methods to set the 
data to a preference, 2) methods to get the data from a 
preference, 3) methods to get the instance of a preference, 
and 4) methods to register or unregister a callback to be 
invoked when a shared preference is changed. Table 4 
shows these methods. 
 
SQLite Database.  Data sharing based on the SQLite 
database can be found by the methods for database 
operation. The android.database.sqlite.SQLiteDatabase 
class has 15 methods, as shown in Table 5. 

6.3 Resources 

Data-sharing methods using the Internet server can be 
found by the Android APIs for the Internet protocols. 
 
Internet Server.  Data sharing via an Internet server can be 
found with the methods used for internet communication. 
These methods are shown in Table 6. 

Table 6: Methods for internet communication 
Class name Method name 
org.apache.http.impl.client. 
    DefaultHttpClient 

execute() 
 

org.apache.http.protocol. 
    HttpRequestExecutor 

execute() 

java.net.URL openConnection() 
java.net.URL getContent() 
java.net.URL openStream() 
android.net.http.AndroidHttpClient execute() 
android.app.DownloadManager enqueue() 

6.4 Intra-Application Communication 

Data-sharing methods in the IAC category cannot be 
found by the Android APIs or access modifiers. The 
methods based on native code require an information-flow 
tracking technique or program analysis technique for 
detection. We have to find field accesses and user-defined 
setter/getter methods to find methods based on singleton 
classes. 

 
Native Code.  Existence of native code can be found by 
the declaration in the activity class. However, it is difficult 
to check whether native code actually shares the data 
without examining the native library. Thus, we need to use 
information-flow tracking technique or program analysis 
technique. 
 
Static Fields.  Data sharing based on static fields can be 
found using access modifiers. Fields with static, public 
static, protected static, and protected public static are 
accessible from any class. 
 
Singleton Classes.  We can determine that a class is 
singleton or not by examining the constructor. Data 
sharing based on singleton classes can be found by access 
to the fields and methods of the singleton class. We can 
confirm that a class is singleton by checking the access 
modifier of the constructor is private. 
 
Application Classes.  Data sharing based on an application 
classes can be found by the getApplication() method in the 
android.app.Activity class. This method returns the 
instance of the application class. 

7. Consideration 

We show how to detect actual privacy breaches in 
Android applications. One possible technique is to use a 
data tainting technique. Tainting is a technique that tracks 
sensitive data. TaintDroid [13] supports message-level 
tracking, variable-level tracking, method-level tracking 
and file-level tracking. Privacy breaches using data-
sharing methods in the IPC category can be detected by 
message-level tracing. Breaches using a method in the file 
system category can be detected by file level tracking. 
Breaches using data-sharing method based on Internet 
server can be detected as information-flow against a taint 
sink. Breaches caused by data-sharing methods in the IAC 
categories can be detected by variable level tracking. 
However, TaintDroid modifies the native library loader to 
ensure that applications can only load native libraries from 
the firmware. Applications containing native libraries 
cannot be executed on TaintDroid. The limitation may 
reduce the flexibility of the development process of 
Android applications. 
  The other solution is to check the calls between 
components of applications. An activity can send privacy-
sensitive data to another activity using an intent. In this 
situation, the activity calls a method in other component or 
an Android API to obtain the privacy-sensitive data, and 
the activity calls another Android API to send a intent to 
the target activity. The run-time enforcement system [2] 
hooks method/API calls and blocks suspicious calls that 
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violate a security policy. The security policy is defined as 
inclusive relation of secrecy labels and integrity labels. If a 
component access to privacy sensitive data, the data is 
assigned to the secrecy label of the component. Similarly, 
if a component has a privilege to manipulate a resource, 
the privilege is assigned to the integrity label. The call is 
allowed if and only if caller's secrecy label is a subset of 
callee's and caller's integrity label is a superset of callee's. 
Static label information is stored in the manifest file of an 
application. Dynamic modification of labels is also 
supported. Floating label enables a caller component to 
taint its labels to the callee component when the call is 
allowed. Declassification capability dynamically removes 
the specific elements in the secrecy label of component 
and endorsement capability adds the elements to the 
integrity labels. This system monitors calls between 
components (activity, service, and component provider), 
Android or Java APIs, and system calls, and we can check 
the data-sharing based on inter-process communication, 
file system, resources, and native code.    However, data-
sharing based on static fields, singleton classes, and 
application classes beyond the scope of monitoring. Thus, 
the detection of these kinds of breaches requires a 
variable-level tracking technique. One possible solution is 
to add the variable-level tracking of TaintDroid to the 

system. Another approach is to rewrite the byte code of 
the target application [12]. For example, the date-sharing 
based on static fields, singleton classes, and application 
classes can be replaced with explicit data-sharing based on 
intents. 

8. Concluding Remarks 

In this paper, we showed a wider range of possible 
methods whereby data can be shared between activities in 
Android applications, and how to find them. We newly 
presented inter-application data sharing based on 
preferences and SQLite database, intra-application data 
sharing based on native code, static fields, singleton 
classes, and application classes. 
  Table 7 shows the assumptions required by each method, 
category, and check points. Our detection method 
identifies the points that could potentially cause privacy 
breaches; however, it is not always true that the identified 
points lead to malicious data sharing with other activities. 
Thus, we should use existing framework to find actual 
privacy breaches as discussed in Section 7. Our results 
contribute to enhance the security enforcement mechanism 
in the Android OS. 

 Table 7: Summary of data-sharing methods 
Methods Assumptions Categories Check points 
Intent  No IPC Android APIs 
Remote method Service IPC  Android APIs 
File Storage and Permission File system & Resources   Android APIs 
Preference No File system  Android APIs 
Internet server  Server and Permission Resources  Android APIs 
Native code No IAC Information tracking or program analysis 
Static fields No IAC Access modifiers  
Singleton classes No IAC Access modifiers and Field references 
Application classes No IAC Android APIs 
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