
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

28

Manuscript received August 5, 2012
Manuscript revised August 20, 2012

A Frame Packing Mechanism Using PDO Communication
Service within CANopen

Minkoo Kang† and Kiejin Park††

Division of Industrial & Information Systems Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea

Summary
The utilization of the CANopen-based network needs to be
minimized in order to improve the communication performance
such as worst-case response time of CANopen messages. To
achieve this end, the messages should be packed together as
many as possible so that the message frame overhead will be
decreased. This paper suggests a frame packing mechanism using
an object dictionary (OD) and a process data object (PDO)
communication service within CANopen. The performance of
this mechanism is evaluated using SAE benchmark data, and
from this it is seen that the network utilization of CANopen
decreased by about 10% in comparison to the result of the
previous research, called ‘piggyback’ mechanism. Furthermore,
the worst-case response times of the CANopen messages are
similar to or less than the previous research.
Key words:
CANopen, Controller Area Network (CAN), Network Utilization,
Process Data Object (PDO), Worst-Case Response Time
(WCRT)

1. Introduction

To support development of an embedded control system
such as factory automation and automotive electronics at
the application layer with data link layer and physical
layer that are used in controller area network (CAN, refer
to Fig. 1) [1], [2], several new protocols were suggested
such as CANopen [3], CAN application layer (CAL) [4],
and DeviceNet [5]. Especially, CANopen protocol is
developed to provide a solution for the hard-ware
dependency problems that occur during the
implementation of CAN-based applications. CANopen
protocol allows different types of devices such as
electronic control units (ECUs), sensors, and actuators, all
using the CAN and CAL services, to communicate and to
interoperate with each other using a concept called
profiling, which leads to a reduction in the development
time of CAN-based applications. The Object Dictionary
(OD), the Service Data Object (SDO) and the Process
Data Object (PDO) were defined for the profiling concept
in CANopen [6], [7], as is seen in Fig. 1.
Both CANopen and CAN are event-triggered protocols,
which provide a high degree of flexibility in their
communication in comparison to time-triggered protocols
[8], but they have the disadvantage of having a

nondeterministic response time for their messages [9], [10].
In order to resolve this drawback, there has been previous
research where the worst-case response time of the CAN
message is calculated [11], [12]. These researches have
been applied to most of studies on the timing analysis of
the CAN-based application system.

Fig. 1 CAN and CANopen protocols in the ISO/OSI reference model.

In order to improve the network utilization of the CAN
bus and to reduce the worst-case response time of the
CAN message, the transmission time of CAN message
should be minimized, which in turn minimizes the
overhead for transmission of CAN messages. The
overhead, as used here, refers to additional bits from the
bit stuffing mechanism and all those parts of the CAN
message frame except for the data field, e.g. the arbitration
field, control field, etc (see Fig. 2).

Fig. 2 Standard format of CAN message frame.

Nolte et al. [13] proposed a mechanism to minimize the
number of stuffing bits of the CAN message frame by
performing XOR operations on the bit mask, such as

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

29

‘010101…’ and on the CAN message frame before the bit
stuffing. However, the problem of priority inversion
occurs in the case of the XOR operations on the bit mask
and on the arbitration field in the CAN message frame. In
our previous work [14], advanced bit stuffing (ABS) has
been presented, which prevents this priority inversion and
minimizes the number of stuffing bits. However, this
mechanism only operates with special CAN controllers
that support the ABS mechanism.
Another way to minimize the overhead of the CAN
message frame is to pack as many signal data as possible
into one frame, commonly called frame packing. Several
studies of frame packing problems have been proposed for
CAN communication systems. Sandström et al. [15]
suggested frame packing heuristics for CAN network, but
the schedulability of the solution is not considered.
Bandwidth-Best-Fit decreasing (BBFd) and Semi-
Exhausive (SE) heuristics have been proposed in [16].
However, SE heuristic cannot be applied realistic problem
size.
Packing the CAN messages directly on to the data link
layer is inefficient because the receiver nodes must update
their ID list of the messages to be received and an
additional mechanism for splitting the received data is
needed. Alternatively, the data to be transmitted within
CANopen can be packed into the PDO efficiently by using
the operations of inserting, deleting, and modifying the
text in the OD. As another advantage, the PDO can also
automatically be converted into the CAN message frame
on the data link layer [7].
This paper presents a frame packing mechanism that uses
the OD and the PDO communication service within
CANopen. Section II describes the several communication
services in CANopen. Next, the PDO packing mechanism
is presented with the system model in Section III. In
Section IV, the performance of the mechanism is analyzed,
and finally, Section V presents the conclusion.

2. The Communication Services in CANopen

The OD is similar to a lookup table that contains all of the
parameters for the network configuration and its operation.
As can be shown in Table 1, the 32-bit index range is
divided up into sections that structure the OD and these
OD entries in each section are stored in the CANopen
nodes as an electronically readable file format, namely an
electronic data sheet (EDS) or a device configuration file
(DCF). The index range from 0001h to 0FFFh is used to
define the data types, and the range from 1000h to 1FFFh
contains the parameters associated with the CANopen
communication. The index range from 2000h to 5FFFh is
used for the storage of data for a particular device type
that exists outside of any CANopen standard.

Table 1: The Object Dictionary Index Range

Index Range Description

0000h Reserved

0001h – 0FFFh Data Types

1000h – 1FFFh Communication Entries

2000h – 5FFFh Manufacturer Specific

6000h – 9FFFh Device Profile Parameters

A000h – FFFFh Reserved

The SDO allows for read/write access to all of the OD
entries of all the ECUs that are connected to the network,
so it is useful for the network initialization. However, the
SDO has many communication overhead fields, making
the exchange of real process data inefficient. Thus, the
PDO is defined in CANopen in order to minimize the
communication overhead and to allow for the best usage
of the available network bandwidth. Before CANopen
messages on the application layer such as the SDO and the
PDO are processed, they turn into the CAN messages on
the data link layer. The CAN message ID is used in the
CAN when determining whether an ECU receives a sent
message or not. CANopen, on the other hand, can
determine if an ECU receives a sent message by the OD
index, which can be referred to using the PDO ID [7].

Table 2: The OD Index Range of Parameters for the PDO
Communication Service

Index Range Description

1400h – 15FFh RPDO Communication Parameters

1600h – 17FFh RPDO Mapping Parameters

1800h – 19FFh TPDO Communication Parameters

1A00h – 1BFFh TPDO Mapping Parameters

The PDO communication service allows several data to be
packed into one PDO, and this PDO is further classified as
either a Transmit PDO (TPDO) or a Receive PDO
(RPDO). CANopen supports up to 127 ECUs in the
system and each ECU can use up to four TPDOs and four
RPDOs. A problem exists when one node requires more
than four TPDOs or four RPDOs, but this problem can be
resolved by reducing the maximum number of ECUs that
the system can support and by assigning a CAN ID to each
PDO manually. There are communication parameters and
mapping parameters for the PDO communication service,
which are placed in the OD index range from 1400h to
1BFFh (see Table 2). For example, the TPDO mapping
parameter of ECU 5 is located at the index 1A04h and the
RPDO communication parameter of ECU 7 is located at
the index 1406h. The communication parameter has values
for the communication configuration, including the PDO
ID, and the mapping parameter has the information of the

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

30

data packed into the PDO. Thus, carrying out the PDO
packing means inserting, deleting, and modifying the PDO
mapping parameter within the OD.
Fig. 3 shows an example of the PDO packing that packs
five data into one PDO. The five PDO mapping
parameters are stored at the index 1A04h in the OD. At the
sub-index 0, the number of data that exist as mapping
information (i.e. 5) is stored, and the 5 packs of data of the
mapping information are stored at the sub-index from 1 to
5. The mapping information has a 32-bit length. The upper
16 bits and the following 8 bits are the OD index and the
sub-index where the data is stored, respectively. The
remaining 8 bits represent the length of the data.
Consequently, each 1 byte data of ‘Hour’, ‘Minutes’ and
‘Seconds’ at the OD index 2013h and each 2 bytes data of
‘Temperature’ and ‘Pressure’ information at the OD index
5010h are packed into the TPDO 5, which has 7 bytes of
data.

Fig. 3 The Configuration of the Mapping Parameter for the PDO Packing.

3. The PDO Packing Mechanism

The object of the PDO packing mechanism is to improve
the network utilization of the CANopen communication
system when the set of PDO is schedulable. Subsection
3.1 describes the schedulability analysis of CANopen
messages. Subsection 3.2 defines the system model and
describes the PDO packing mechanism. Finally,
Subsection 3.3 presents the procedure of the on/off-line
implementation of the PDO packing mechanism.

3.1 The Schedulability Analysis of CANopen
Messages

CANopen message im can be classified as schedulable
only if the worst-case response time iR is less than or
equal to the deadline of the message iD . The worst-case
response time iR can be calculated by the sum of the jitter

iJ , the queuing delay it , and the transmission delay iC as
follows [12]:

iiii CtJR ++= (1)

The schedulability of the message im , iS is defined with
the value of either 0 or 1, where 1=iS means that the
message im is schedulable (i.e., ii DR ≤), and otherwise

0=iS . Finally, the schedulability of a whole system, S
can be derived from the product of iS over all of the
messages.

3.2 The System Model

The network system model for the PDO packing
mechanism consists of p CANopen ECUs and one CAN
bus (see Fig. 4). In order to develop the frame packing
mechanism, some assumptions are made: 1) there are no
hardware failures and transmission errors in the CANopen
communication system; 2) there is more than one unit of
signal data to be sent within each node; 3) all PDO
transmit periodically.

Fig. 4 The CANopen Network System Model.

The combination of PDO packing that allows the net-work
utilization to be a minimum should be found under the
condition of the system being schedulable. To find this
combination, analysis of the schedulability and the
network utilization for every combination of the PDO
packing is needed. The frame packing problem is similar
to the ‘bin packing’ problem and it was to be NP-hard in
[15]. Therefore, in this paper, we have suggested a
heuristic method for PDO packing mechanism.
The PDO packing mechanism begins by initializing the
system and then repeats the following operations: 1)

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

31

selecting 2 PDOs that satisfy the PDO packing conditions
which are explained below and 2) packing them into one
PDO until the PDO packing mechanism cannot operate
any longer (see Fig. 5). It is also defined that every PDO
can be in one of three states (i.e., the packable state, the
non-packable state, and the temporarily non-packable
state) during the operation of the PDO packing mechanism,
and if every PDO is in the non-packable state, then the
PDO packing mechanism has finished.

Fig. 5 The Flowchart of the PDO Packing Mechanism.

At the initial state of the system, there are as many PDOs
as there are the number of data to be transmitted by each
node. Each PDO is defined as im regardless of the
number of nodes, where i represents the priority of the
PDO; a small number of has a high priority, meaning 1m
has the highest priority. The (Deadline–Jitter)-monotonic
algorithm can be applied to assign the appropriate priority
to the PDO. This works because the (D-J)-monotonic
algorithm is an optimal priority assignment algorithm
when the deadlines of all the messages are less than or
equal to their periods [17]. Here, the period and the
deadline of im are denoted by iT and iD , respectively.
The number of data bytes is also represented by ib .
The number of PDOs at the initial state of the system can
be decreased by repeating the PDO packing operation. The
PDO packing only operates under following conditions:

1. (C1) The PDO packing is operated only for the PDO
that is in the identical node.

2. (C2) The whole length of the data packed into the
PDO should be less than or equal to 8 bytes.

3. (C3) The worst-case response time of all the PDOs
should be less than or equal to their deadlines.

4. (C4) The network utilization of CANopen should be
decreased as compared to before the PDO packing.

It is very inefficient to calculate the worst-case response
times of all the PDOs to check whether C3 is satisfied or
not. It is more efficient not to consider the PDO with a
higher priority than im when calculating the worst-case
response time of the PDO because the way this calculation
is done has not changed, even after the PDO packing
operations of im and jm having priorities i and j)<(ji ,
respectively.
The network utilization before and after the packing
should be compared in order to check C4. The network
utilization of a PDO can be calculated from the duration
that the CAN bus is occupied during the PDO
transmission, per unit time. For example, in the case of the
packing of xm and ym (yx TT ≤), when the number of
bytes of each PDO is and the transmission time is

yx CC , , we can obtain the network utilization before the
packing (beforeU) as the following equation:

{ }
yx

bitxyyxyx

y

y

x

x
before TT

τTbTbTT

T

C

T

C
U

)+(10+)+(55
=+= (2)

where bitτ is the transmission time for a single bit.
After the PDO packing of xm and ym , the number of
bytes and the period become yx bb + and xT , respectively.
Consequently, the network utilization after packing
(afterU) can be calculated from the following:

{ }
x

bityx
after T

τbb
U

)+(10+55
= (3)

The procedure of the selection of two packable PDOs,
PDO1 and PDO2, is described in Fig. 5. The PDO1 is the
packable PDO having the highest priority and another
PDO, that is adequate for packing along with the PDO1,
becomes the PDO2. The criteria for selecting the PDO2 is
based on the four conditions from C1 to C4.
The PDO1 goes into the un-packable state if there is no
PDO2 to be selected, and then another PDO1 can be
selected. In the case that multiple PDOs can be selected,
the PDO that minimizes the network utilization is selected
as the PDO2. Here, the PDO that has the same period as
that of PDO1 has higher priority than the other PDOs
whose period is different from PDO1’s because PDOs
whose period is the same as the PDO1’s, regardless of the
number of bytes they hold, minimize network utilization.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

32

Another reason for this packing procedure is to pack first
the data used together, such as ‘Hours’, ‘Minutes’ and
‘Seconds’, as is seen in Fig. 3. If there are multiple PDOs
that have the same priority as PDO1’s, the PDO that has
the highest priority is chosen, and if there are no such
PDOs, the PDO that decreases network utilization the
most is chosen.
The PDO2 could be the most adequate for packing along
with the PDO1, but not necessarily vice versa. Therefore,
a new PDO that can be packed with the PDO2 is needed
and it is denoted as PDO3. If the PDO3 is identical to the
PDO1, the PDO packing operation occurs. Otherwise,
another PDO2 is searched for, after the selected PDO2
goes into a temporary non-packable state. Here, the
temporary non-packable state was defined in order to find
another PDO2 that did not include the PDO2 already
selected.

3.3 The Implementation of the PDO Packing
Mechanism

The PDO packing mechanism can be implemented for
both off-line and on-line operations. The off-line PDO
packing mechanism is easy to implement because it
operates during the design phase. The off-line PDO
packing mechanism is operated based on the data
transmission property required in the system (e.g. jitter,
period and deadline). As is described in Section 2, this
mechanism is implemented by inserting, deleting and
modifying the PDO mapping parameters in the OD of
each node, which means creating, deleting, and modifying
the EDS or the DCF automatically.

Fig. 6 The Operation of the On-line PDO Packing Mechanism.

The on-line packing mechanism, alternatively, provides
network flexibility during the system operation phase.
When a new node or data is added to the
CANopen network system, the on-line PDO packing
mechanism is automatically operated within the master
node, and every node except for the master node is
changed into the initialization state by the network
management (NMT) message (see Fig. 6). Continually,
each node is turned into a pre-operational state and
receives the result of the PDO packing mechanism in the

form of EDS or DCF through the SDO received from the
master node. This subsection only provides the guideline
for implementing the on-line packing mechanism, and the
feasibility of the on-line packing mechanism is not
discussed.

4. Performance Evaluation

We use the benchmark data reported by the Society of
Automotive Engineers (SAE) [18] to evaluate the PDO
packing mechanism. The data set includes the lengths,
jitters, periods, and deadlines of the 53 signals that are
transmitted from the 7 ECUs.
The 53 signals are packed into 17 CAN messages by using
the ‘piggyback’ [11,12]. The worst-case response times of
the signals are calculated at a bus speed of 125 Kbit/s. The
worst-case response time of every CAN message meets
the deadlines at this bus speed, and the bus utilization here
is 84.44% (see Table 3).

Table 3: Analysis of the Worst-case Response Time of CAN Messages
Using ‘piggyback’

Size

(bit)

Jitter

(ms)

Period

(ms)

Deadline

(ms)

WCRT

(ms)

1 1 0.1 50 5 1.544

2 2 0.1 5 5 2.128

3 1 0.1 5 5 2.632

4 2 0.1 5 5 3.216

5 1 0.1 5 5 3.720

6 2 0.1 5 5 4.304

7 6 0.2 10 10 5.192

8 1 0.2 10 10 8.456

9 2 0.2 10 10 9.040

10 3 0.2 10 10 9.696

11 1 0.2 50 20 10.128

12 4 0.3 100 100 19.088

13 1 0.3 100 100 19.592

14 1 0.2 100 100 20.096

15 3 0.4 1000 1000 28.904

16 1 0.3 1000 1000 29.408

17 1 0.3 1000 1000 29.912

A total of 17 PDOs are packed using the PDO packing
mechanism, and at a bus speed of 125 Kbit/s the worst-
case response times of all the PDOs meet their deadlines
(see Table 4). The CAN bus utilization is 74.54% when
the PDO packing mechanism is applied, which results in a
decrease by about 10% when compared to the previous
work that used the ‘piggyback’. Fig. 7 compares the
worst-case response times of the PDOs packed in Table 4
and the CAN messages in Table 3. This graph shows that

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

33

the worst-case response times of the PDOs are similar to
or less than the previous research.

Table 4: Analysis of the Worst-case Response Time Using the PDO
Packing

Size

(bit)

Jitter

(ms)

Period

(ms)

Deadline

(ms)

WCRT

(ms)

1 1 0.1 50 5 1.563

2 2 0.1 5 5 1.641

3 1 0.1 5 5 2.070

4 2 0.1 5 5 2.734

5 1 0.1 5 5 3.164

6 4 0.1 5 5 3.984

7 8 0.8 50 20 4.805

8 6 0.8 50 20 5.391

9 3 0.5 50 20 9.141

10 1 0.3 20 20 9.883

11 8 0.2 50 20 14.023

12 8 0.2 50 20 14.141

13 1 0.4 100 100 14.648

14 1 0.2 100 100 18.633

15 2 1.6 1000 1000 19.219

16 3 1.0 1000 1000 19.648

17 1 0.3 1000 1000 20.002

The Message Number (n)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

W
o

rs
t-

C
as

e
R

es
p

o
n

se
 T

im
e

(m
s)

0

5

10

15

20

25

30

35

'piggyback' mechanism
PDO packing mechanism

Fig. 7 Comparison of the Worst-Case Response Time of the ‘Piggyback’
and PDO Packing Mechanism.

5. Conclusion

Minimizing the worst-case response time and improving
the network utilization of the CAN messages is necessary
to guarantee real-time performance. This paper presented
the PDO packing mechanism that can reduce the overhead
for data transmission by effectively using the OD and the
PDO communication service supported in the CANopen

protocol on the application layer of the CAN. SAE
benchmark data was used for the performance evaluation
of the mechanism, and this study demonstrated that the
network utilization of CANopen decreased by about 10%.
The PDO packing mechanism can minimize the network
utilization of CANopen without using another mechanism
on the data link layer for packing the CAN messages. Our
future studies will research the dynamic ID assignment
mechanism using the OD and the SDO of CANopen for
guaranteeing the response time of CAN messages.

Acknowledgments

This study was supported by the R&D Center for Valuable
Recycling (Global-Top Environmental Technology
Development Program) funded by the Ministry of
Environment (Project No.:12-A32-MD).

References
[1] M. Farsi, K. Ratcliff, and M. Barbosa, “An Overview of

Controller Area Network,” Computing & Control
Engineering Journal, Vol. 10, pp. 113-120, 1999.

[2] International Standards Organisation (ISO). Road Vehicles -
Interchange of Digital Information – Controller Area
Network (CAN) for High-Speed Communication. ISO
Standard-11898, 1993.

[3] CAN in Automation (CiA), CAL-Based Communication
Profile for Industrial Systems-CANopen. Version 3.0, 1996.

[4] CAN in Automation (CiA), CAN Application Layer for
Industrial Applications: CAN in the OSI Reference Model,
1996.

[5] Cenelec, Industrial Communications Subsystem Based on
ISO 11898 (CAN) for Controller-Device Interfaces, Part 2:
DeviceNet, 2001.

[6] M. Farsi, K. Ratcliff, and M. Barbosa, “An Introduction to
CANopen,” Computing & Control Engineering Journal, Vol.
10, pp. 161-168, 1999.

[7] O. Pfeiffer, A. Ayre, and C. Keydel, Embedded Networking
with CAN and CANopen, RTC Books, 2003.

[8] R. Obermaisser, Event-Triggered and Time-Triggered
Control Paradigms, Sptinger-Verlag, Dec. 2004.

[9] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert,
“Trends in Automotive Communication Systems,”
Proceeding of the IEEE, Vol. 93, pp. 1204-1223, 2005.

[10] K. Anwar and Z. A. Khan, “Dynamic Priority Based
Message Scheduling on Controller Area Netowk,”
International Confer-ence on Electrical Engineering
(IECC’07), pp. 1-6, 2007.

[11] K. W. Tindell and A. K. Burns, “Guaranteed Message
Latencies for Distributed Safety-critical Hard Real-time
Networks,” Technical Report YCS 229, Department of
Computer Science, University of York, 1994.

[12] K. W. Tindell, A. Burns, and A. J. Wellings, “Calculating
Controller Area Network (CAN) Message Response
Times,” Control Engineering Practice, Vol. 3, pp. 1163-
1169, 1995.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

34

[13] T. Nolte, H. Hansson, and C. Norstrom, “Minimizing CAN
Response-Time Jitter by Message Manipulation,” Eighth
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS'02), pp. 197-206, 2002.

[14] K. Park, M. Kang, and D. Shin, “Mechanism for
Minimizing Stuffing-bit in CAN Messages,” The 33rd
Annual Conference of the IEEE Industrial Electronics
Society (IECON’07), pp. 735-737, 2007.

[15] K. Sandström et al., “Frame packing in real-time
communication”, Proceedings of the International
Conference on Real-Time Computing Systems and
Applications, pp. 399-403, 2000.

[16] R. Marques et al., “Frame packing under real-time
constraints,” 5th IFAC International Conference on Fieldbus
Systems and their Applications (FeT2003), 2003.

[17] A. Zuhily, “Optimality of (D-J)-monotonic Priority
Assignment,” Technical Report YCS404, University of
York, 2006.

[18] SAE. Class C Application Requirement Considerations.
SAE J2056/1, 1993.

Minkoo Kang received the B.S and
M.S. degrees in industrial and information
systems engineering from Ajou University,
Suwon, Korea, in 2007 and 2009,
respectively, where he is currently working
toward the Ph.D. degree in the Department
of Industrial Engineering.
His research interests include frame
packing and message scheduling for in-

vehicle network and task scheduling for MapReduce software
framework in cloud computing.

Kiejin Park received the B.S.
degree in industrial engineering from
Hanyang University, Seoul, Korea, in 1989,
the M.S. degree in industrial engineering
from Pohang University of Science and
Technology, Pohang, Korea, in 1991, and
the Ph.D. degree from the Department of
Computer Engineering, Graduate School,
Ajou University, Suwon, Korea, in 2001.

From 1991 to 1997, he was with the Software Research and
Development Center, Samsung Electronics Company Ltd.,
Suwon, as a Senior Researcher. From 2001 to 2002, he was with
the Network Equipment Test Center, Electronics and
Telecommunications Research Institute, Daejeon, Korea, as a
Senior Researcher. From 2002 to 2004, he was with the
Department of Computer Engineering, Anyang University,
Anyang, Korea, as a Professor. Since 2004, he has been an
Associate Professor with the Division of Industrial and
Information Systems Engineering, Ajou University. From 2010
to 2011, he was with Rutgers, The State University of New
Jersey, Piscataway, as a Visiting Professor. His research interests
include in-vehicle network, fault-tolerant computing, and cloud
computing.

