
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

1

Manuscript received August 5, 2012
Manuscript revised August 20, 2012

Check Points against Privacy Breaches in Android Applications

Kazuhide Fukushima† , Lujo Bauer‡, Limin Jia‡,
Shinsaku Kiyomoto†, and Yutaka Miyake†

KDDI R&D Laboratories, Inc, JAPAN

Carnegie Mellon University, USA

Summary
The risk of privacy breaches by malicious programs has been
increasing, and these programs have used more elaborate
techniques to circumvent detection. Attacks using a collaboration
of applications are especially difficult to find since distinct
applications obtain privacy-sensitive data and send the data to
the outside. Current mobile platforms have a security
enforcement mechanism based on a sandbox to prevent direct
data sharing between applications. Furthermore, several schemes
have been proposed to improve the security against the attacks
caused by two or more applications that communicate with each
other. However, these schemes cannot monitor all the possible
data-sharing methods. A security analysis that covers a wider
range of possible data-sharing methods between applications is
required for protecting leakage of privacy-sensitive information.
In this paper, we present a detailed manual analysis regarding a
wider range of possible methods for sharing data in the Android
OS, and show how to detect actual privacy breaches using
existing frameworks. Our analysis contributes to the
enhancement for the security of the Android OS.
Key words:
Information-flow analysis, Software Verification, System Security,
Software Security, Android Security

1. Introduction

The risk of privacy breaches by malicious programs has
been increasing, and these programs have used
increasingly elaborate techniques to circumvent detection.
Symantec [31] has reported a security issue caused by
collaboration of two or more malwares. For example, a
malicious program that can obtain privacy-sensitive data
interacts with other programs that play the role of sending
data outside. We have to track the information-flow of
these programs to prevent these privacy breaches.
 Existing mobile platforms, such as Android OS, iOS, and
Windows 8 have a security enforcement mechanism based
on a sandbox to prevent direct data sharing between
applications.
Each Android application runs on an instance of Android
Dalvik virtual machine that is a distinct sandbox executed
as an independent Linux process. If an application needs
to access the resources beyond the boundary of the
sandbox, the application has to request permissions from

the Android OS. An application declares all permissions in
the Manifest file, and these permissions are authorized by
users at the time of its installation. After the user
authorization, the Android OS grants the permissions to
the application. Several existing systems that enhance the
original security enforcement mechanism of the Android
OS can track information-flows between applications;
however, the system cannot monitor all the possible data-
sharing methods. Accurate detection of the information
leakages to establish a more accurate detection mechanism
of privacy breaches. Accurate detection of privacy
breaches requires fine granularity information-flow
analysis.
 In this paper, we study a wide range of possible cases of
data-sharing between components of Android applications
and extract the check points for them. Then, we consider
concrete detection mechanisms of privacy breaches based
on these check points. Our results contribute to enhance
the current security enforcement mechanism in Android
OS.

2. Related Work

Information-flow tracking systems have been proposed for
source code in C and Java, or binary programs [6, 7, 24,
17, 21, 10, 18, 8, 30, 29, 32, 26]. These systems can be
used to detect malware that leaks privacy-sensitive data to
third parties, as well as memory corruption attacks, e.g.,
buffer overflow attacks against programs implemented in
C.

public class Main extends Activity{
 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 final SharedPreferences pre = getSharedPreferences
 ("Main", MODE_WORLD_READABLE);
 final Button button = (Button)findViewById
 (R.id.button);
 button.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View view){
 Editor editor = pre.edit();
 EditText editText = (EditText)findViewById

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

2

 (R.id.editText);
 editor.putString("Data", editText.getText().
 toString());
 editor.commit();
 }}); }}

Fig. 1 Source code of source application.

public class Main extends Activity{
 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 TextView readData = (TextView)findViewById
 (R.id.readData);
 try{
 Context context = createPackageContext("preference.
 source.app", CONTEXT_IGNORE_SECURITY);
 SharedPreferences pre =
 context.getSharedPreferences
 ("Main", MODE_WORLD_READABLE);
 readData.setText(pre.getString("Data", ""));
 } catch (NameNotFoundException e){
 e.printStackTrace(); } }}

Fig. 2 Source code of target application.

 (a) Source application. (b) Target application.

Fig. 3 Screenshots of sample applications.

 On the other hand, mobile platforms, including Android
[3], iOS [4], Windows 8 [22, 23], and Access Linux
Platform (ALP) [28, 1] have security enforcement
mechanisms based on sandboxes and permissions. Several
security analyses of the Android OS have been carried out,
and potential attacks were discovered [27, 11, 5, 16]. Enck
[14] proposed the Kirin security service for the Android
OS, which executes malware detection at the time of
installation. Fuchs et al. [25] presented SCanDroid, which

statically analyzes the information-flow in Android
applications [9] to provide automated security certification.
Enck et al. [13] presented TaintDroid, which is an
extension to the Android OS and tracks the flow of
privacy-sensitive the data in applications. Luo [19]
proposed an approach based on static analysis focusing on
program slicing. Zhou et al. [33] developed TISSA, which
can protect the privacy-sensitive data by sending fake data.
Bugiel et al. [5] proposed a security system for Android
that monitors application communication channels in the
middleware and Linux kernel. Mann and Starostin [20]
applied static information-flow analysis to the Dalvik
bytecode of Android applications in order to detect
privacy violations.

3. Our Approach

We have to grasp a wide range of possible cases of the
information leakages to establish a more accurate
detection mechanism of privacy breaches. Several
schemes have been proposed to improve the security
enforcement mechanism of the Android OS by monitoring
communications between applications. SCanDroid [25]
can track information-flow based on intents that are used
for communication between activities of Android
applications, and TaintDroid [13] can track intents and file
files in an Android device and SD card. However, these
schemes cannot monitor all the possible data-sharing
methods between applications, and privacy-sensitive data
can be leaked via unexpected channels. We show a
scenario of an information breach where applications
interact using a preference, which is used to store the
configuration of an application. The source application
that has a privilege to access privacy-sensitive data saves
the data into the preference. The target application that has
a privilege to use the Internet reads the preference of the
source application and displays the data. Figure 1 and
Figure 2 show the source code of these sample
applications, and the screenshots of the applications are
shown in Figure 3.
 In the Android OS, only applications with an appropriate
privilege can access to privacy-sensitive data or send these
data via the Internet. Thus, we can detect most of privacy
breaches by checking data sharing between activities in
applications. In this paper, we present a detailed manual
analysis regarding a wide range of possible methods for
sharing data in the Android OS, Data-sharing methods
between activities in both the same and distinct
applications are considered. Data-sharing methods within
the same application are not dangerous themselves;
however, we need to monitor them for accurate tracking of
privacy-sensitive data. To achieve our goal, we need a
technique to check whether privacy breaches are caused

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

3

by data-sharing; however, this issue is outside the scope of
this paper. We discuss possible solutions in Section 7.

Fig. 4 Data-sharing models.

Table 1: Taxonomy of data-sharing methods in the Android OS
Category Data-sharing method
(1) IPC Intent, Remote method
(2) File system Preferences, SQLite database

Files

(3) Resources

Internet server
(4) IAC Native code, Static fields,

Singleton classes, Application classes

4. Data Sharing

We consider possible data-sharing methods in activity
level. An activity is a core component of the Android OS,
and each activity represents the task that an Android
application can do. A detailed information-flow tracking
can be achieved by monitoring data-sharing between
activities rather than applications. Thus, we need to check
the data-sharing between activities within the same
applications as well as distinct applications.
 There are four prominent types of data-sharing methods
in platforms with a sandbox-based security enforcement
mechanism: data sharing based on (1) inter-process
communication (IPC), (2) file system, (3) resources, and
(4) intra-application communication (IAC). Figure 4
shows these data-sharing models1.
 In the Android OS, ten methods of sharing data are
available as shown Table 1. Note that the Android file

1 The type 1 method using inter-process message, the type
2 method uses file system managed by the operating
system, the type 3 method uses resources protected by the
sandbox. The type 1, 2, and 3 methods enable data sharing
between activities in both the same and distinct
applications. The type 4 method supports only data
sharing within the same application; however, it makes
difficult to trace the information-flow by combining with
other methods.

system is managed and protected by a permission system
of the Linux kernel. On the other hand, applications that
write to an external storage have to declare an appropriate
permission in order to cross the boundary of the sandbox.
Thus, the data-sharing method based on files fits into both
the file system and resources categories.

4.1 Inter-Process Communication

Data-sharing methods based on intents and remote
methods in services fit into the IPC category.

Intent. An intent is an abstract description of an operation
to be performed. It is used to launch an activity, send data
to any BroadcastReceiver components, and start or bind a
service to communicate with a background service.
 The source activity generates an intent using the
constructor of the android.content.Intent class. Next, the
activity sets the package and class name of the target
activity using the setClassName() method.
Then, the activity sets the data using the
put[Datatype]Extra() method. Then, the activity sends the
intent using the startActivity() method of the
android.content.Context class to launch the target activity.
The target activity obtains the intent using the getIntent()
method of the android.content.Intent class.
Then, the activity extracts the data using the
get[Datatype]Extra() method.

Remote Method. The Android OS supports remote
procedure calls (RPC) between an activity and a service.
The interface of a method in the service is described in
Android Interface Definition Language (AIDL). An
activity can send data to the service, and another activity
can receive the data from the service.
 The source activity generates an instance of the
android.content.ServiceConnection class. Next, the
activity generates an intent using the constructor of the
android.content.Intent class. Then, it connects to the
service using the bindService() method of the
android.content.Context class. This method takes three
arguments: an intent, the receiver of information returned
by the callback methods, and operation options.
We can pass BIND_AUTO_CREATE as the third
argument to start the service. Finally, the activity sends
data to the service using the data setter method.
 The target activity connects to the service in the
bindService() method, and receives the data from the
service using the data getter method. We assume that
appropriate data setter and getter methods are
implemented in the service. The interface of these methods
should be declared in an AIDL file.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

4

4.2 File System

Data-sharing methods based on files, preferences, and
SQLite databases are in the file system category.

Files. Files in mobile phones and external storage, e.g. an
SD card, can be used for data sharing. Activities in distinct
applications can exchange data via files in external storage.
Note that files under the directory /data/data/[Application
name] are used as private storage for each application;
thus, only activities within the same application can share
data via these files.
 The source activity obtains the output stream by the
openFileOutput() method of the android.content.Context
class. This method takes two arguments: the filename and
operating mode. The operation mode should be set to
MODE_WORLD_READABLE or
MODE_WORLD_WRITEABLE in order to support data
sharing between activities of distinct applications. Then,
the activity writes the data to the file via the output stream
using write() method of the java.io.OutputStream class.
 The target activity obtains the input stream by the
openFileInput() method of the android.content.Context
class. This method takes the file name as an argument.
Then, the activity writes the content of the input stream to
a buffer with the write() method. Finally, the target
activity reads the data in the buffer. Furthermore, the
source/target activity can use native code to write/read
data to/from the external storage.

Preferences. A preference is used to store persistent data
such as configuration information. It stores the pairs of
data and key name in an xml file.
 A source activity gets an instance of a preference using
the getSharedPreferences() method of the
android.content.Context class. This method takes two
arguments: the preference name and operating mode. The
operation mode should be set to
MODE_WORLD_READABLE or
MODE_WORLD_WRITEABLE in order to support data
sharing between activities of distinct applications.
Alternatively, the source activity can get the default
preference using the getDefaultSharedPreferences()
method in the android.preference.PreferenceManager class
or the getPreferences() in the android.app.Activity class.
Then, the activity gets the instance of the editor for the
preferences using the edit() method of the
android.content.SharedPreferences class. Finally, the
source activity writes the data to the editor for the
preference using the put[Datatype]() methods of the
android.content.SharedPreferences.Editor class.

The target activity obtains the context object of the source
activity using the createPackageContext() method of the

android.content.Context class. Next, the activity obtains
the instance of the preference by the
getSharedPreferences() method or the
getDefaultSharedPreferences() method. Then, the activity
reads the data from the preference using the
get[Datatype]() method of the
android.content.SharedPreferences class.

SQLite Database. The Android OS supports SQLite,
which is a lightweight database management system
implemented via C library. Activities can share data via
the database.
 The source activity generates a database using the
openOrCreateDatabase() method of the
android.database.sqlite.SQLiteDatabase class. This
method takes a path to the database file, an optional
factory class, and database operating mode. The operation
mode should be set to MODE_WORLD_READABLE or
MODE_WORLD_WRITEABLE in order to support data
sharing between activities of distinct applications.
Alternatively, the activity can use the
openOrCreateDatabase() method of the
android.content.Context class. Then, the activity generates
a table by sending the create table SQL query using the
execSQL() method. Finally, the source activity adds the
data to the database by sending the insert SQL query using
the execSQL() method.
 The target activity opens the database using the
openDatabase() method of the
android.database.sqlite.SQLiteDatabase that has the same
arguments as openOrCreateDatabase().
Then, the activity receives the data from the database
using the query() method.

4.3 Resources

Data-sharing based on files and Internet servers fit into the
resources category. The usage of external storage and the
Internet are managed by permissions in the Android OS;
thus, applications that use the data-sharing methods in this
category must declare appropriate permissions. We omit
the description of the method using files since it was
shown in Section 4.2.

Internet Servers. Activities can exchange data via an
external server. We demonstrate data sharing using the
HTTP connection. The activity sends the data to a server.
Several classes are available to execute the HTTP protocol.

DefaultHttpClient Class
The target activity generates the instance of the
org.apache.http.impl.client.DefaultHttpClient class using
the constructor. Then, the activity generates the HTTP
request containing the data with the constructor of the

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

5

org.apache.http.client.methods.HttpGet class. Finally, the
activity uses the execute() method of the
org.apache.http.impl.client.DefaultHttpClient class to
execute the request to the target host.

HttpRequestExecutor Class
The target activity generates the instance of the HTTP
request executor using the constructor of the
org.apache.http.protocol.HttpRequestExecutor class. Then,
the activity generates the HTTP request containing the
data with the constructor of the
org.apache.http.message.BasicHttpRequest class. Finally,
the activity executes the methods preProcess(), execute(),
and postProcess() of the
org.apache.http.protocol.HttpRequestExecutor class in
order to execute the request to the target host.

HttpURLConnection Class
The target activity generates the URL of the external
server using the constructor of the java.net.URL class.
Next, the activity creates a new connection to the server
by the openConnection() method of the java.net.URL class.
Then, the activity gets the output stream that connects to
the server with the methods getOutputStream() of the
java.lang.Process class. The java.io.OutputStreamWriter
class is used to convert a character stream into a byte
stream. Finally, the activity calls the write() method of the
java.io.OutputStreamWriter class to write the data to the
output stream.

AndroidHttpClient Class
The target activity obtains the instance of a HTTP client
using the newInstance() method of the
android.net.http.AndroidHttpClient class. Then, the
activity generates the HTTP request containing the data
with the constructor of the
org.apache.http.client.methods.HttpGet class. Finally, the
activity uses the execute() method of the
android.net.http.AndroidHttpClient class in order to
execute the request to the target host.

DownloadManager Class
The target activity obtains the instance of the
DownloadManager using the getSystemService() method
of the android.content.Context class. Then, the activity
generates the URI with the parse() method of the
android.net.Uri class, and the request containing the data
with the constructor of the
android.app.DownloadManager.Request class. Finally, the
activity registers the request to the download manager
using enqueue() methods in order to issue the request to
the target host.
 The target activity receives the data from the server. The
activity can use the classes described above.

 Furthermore, the source/target activity can use native
code to send/receive data to/from the Internet server.

4.4 Inter-Application Communication

Data-sharing methods based on native code, static fields,
singleton classes, and application classes are in the intra-
application communication category.

Native Code. Android application can call native code via
Java Native Interface (JNI). Native code is implemented in
a shared object (.so) file. In the native code, activities
within the same application can share data using global
variables.
 The source activity sets the data using the data setter
method. The target activity gets the data using the data
getter methods. We assume that the application has a
native library storing data in a global variable, and the
library has appropriate data setter and getter methods.

Static Fields. Fields with a static public modifier can be
accessed from any class. Activities within an application
can share data using these fields.
 The source activity sets the data to static public fields.
The target activity gets the data from the field. We assume
that the application has a class for data sharing, and the
class has a field with the static public access modifier. The
static field can be accessed from any activities within the
application in the form of [Class name].[Field name].

Singleton Classes. A singleton class is a class that
provides only one instance. Activities within an
application can share data via the instance of a singleton
class. A singleton class has a static field to store the
instance of the class itself. The getter of the singleton
instance is implemented as a static method. If the static
field is null, the getter generates the singleton instance and
returns it. Otherwise, the getter returns the existing
instance.
 The source activity gets the singleton instance by the
instance getter method.
Then, the source activity sets the data by the data setter
method. The target activity gets the singleton instance by
the instance getter method. Finally, the source activity gets
the data by the data getter method.

Application Classes. The android.app.Application class is
used as a fundamental class to share the status of the
application globally. The activities can share data via the
instance of this class. However, the original class has no
data setter or getter methods, and it is not convenient for
sharing of a large amount of data. Thus, we can extend the
class by adding appropriate data setter and getter method.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

6

The name of the extended class and the activity that uses
the class should be declared in the manifest file.
 The source activity obtains the instance of the class using
the getApplication() method of the android.app.Activity
class. The activity sets the data to the instance using the
data setter methods implemented by the developer.
 The target activity gets the instance of the class using the
getApplication() method. The activity gets the data from
the instance by data getter methods.

5. Exploring the Real World

We studied the data-sharing methods used in actual
Android applications. In Google Play [15], applications
are classified into 27 categories including games, business,
and social. We downloaded 81 applications using Nexus
One with Android OS 2.3.6. Then, we selected the top
three applications for each category. Table 2 shows the
number of applications that has the possibility to use each
data-sharing method.
 Data sharing based on intents was used in more than 90
percent of the applications. Activities in more than 80
percent of the applications had a possibility to interact
with other applications using preferences. The SQLite
database and Internet connection were used in about 70
percent of the applications. Many applications potentially
use data-sharing methods based on static fields or
singleton classes. These methods enable data-sharing with
the same application and are not critical by themselves.
However, they can make difficult to trace the information-
flow by combining with other methods. The rate of
applications that have native code was a mere of 13.6
percent. However, data sharing based on native code is
difficult to find, and these applications have the potential
to become most serious breaches.

Table 2: Data-sharing methods in Android applications
Method Number of application
Intent 74 (91.4%)
Remote method 35 (43.2%)
File 20 (24.7%)
Preferences 72 (88.9%)
SQLite database 53 (65.4%)
Internet server 57 (70.4%)
Native code 11 (13.6%)
Static fields 71 (87.7%)
Singleton classes 57 (70.4%)
Application classes 17 (21.0%)

6. Check Points for Detection

We describe ten possible data-sharing methods in four
categories in Section 4. This section shows how to find the
data sharing between activities in Android applications
based on Android APIs and access modifiers.

Table 3: Methods for intent manipulation
Type Method name
1 putExtra(), putExtras()
2 get[Datatype]Extra()
3 startActivity(),startActivityForResult()
4 sendBroadcast(), sendOrderedBroadcast(),

sendStickeyBroadcast()

6.1 Inter-Process Communication

Data-sharing methods in the IPC category can be found by
the Android APIs for intent manipulation.
Intents. Data sharing based on intents can be found by
methods that manipulate intents. There are 38 methods in
the classes android.content.Intent, android.content.Context,
and android.app.Activity. These methods can be
categorized as 1) methods to set the data to an intent, 2)
methods to get the data from an intent, 3) methods to
launch an activity, and 4) methods to broadcast an intent.
Table 3 shows these methods. Note that there are 29
variations of type 2 methods based on the type of target
data.
For example, the methods getStringExtra(),
getIntArrayExtra(), and getDoubleArrayListExtra() are
available.
Remote Methods. An activity launches a service using
startService() method in the android.content.Context class.
A connection between an activity and service is
established by the bindService() method in the same class.
Using these methods, we can find data sharing via a
remote method in a service.

6.2 File System

Data-sharing methods in the file system category can be
found by the Android APIs for file manipulation. We can
find the data sharing between activities of different
application by checking the operation mode of files. The
operation mode should be MODE_WORLD_READABLE
and MODE_WORLD_WRITABLE.

Files. Data sharing using the file system can be found
using the file manipulation methods. The
android.content.Context class has eight methods:
getCacheDir(), getDir(), getExternalCacheDir(),
getExternalFilesDir(), getFileStreamPath(), getFilesDir(),
openFileIutput(), and openFileOutput().

Table 4: Methods for preference manipulation
Type Method name
1 edit(), apply(), clear(), commit(), remove(), put[Datatype]()
2 contains(), get[Datatype]()
3 getSharedPreferences(), getPreferences(),

getDefarultSharedPreferences()
4 registerOnSharedPreferenceChangeListener(),

unregisterOnSharedPreferenceChangeListener()

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

7

Table 5: Methods for preference manipulation
Method name
execSQL(), getSyncedTables(), delete(), insert(), insertOrThrow(),
insertWithOnConflict(), markTableSyncable(), query(),
queryWithFactory(), rawQuery(), rawQueryWithFactory(), replace(),
replaceOrThrow(), update(), updateWithOnConflict()

Preferences. Data sharing based on preferences can be
found using methods that manipulate preferences. Twenty-
four methods belong to the classes
android.content.SharedPreferences.Editor,
android.content.Context,
android.preference.PreferenceManager,
android.app.Activity, and
android.content.SharedPreferences.
These methods can be categorized as 1) methods to set the
data to a preference, 2) methods to get the data from a
preference, 3) methods to get the instance of a preference,
and 4) methods to register or unregister a callback to be
invoked when a shared preference is changed. Table 4
shows these methods.

SQLite Database. Data sharing based on the SQLite
database can be found by the methods for database
operation. The android.database.sqlite.SQLiteDatabase
class has 15 methods, as shown in Table 5.

6.3 Resources

Data-sharing methods using the Internet server can be
found by the Android APIs for the Internet protocols.

Internet Server. Data sharing via an Internet server can be
found with the methods used for internet communication.
These methods are shown in Table 6.

Table 6: Methods for internet communication
Class name Method name
org.apache.http.impl.client.
 DefaultHttpClient

execute()

org.apache.http.protocol.
 HttpRequestExecutor

execute()

java.net.URL openConnection()
java.net.URL getContent()
java.net.URL openStream()
android.net.http.AndroidHttpClient execute()
android.app.DownloadManager enqueue()

6.4 Intra-Application Communication

Data-sharing methods in the IAC category cannot be
found by the Android APIs or access modifiers. The
methods based on native code require an information-flow
tracking technique or program analysis technique for
detection. We have to find field accesses and user-defined
setter/getter methods to find methods based on singleton
classes.

Native Code. Existence of native code can be found by
the declaration in the activity class. However, it is difficult
to check whether native code actually shares the data
without examining the native library. Thus, we need to use
information-flow tracking technique or program analysis
technique.

Static Fields. Data sharing based on static fields can be
found using access modifiers. Fields with static, public
static, protected static, and protected public static are
accessible from any class.

Singleton Classes. We can determine that a class is
singleton or not by examining the constructor. Data
sharing based on singleton classes can be found by access
to the fields and methods of the singleton class. We can
confirm that a class is singleton by checking the access
modifier of the constructor is private.

Application Classes. Data sharing based on an application
classes can be found by the getApplication() method in the
android.app.Activity class. This method returns the
instance of the application class.

7. Consideration

We show how to detect actual privacy breaches in
Android applications. One possible technique is to use a
data tainting technique. Tainting is a technique that tracks
sensitive data. TaintDroid [13] supports message-level
tracking, variable-level tracking, method-level tracking
and file-level tracking. Privacy breaches using data-
sharing methods in the IPC category can be detected by
message-level tracing. Breaches using a method in the file
system category can be detected by file level tracking.
Breaches using data-sharing method based on Internet
server can be detected as information-flow against a taint
sink. Breaches caused by data-sharing methods in the IAC
categories can be detected by variable level tracking.
However, TaintDroid modifies the native library loader to
ensure that applications can only load native libraries from
the firmware. Applications containing native libraries
cannot be executed on TaintDroid. The limitation may
reduce the flexibility of the development process of
Android applications.
 The other solution is to check the calls between
components of applications. An activity can send privacy-
sensitive data to another activity using an intent. In this
situation, the activity calls a method in other component or
an Android API to obtain the privacy-sensitive data, and
the activity calls another Android API to send a intent to
the target activity. The run-time enforcement system [2]
hooks method/API calls and blocks suspicious calls that

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

8

violate a security policy. The security policy is defined as
inclusive relation of secrecy labels and integrity labels. If a
component access to privacy sensitive data, the data is
assigned to the secrecy label of the component. Similarly,
if a component has a privilege to manipulate a resource,
the privilege is assigned to the integrity label. The call is
allowed if and only if caller's secrecy label is a subset of
callee's and caller's integrity label is a superset of callee's.
Static label information is stored in the manifest file of an
application. Dynamic modification of labels is also
supported. Floating label enables a caller component to
taint its labels to the callee component when the call is
allowed. Declassification capability dynamically removes
the specific elements in the secrecy label of component
and endorsement capability adds the elements to the
integrity labels. This system monitors calls between
components (activity, service, and component provider),
Android or Java APIs, and system calls, and we can check
the data-sharing based on inter-process communication,
file system, resources, and native code. However, data-
sharing based on static fields, singleton classes, and
application classes beyond the scope of monitoring. Thus,
the detection of these kinds of breaches requires a
variable-level tracking technique. One possible solution is
to add the variable-level tracking of TaintDroid to the

system. Another approach is to rewrite the byte code of
the target application [12]. For example, the date-sharing
based on static fields, singleton classes, and application
classes can be replaced with explicit data-sharing based on
intents.

8. Concluding Remarks

In this paper, we showed a wider range of possible
methods whereby data can be shared between activities in
Android applications, and how to find them. We newly
presented inter-application data sharing based on
preferences and SQLite database, intra-application data
sharing based on native code, static fields, singleton
classes, and application classes.
 Table 7 shows the assumptions required by each method,
category, and check points. Our detection method
identifies the points that could potentially cause privacy
breaches; however, it is not always true that the identified
points lead to malicious data sharing with other activities.
Thus, we should use existing framework to find actual
privacy breaches as discussed in Section 7. Our results
contribute to enhance the security enforcement mechanism
in the Android OS.

 Table 7: Summary of data-sharing methods
Methods Assumptions Categories Check points
Intent No IPC Android APIs
Remote method Service IPC Android APIs
File Storage and Permission File system & Resources Android APIs
Preference No File system Android APIs
Internet server Server and Permission Resources Android APIs
Native code No IAC Information tracking or program analysis
Static fields No IAC Access modifiers
Singleton classes No IAC Access modifiers and Field references
Application classes No IAC Android APIs

References
[1] Access. Access linux platform security policy framework.

http://alp.access-
company.com/files/ACCESS_WP_Security-web.pdf.

[2] J. Aljuraidan, E. Fragkaki, L. Bauer, L. Jia, K. Fukushima,
S. Kiyomoto, and Y. Miyake. Run-time enforcement of
information-flow properties on android. Technical report,
CyLab, Carnegie Mellon University,
http://www.cylab.cmu.edu/research/techreports/2012/tr_cyl
ab12015.html, 2012.

[3] Android Developers. Security and permissions.
http://developer.android.com/guide/topics/security/security.
html.

[4] Apple. Security overview.
http://developer.apple.com/library/ios/documentation/Securi
ty/Conceptual/Security_Overview/Security_Overview.pdf,
2012.

[5] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi,
and B. Shastry. Towards taming privilege-escalation attacks

on android. In Proc. of the 19th Annual Network &
Distributed System Security Symposium (NDSS2012), 2012.

[6] A. C. Myers. Jflow: Practical mostly-static information flow
control. In Proc. of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages
(POPL'99), pages 228−241, 1999.

[7] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software
Engineering and Methodology, 9(4):410−442, 2001.

[8] D. Chandra and M. Franz. Fine-grained information flow
analysis and enforcement in a java virtual machine. In Proc.
of the 23rd Annual Computer Security Applications
Conference (ACSAC2007), pages 463−475, Dec. 2007.

[9] A. Chaudhuri. Language-based security on android. In Proc.
of the ACM SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security (PLAS'09), pages 1−7,
New York, New York, USA, 2009. ACM Press.

[10] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace:
Efficient _flow tracing with dynamic binary rewriting
singapore-mit alliance. In Proc. of the 11th IEEE

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

9

International Symposium on Computers and
Communications (ISCC2006), pages 7−12, 2006.

[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winand.
Privilege escalation attacks on android. In Proc. of the
International Information Security Conference (ISC2010),
Lecture Notes in Computer Science 6531, pages 346_360,
2010.

[12] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen. I-
ARM-Droid: A rewriting framework for in-app reference
monitors for android applications. In Proc. of Mobile
Security Technologies 2012 (MOST2012), 2012.

[13] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P.
Mcdaniel, and A. N. Sheth. Taintdroid : An information-
flow tracking system for realtime privacy monitoring on
smartphones. In Proc. of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI'10),
2010.

[14] W. Enck, M. Ongtang, and P. Mcdaniel. On lightweight
mobile phone application certification. In Proc. of the 16th
ACM Conference on Computer and Communications
Security (CCS'09), pages 235−245, 2009.

[15] Google Play. https://play.google.com/.
[16] M. Grace, Y. Zhou, Z. Wang, X. Jiang, and O. Drive.

Systematic detection of capability leaks in stock android
smartphones. In Proc. of the 19th Annual Network &
Distributed System Security Symposium (NDSS2012), 2012.

[17] V. Haldar, D. Chandra, and M. Franz. Dynamic taint
propagation for java. In Proc. of the 21st Annual Computer
Security Applications Conference (ACSAC2005), pages
303−311, 2005.

[18] C. Hammer, J. Krinke, and G. Snelting. Information flow
control for java based on path conditions in dependence
graphs. In Proc. of the IEEE International Symposium on
Secure Software Engineering (ISSSE2006), pages 87−96,
2006.

[19] K. Luo. Using static analysis on android applications to
identify private information leaks. Technical report, Kansas
State University, 2011.

[20] C. Mann and S. Artem. A framework for static detection of
privacy leaks in android applications. In Proc. of the 27th
Symposium on Applied Computing (SAC2012), pages
240−245, 2012.

[21] S. McCamant and M. D. Ernst. Quantitative information-
flow tracking for c and related languages. Technical report,
Massachusetts Institute of Technology, 2006.

[22] Microsoft. App capability declarations.
http://msdn.microsoft.com/en-
us/library/windows/apps/hh464936.aspx.

[23] Microsoft. App contracts and extensions.
http://msdn.microsoft.com/en-
us/library/windows/apps/hh464906.aspx.

[24] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In Proc. of the 12th
Annual Network and Distributed System Security
Symposium (NDSS2005), 2005.

[25] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Scandroid:
Automated security certification of android applications.
Technical report, University of Maryland, 2009.

[26] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E.
Witchel. Laminar: Practical fine-grained decentralized
information _ow control. In Proc. of the 2009 ACM
SIGPLAN conference on Programming language design and
implementation (PLDI'09), pages 63−74, 2009.

[27] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T.
Tanaka. A small but non-negligible flaw in the android
permission scheme. In Proc. of the 2010 IEEE International
Symposium on Policies for Distributed Systems and
Networks (Policy2010), pages 107−110, 2010.

[28] A. Sjöström, K. Fukushima, S. Kiyomoto, W. Shin, and T.
Tanaka. Security analysis of access linux platform. IJCSNS
International Journal of Computer Science and Network
Security, 10(5):12−18, 2010.

[29] A. Slowinska and H. Bos. Pointless tainting? evaluating the
practicality of pointer tainting. In Proc. of the 4th ACM
European conference on ComputerCommunications
(EuroSys'09), pages 61−74, 2009.

[30] G. Smith. Principles of secure information flow analysis.
Advances in Information Security, 27(5):291−307, 2007.

[31] Symantec. Symantec reports increase in collaborative
malware.
http://www.internetbusiness.co.uk/2011/03/02/symantec-
reports-increase-in-collaborative-malware/

[32] A. Yip, X. Wang, N. Zeldovich, and K. M. Frans.
Improving application security with data flow assertions. In
Proc. of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP'09), pages 291−304, 2009.

[33] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on android).
In Proc. of the 4th International Conference on Trust and
Trustworthy Computing (TRUST2011), pages 93−107,
2011.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

10

Kazuhide Fukushima received his M.E. in
Information Engineering from Kyushu
University, Japan, in 2004. He joined KDDI
and has been engaged in the research on
digital rights management technologies,
including software obfuscation and key-
management schemes. He is currently a
researcher at the Information Security Lab.

of KDDI R&D Laboratories Inc. He received his Doctorate in
Engineering from Kyushu University in 2009. He received the
IEICE Young Engineer Award in 2012. He is a member of
Institute of Electronics, Information and Communication
Engineers, the Information Processing Society of Japan, and
ACM.

Lujo Bauer is an Assistant Research
Professor in CyLab and the Electrical and
Computer Engineering Department at
Carnegie Mellon University. He received his
B.S. in Computer Science from Yale
University and his Ph.D., also in Computer
Science, from Princeton University. Lujo's
research interests span many areas of

computer security, and include building usable access-control
systems with sound theoretical underpinnings, developing
languages and systems for run-time enforcement of security
policies on programs, and generally narrowing the gap between a
formal model and a practical, usable system.

Limin Jia is a Research Systems Scientist in
CyLab at Carnegie Mellon University. She
received her B.E. degree in Computer
Science and Engineering department at the
University of Science and Technology of
China. She received her Ph.D. in Computer
Science from Princeton University. Her

research interests include programming languages, language-
based security, logic, and program verification.

Shinsaku Kiyomoto received his B.E. in
Engineering Sciences, and his M.E. in
Materials Science, from Tsukuba University,
Japan, in1998 and 2000, respectively. He
joined KDD (now KDDI) and has been
engaged in the research on stream cipher,
cryptographic protocol, and mobile
security .He is currently a senior researcher

of the Information Security Lab. in KDDI R&D Laboratories,
Inc. He received the Dr. degree in engineering from Kyushu
University in 2006.He was a visiting researcher of the
Information Security Group, Royal Holloway University of
London from 2008 to 2009. He received the Young Engineer
Award from IEICE in 2004.He is a member of the Physical
Society of Japan and Institute of Electronics, Information and
Communication Engineers.

Yutaka Miyake received the B.E. and M.E.
degrees of Electrical Engineering from Keio
University, Japan, in 1988 and 1990,
respectively. He joined KDD (now KDDI) in
1990, and has been engaged in the research
on high-speed communication protocol and
secure communication system. He received
the Dr. degree in engineering from the
University of Electro-Communications,

Japan, in 2009. He is currently a senior manager of Information
Security Laboratory in KDDI R&D Laboratories Inc. He
received IPSJ Convention Award in 1995 and the Meritorious
Award on Radio of ARIB in 2003.

