
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

16

Manuscript received August 5, 2012
Manuscript revised August 20, 2012

Towards Standardization and Interoperability of Database
Backups

 Namedin Pereira Teles Júnior Roberto Souto Maior de Barros

 Federal University of Amazonas (UFAM), Brazil Federal University of Pernambuco (UFPE), Brazil

Summary
The current business model of modern companies is
increasingly dependent on information technology. Thus,
it is necessary to keep security copies of the data (backup)
which may be used to restore them after a data loss event.
On the other hand, this dependence encourages strong
competition among suppliers and this leads to new
releases of computing commodities, seeking competitive
advantages. In this context, it is usual for corporations to
deploy more than one DBMS to store their data, creating
heterogeneous environments, and creating difficulties for
data interoperability. Current DBMSs use proprietary
backup formats and this means that other tools cannot
access their data. This work describes the development of
BKPML, an XML-based language to standardize backup
files. It is aimed at removing this dependency of the
original environment of the data, allowing the
manipulation of such files by any DBMS or tool, making
systems integration and data interoperability easier. A
prototype tool, called BKPML Manager, was also
developed to support the use of BKPML.

Key words:
Interoperability, standardization, data backup, XML,
DBMS,.

1. Introduction

Information systems are becoming the key element of the
innovation process capable of decreasing, clustering and
removing stages, and pushing client interaction to higher
levels of quality, service and standardization, as well as of
accurately detecting new trends. The current needs of
corporations to adopt systems may occur according to
their needs or according to the increasing demand for new
products supported by modern technologies with
innumerable competitive market advantages.

This scenario of increasing technological evolution and
business needs shows how corporations are adopting
several information systems to serve sectors such as
management, finance, and others. Often, different systems

are supported by different Database Management Systems
(DBMS), developed by different suppliers, and using
different technologies. Files created by such systems
usually block information, avoiding data access by other
systems, hindering and even making the interoperability of
the data impossible, leading to chaotic heterogeneous
environments [14].

This work presents the Backup Markup Language
(BKPML), an open structure for DBMS data backup,
based on XML [23], proposed as an alternative to face
difficulties related to data interoperability of different
DBMS and to proprietary format issues. This proposed
language aims to overcome the dependency on the original
environment of objects and data stored in specific
DBMSs; it can be handled by any software, not
necessarily a DBMS, and can also be easily converted to
secondary formats such as CSV [6], JSON [7], XML,
YAML Ain’t Markup Language (YAML) [5], and XLS.

To support this proposal, we also developed BKPML
Manager, a prototype tool that makes it easier the setting,
generation, restoring, and migration of data and object
backups using the BKPML format, to and from several
DBMSs. To avoid incompatibility among systems, the
BKPLM Manager tool was developed to be accessed
online, using a browser such as Internet Explorer [9] or
Mozilla Firefox [11]. Tests in a real environment were
carried out to observe tool functionalities and performance,
including backup, restore and data migration using
BKPML, as well as its acceptability by possible users.

The rest of this paper is organized as follows: Section 2
describes the BKPML language as well as its taxonomy;
Section 3 presents the results of the experiments using the
BKPML Manager tool in a real environment; and, finally,
Section 4 summarizes our conclusions and proposes future
work.

2. BKPML

The Backup Markup language (BKPML) is an electronic
language based on XML designed to eliminate the
dependency on proprietary formats used in database

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

17

backups. BKPML, together with the BKPML Manager
tool, makes it possible that backup files are handled by
any software, including DBMSs, as well as permitting
their conversion to other formats. Thus, BKPML eases
data handling according to the users’ needs.

Providers of DBMSs such as Oracle [13], SQL Server [10],
MySQL [12] and others implement data storage and
backups in their own platforms, using proprietary formats.
Therefore, data transferred to backup files can only be
restored to their original environments. The BKPML file
format enables independence of application, making the
manipulation of backup files in other environments
possible.

Restoring or migrating data from backup files to several
DBMSs contributes to cost reduction, because the format
standardization makes it possible to restore them directly
to the target DBMS or application. In addition, it is
important to emphasize that previous proposals for data
standardization (for example [14]) are restricted to objects
of type table. On the other hand, in addition to the table
objects, BKPML supports many other types of objects:
view, index, grant, trigger, and method.

2.1 BKPML Taxonomy

The BKPML taxonomy defines the rules used to form
BKPML documents, the required elements and data used
to represent objects in this structure, as well as the
relationships between each element resulting in a final
object.

This taxonomy is composed by a dictionary, which
provides standard definitions to represent the database
objects, and data, following a hierarchical structure.

The BKPML taxonomy was written using XML Schema
[24], which is another XML-based language that permits
defining rules for document validation.

The development of the general structure of the language
and the relationships between each one of the objects were
based on the organization model of the DBMS. The first
element of this structure, the root element, was named
BKPML. This element keeps general information of
BKPML backup files such as file name and date of
generation.

SchemaDB is the second element of BKPML and is used
to save information related to the source DBMS and the
schema of recoverable objects. The information or
attributes that compose this element are the schema name
and the original DBMS name. The element Objects is
responsible for keeping all objects supported by BKPML,

which are Table, Index, View, Grant, Trigger and Method.
Figure 1 presents the hierarchical structure of BKPML.

Fig. 1 BKPML Structure.

The TableObject element is responsible for keeping data
information and metadata of tables. This element is
composed by one attribute and two main elements. The
name attribute stores the name of the table. The element
Columns is responsible for keeping information related to
the table structure such as: column_names, data_types,
column_sizes, etc. The element Records is responsible for
storing the data from a copied table. Each tuple (row) of
the copied table is represented as a JSON object, which
supports easy and fast information recovering and
processing.

The IndexObject element is responsible for keeping basic
data that composes the standard structure of this object.
The syntax of this object may vary from one DBMS to
another. So, the elements of that structure were based on a
basic syntax, common to any DBMS. This element is
composed by two attributes and three elements. The
attributes kind and type describe the kind of index to be
created (index, primary, unique) and the indexing method
(Btree, Harsh, Rtree), respectively. The elements
index_name, index_table and index_field keep basic
information of this object.

The ViewObject element adopts a very simple syntax and
is composed of two elements: the name element represents
the name of the copied view and the query element stores
the query that will produce the view results when executed.

The GrantObject element defines privileges of object
access for a user or group of users. The structure of this
object is composed of three elements: privilege, object and
user. The privilege element stores the privileges and
supports more than one privilege. The object element is
the object associated to the privilege. The element user
keeps the name of the user or group who receives the
privilege.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

18

The TriggerObject element keeps basic data needed to
create a trigger, associated to a table, to be executed before
or after an event. The structure of this object has five
elements: name is the name of the trigger; time is the time
of the trigger execution; event is the event associated to
this trigger; object is the table associated to the trigger;
and body is the command or block of commands that will
be executed by the trigger.

The MethodObject element refers to two structures:
function and procedure. It is composed of four elements:
name, parameter, result, and body. The name element is
the name of the object to be kept by the structure; the
parameter element is related to the parameters of the
object; the result element refers to the result of the
method; and the body element refers to the commands that
implement the method. In addition to these elements, this
structure has the attribute type which records the object
type: function or procedure.

The main goal of BKPML is to be capable of restoring and
migrating backup files to any DBMS, irrespective of
origin. Migrating or restoring backup data for
heterogeneous DBMSs helps to reduce the costs and time
involved in these processes. It will not be necessary to
manipulate these files in their original DBMS because
they can be handled directly by any relational DBMS
thanks to the standardization of these files. An example of
the BKPML document format is presented below.

Fig. 2 Example of BKPML.

The main advantages regarding the use of BKPML are:

 Independence and portability: data do not belong
to any specific vendor or technology, they can be
handled by any DBMS or software;

 Reduction of time and costs: BKPML proposes
reduction of time and costs during these
processes through the elimination of one phase of
the process, which is the data restoration in its
original environment; and

 Standardization: since BKPML is an XML based-
language, there is no dependence on any
technologies besides keeping an open structure
shared by other users and also adaptable to their
needs.

Further information on the development of the BKPML
taxonomy as well as on all its forming objects are
available [20]. Additionally, the complete code of the
BKPML taxonomy can also be retrieved [21].

3. BKPML Manager

In order to better evaluate the advantages of BKPML, we
developed a prototype tool to manage the main
functionalities supported by the language, which are:
generating backups using the BKPML structure, restoring
or migrating these files directly to many DBMSs, and
converting these files to other popular formats. In addition,
it is important to emphasize that this tool eases the use of
these functionalities through a simple user interface.

To use these functionalities, we implemented a module to
maintain a simple database with basic information needed
to correctly generate the BKPML structure and its objects.
The main tables required to use the functionalities are:
DBMSs, storage, and, for each DBMS, mapping, types
and objects.

The DBMS table contains the list of all DBMSs that can
be used in the tool. The storage registration contains the
list of all repositories that can be used to store BKPML
files and each of them is classified as local or cloud. For
the local type, the files are stored in local servers. The
cloud type uses the Simple Storage Service (S3) of
Amazon Web services [1] to store the files. The mapping
registration is used to inform the tool where to search for
the object metadata of each DBMS. The registration of
types and objects of each DBMS are used to validate data
in BKPML files.

3.1 Architecture

The BKPML Manager tool was built using a web
architecture composed by a web graphics client
responsible for sending requests to the application server

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

19

(Servlet Container) Tomcat 6.0 [2] and communicating
with a MYSQL 5.0 database using the hibernate 3.0 [8]
framework, responsible for managing the access requests
of BKPML Manager data.

As is usual in web applications, we decided to use the
Model View Controller pattern (MVC) [3] to organize the
architecture of the tool in layers, facilitating its use and
maintenance. The model layer manages all object models
(bean classes) used by BKPML. As BKPML Manager
uses the hibernate framework, these models are known as
entity classes.

The view layer is responsible for keeping and managing
input and output screens data. This layer uses Java Server
Page (JSP) [17] technology and Hypertext Markup
Language (HTML) [22] to format and present data,
respectively, and JavaServer Pages Standard Tag Library
(JSTL) [18] in the interface between the control and view
layers.

The control layer is responsible for implementing the
functionalities of backup, restoration, transformation, and
data migration. In the development of this layer we used
the project patterns Decorator [4], Strategy [4], and Data
Access Object (DAO) [19] to organize processes and
reuse functionalities when necessary. Decorator was
adopted to make the BKPML backup file generation
process easier to use; Strategy was used in the process of
data transformation for secondary files; and DAO was
used to standardize the data access. The BKPML Manager
is organized in three layers as presented in Figure 3.

Fig. 3 BKPML manager architecture

The application layer contains the main methods
responsible for the execution of processes for backup files
generation and data restoration to DBMS or secondary
files. Each process has its life cycle, which are the steps
needed to conclude an activity.

To carry out a backup, the architecture executes the
following steps: Request data (DBMS), Generate BKPML,
Encrypt, Compress, Generate Hash, and Store. The
restoration process executes the following steps: Search
for file, Validate Hash, Unpack, Decrypt, and Restoration.
Notice that Restoration can be done to any DBMS or to
secondary files.

The Request Data step begins with a request from a
DBMS and contains methods that permit executing the
query, insert, update and delete commands, as well as
connection and data transactions for several DBMSs.

The Generate BKPML Step contains methods for
generation, validation and manipulation of BKPML files.
The methods Encrypt and Decrypt belong to the Cipher
process: these methods use the Triple-DES algorithm [16]
to carry out the encryption step. The methods Compress
and Unpack belong to the Compress step: these methods
were developed using the java.util.zip package of Java.

The methods GenerateHash and ValidateHash belong to
the Hash process, which is responsible for the extraction
and validation of hash in BKPML files. Finally, the
Storage process has methods to carry out data storage as
defined by the user and is prepared to store and search
files in local machines, in a network, and in clouds.

3.2 Registration and Execution of Data Backups

The first step needed to start a data backup process is to
register all backup actions for the given objects. Then, the
execution screen for data backup must be filled in with a
list of all available backups to be executed. All settings of
a data backup are carried out in the action registration. In
other words, an action is a backup not executed, since it
has all the information needed for that. The action
registration requires information on the DBMS and objects
to be copied, data repository, date and time of execution,
and the frequency of execution of the backup. In the case
of table objects, it is also necessary to provide a query for
data extraction. After that, data registration can be
confirmed. Figure 4 presents the action registration screen.

Fig. 4 Backup action registration screen

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

20

The action registration screen is not responsible for the
execution of the backup, only for its registration. When
the registration of an action is completed, it is sent to a list
of backups that can be executed by the data backup
functionality. The execution screen contains a list of
actions that can be executed. The execution starts when an
execution key available for each list element is selected.
When these actions are carried out they are submitted to
the processing cycle of backup according to the next steps.
The generate BKPML process requires data information
and object metadata and then generates a BKPML
structure instance according to the given taxonomy. After
that, encrypt and data compression processes are executed.
Finally, the hash of the final file is extracted and the file is
stored.

3.3 Restoration and Transformation of BKPML Files

The process of data restoration is responsible for
retrieving the data of an existing BKPML file for some
DBMS or converting them into secondary files. It is
important to notice that this functionality is designed to
manipulate BKPML files of table objects only; the other
types of objects are handled by the complex data
migration functionality. The screen used in this task
contains the list of all previous backups carried out by the
tool.

To carry out the data restoration for a DBMS, the user
must choose a specific DBMS and select the transfer
option in the format menu. After that, the execution button
of the item must be pressed to start the process. The
transformation process follows the same steps; the only
difference is the chosen format. The data restoration and
transformation screen is presented in Figure 5.

Fig. 5 Data restoration and transformation screen

3.4 Complex Data Migration

The functionality of complex data migration is used to
deal with complex objects. In the current implementation
of the tool, the complex objects require visual analysis and
manual structure editing before they can be restored. The
tool considers all objects to be complex, except table.

Thus, the following objects are complex: view, index,
permission, trigger, and method.

The migration screen works as an editor that permits
adjusting the structure of the complex objects to the target
DBMS. This screen implements the carry objects
functionality, responsible for transforming objects kept in
the BKPML files to the standard SQL syntax, except
objects of the type method and trigger. For these objects,
their metadata will be converted to a specific syntax
hardcoded in the tool.

3.5 Results

The tests carried out using the BKPML Manager tool were
set in a real environment provided by the Knowhow
Consulting Company in the city of Manaus, Brazil.

This first phase of tests was aimed at finding and
correcting errors in the basic registration module
functionalities, as well as measuring the processing time
taken by these functionalities using data provided by the
company. Based on the results of this first phase of tests,
the basic registration functionalities were considered
successful and the processing time was considered
adequate.

Because the first phase of tests used a comparatively small
dataset, it was necessary to test the main functionalities of
the tool with larger datasets. For that purpose, the
company provided a machine with the following
configuration: Intel Dual Core 2.1 GHz processor, with 2
GB of RAM and a 200 GB HD. The environment to
execute the tool included a Postgres 8.4 DBMS [15]. After
that, we wrote a program to insert random data in the test
table. The BKPML Manager tool was executed to generate
backup files of the stored data after each execution of this
program.

Based on the results of these tests, we concluded that the
BKPML backup file generation was comparatively fast, i.e.
the performance of the tool in the backup of large files
was good.

However, the time taken in the restoration process was
much slower, but still acceptable. Based on the results, it
was possible to estimate that, for 1 Gigabyte of
information (approximately 24,000,000 records), the
BKPML Manager tool would take about 17 hours to
process data restoration, which is not very efficient.
Nevertheless, it is important to notice that the results were
obtained in a low-end configuration computer; using a
more powerful configuration would probably lead to much
better results.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

21

4. Conclusions and Future Work

This work proposed BKPML, an open format standard
based on XML, which was developed to support
independence of platform in database backups, allowing
for its manipulation by several DBMSs. More specifically,
this format supports data migration projects.

After developing this language, a prototype tool to
validate BKPML files, named BKPML Manager, was
implemented. BKPML Manager was developed to
generate and validate backup files written in the BKPML
format as well to restore, transform and migrate data to
different DBMS platforms or to secondary files.
Additionally, this tool allows data storage in the clouds
using Amazon’s S3 service to store data.

After the BKPML Manager development, tests were
carried out to measure the performance of the tool in many
of its functionalities. Even though this is the first prototype
developed, and despite the fact that there is certainly much
room for improvements, its main functionalities, namely
backup, transformation, restoration and migration of
complex objects, presented successful results.

The main contributions of this work are:

 The proposal of an open format to standardize
database backups;

 The development of a prototype tool to support
the BKPML format and provide backup projects
and data migration with greater flexibility
regarding data manipulation in different
platforms;

 To make portability and data manipulation easier
by importing and exporting backup data using
secondary files; and

 To provide an XML structure and a tool which
are not restricted to objects of type table.

Although the results of this work are encouraging, further
research is needed. Possible future work includes:

 Increasing the scope of BKPML to deal with
more database objects such as roles and
packages;

 Further developing the XML structure to store
mapping, syntax, objects, and DBMS object
properties, reducing the number of registrations
needed to use it in practice;

 Adding a functionality to break very large
BKPML files into smaller files, to make reading
operations faster and avoid buffer overflow.
XLink [25] could possibly be used to implement
such functionality.

References

[1] Amazon inc. (2012). Amazon simple storage service
(Amazon S3). http://aws.amazon.com/pt/s3, accessed
August/2012.

[2] Apache inc. (2010). Tomcat website.
http://tomcat.apache.org, accessed August/2012.

[3] Downey, T. (2007). Web development with java, using
hibernate, JSPs and Servlets. British Library, Miami-FL,
USA.

[4] Gamma, E., Johnson, R., Vlissides, J., and Helm, R. (1995).
Design patterns elements of reusable object-oriented
software. Addison Wesley.

[5] IETF org. (2001). Internet message format.
http://www.ietf.org/rfc/rfc2822.txt, accessed August /2012.

[6] IETF org. (2005). Common format and MIME type for
comma-separated values (CSV) files.
http://tools.ietf.org/html/rfc4180, accessed August/2012.

[7] IETF org. (2006). The application json media type for
javascript object notation (JSON).
http://tools.ietf.org/html/rfc4627, accessed August/2012.

[8] Jboss inc. (2012). Relational persistence for java and .NET.
http://www.hibernate.org, accessed August/2012.

[9] Microsoft inc. (2010). Internet explorer official website.
http://ww.microsoft.com/brasil/windows/internet-explorer,
accessed August/2012.

[10] Microsoft inc. (2011). SQLServer website.
http://msdn.microsoft.com/pt-br/sqlserver/default, accessed
August/2012.

[11] Mozilla org. (2010). Firefox reference and download.
http://br.mozdev.org, accessed August/2012.

[12] Oracle inc. (2011). MYSQL official website.
http://www.mysql.com, accessed August/2012.

[13] Oracle inc. (2011). Oracle official website.
http://www.oracle.com/br/index.html, accessed
August/2012.

[14] Oumtanaga, S., Lambert, K. T., Tiemoman, K., Pierre, T.,
and Florent, D. N. (2007). Use XML format like a model of
data backup. International journal of computer and
information engineering, vol.33, pp.170-175.

[15] PostgreSQL org. (2011). PostgreSQL official website.
http://www.postgresql.org, accessed August/2012.

[16] RSA lab. (2012). What is triple-DES?, RSA laboratories.
http://www.rsa.com/rsalabs/node.asp?id=2231, accessed
August/2012.

[17] Sun inc. (2010). Java server pages website.
http://java.sun.com/products/jsp, accessed August/2012.

[18] Sun inc. (2010). Javaserver pages standard tag lib website.
http://java.sun.com/products/jsp/jstl/reference/docs/index.ht
ml, accessed August/2012.

[19] Sun inc. (2011). DAO reference.
http://java.sun.com/blueprints/corej2eepatterns/Patterns/Dat
aAccessObject.html, accessed August/2012.

[20] Teles Jr., N. P. (2011). Backup markup language (BKPML):
uma proposta para padronização e interoperabilidade de
backup de dados. Master’s thesis, Universidade Federal de
Pernambuco, Recife, Pernambuco, Brasil. In Portuguese.
http://www.scribd.com/doc/48468544, accessed
August/2012.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

22

[21] Teles Jr., N. P. (2011). XML schema of BKPML.
http://www.scribd.com/doc/47836213, accessed
August/2012.

[22] W3C org. (2010). Hipertext markup language website.
http://www.w3.org/MarkUp, accessed August/2012.

[23] W3C org. (2011). Extensible markup language.
http://www.w3.org/XML, accessed August/2012.

[24] W3C org. (2011). XML schema.
http://www.w3.org/XML/Schema, accessed August/2012.

[25] W3C org. (2012). XLink reference.
http://www.w3.org/TR/xlink, accessed August/2012.

 Namedin T. Pereira Jr. received
his B.Sc. degree in Systems Analysis
from Fundação Centro de Análise
Pesquisa e Inovação Tecnológica
(FUCAPI) in 2006, his Database
Project and Management
Specialization from Universidade do
Norte (UNINORTE) in 2009, his
M.Sc. degree in Computer Science

from Universidade Federal de Pernambuco (UFPE) in 2011, and
he is now a Ph.D. student at Universidade Federal do Amazonas
(UFAM), all in Brazil. He also holds Systems Analyst and
Professor positions at FUCAPI since 2004. His main research
areas are databases, interoperability, cloud computing and
distributed software development.

Roberto S. M. Barros received his
B.Sc. and M.Sc. degrees in Computer
Science from Universidade Federal
de Pernambuco (UFPE), Brazil, in
1985 and 1988, respectively, and his
Ph.D. degree in Computing Science
from The University of Glasgow,
Scotland (UK) in 1994. From 1985 to
1995 he worked as systems analyst at

UFPE and since 1995 he is a full time Professor and Researcher,
also at UFPE. His main research areas are software engineering,
databases, programming languages, XML, and pattern
recognition.

