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Summary 
The utilization of the CANopen-based network needs to be 
minimized in order to improve the communication performance 
such as worst-case response time of CANopen messages. To 
achieve this end, the messages should be packed together as 
many as possible so that the message frame overhead will be 
decreased. This paper suggests a frame packing mechanism using 
an object dictionary (OD) and a process data object (PDO) 
communication service within CANopen. The performance of 
this mechanism is evaluated using SAE benchmark data, and 
from this it is seen that the network utilization of CANopen 
decreased by about 10% in comparison to the result of the 
previous research, called ‘piggyback’ mechanism. Furthermore, 
the worst-case response times of the CANopen messages are 
similar to or less than the previous research. 
Key words: 
CANopen, Controller Area Network (CAN), Network Utilization, 
Process Data Object (PDO), Worst-Case Response Time 
(WCRT) 

1. Introduction 

To support development of an embedded control system 
such as factory automation and automotive electronics at 
the application layer with data link layer and physical 
layer that are used in controller area network (CAN, refer 
to Fig. 1) [1], [2], several new protocols were suggested 
such as CANopen [3], CAN application layer (CAL) [4], 
and DeviceNet [5]. Especially, CANopen protocol is 
developed to provide a solution for the hard-ware 
dependency problems that occur during the 
implementation of CAN-based applications. CANopen 
protocol allows different types of devices such as 
electronic control units (ECUs), sensors, and actuators, all 
using the CAN and CAL services, to communicate and to 
interoperate with each other using a concept called 
profiling, which leads to a reduction in the development 
time of CAN-based applications. The Object Dictionary 
(OD), the Service Data Object (SDO) and the Process 
Data Object (PDO) were defined for the profiling concept 
in CANopen [6], [7], as is seen in Fig. 1.  
Both CANopen and CAN are event-triggered protocols, 
which provide a high degree of flexibility in their 
communication in comparison to time-triggered protocols 
[8], but they have the disadvantage of having a 

nondeterministic response time for their messages [9], [10]. 
In order to resolve this drawback, there has been previous 
research where the worst-case response time of the CAN 
message is calculated [11], [12]. These researches have 
been applied to most of studies on the timing analysis of 
the CAN-based application system. 
 

 

Fig. 1 CAN and CANopen protocols in the ISO/OSI reference model. 

In order to improve the network utilization of the CAN 
bus and to reduce the worst-case response time of the 
CAN message, the transmission time of CAN message 
should be minimized, which in turn minimizes the 
overhead for transmission of CAN messages. The 
overhead, as used here, refers to additional bits from the 
bit stuffing mechanism and all those parts of the CAN 
message frame except for the data field, e.g. the arbitration 
field, control field, etc (see Fig. 2). 
 

 

Fig. 2 Standard format of CAN message frame. 

Nolte et al. [13] proposed a mechanism to minimize the 
number of stuffing bits of the CAN message frame by 
performing XOR operations on the bit mask, such as 
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‘010101…’ and on the CAN message frame before the bit 
stuffing. However, the problem of priority inversion 
occurs in the case of the XOR operations on the bit mask 
and on the arbitration field in the CAN message frame. In 
our previous work [14], advanced bit stuffing (ABS) has 
been presented, which prevents this priority inversion and 
minimizes the number of stuffing bits. However, this 
mechanism only operates with special CAN controllers 
that support the ABS mechanism.  
Another way to minimize the overhead of the CAN 
message frame is to pack as many signal data as possible 
into one frame, commonly called frame packing. Several 
studies of frame packing problems have been proposed for 
CAN communication systems. Sandström et al. [15] 
suggested frame packing heuristics for CAN network, but 
the schedulability of the solution is not considered. 
Bandwidth-Best-Fit decreasing (BBFd) and Semi-
Exhausive (SE) heuristics have been proposed in [16]. 
However, SE heuristic cannot be applied realistic problem 
size.  
Packing the CAN messages directly on to the data link 
layer is inefficient because the receiver nodes must update 
their ID list of the messages to be received and an 
additional mechanism for splitting the received data is 
needed. Alternatively, the data to be transmitted within 
CANopen can be packed into the PDO efficiently by using 
the operations of inserting, deleting, and modifying the 
text in the OD. As another advantage, the PDO can also 
automatically be converted into the CAN message frame 
on the data link layer [7].  
This paper presents a frame packing mechanism that uses 
the OD and the PDO communication service within 
CANopen. Section II describes the several communication 
services in CANopen. Next, the PDO packing mechanism 
is presented with the system model in Section III. In 
Section IV, the performance of the mechanism is analyzed, 
and finally, Section V presents the conclusion. 

2. The Communication Services in CANopen 

The OD is similar to a lookup table that contains all of the 
parameters for the network configuration and its operation. 
As can be shown in Table 1, the 32-bit index range is 
divided up into sections that structure the OD and these 
OD entries in each section are stored in the CANopen 
nodes as an electronically readable file format, namely an 
electronic data sheet (EDS) or a device configuration file 
(DCF). The index range from 0001h to 0FFFh is used to 
define the data types, and the range from 1000h to 1FFFh 
contains the parameters associated with the CANopen 
communication. The index range from 2000h to 5FFFh is 
used for the storage of data for a particular device type 
that exists outside of any CANopen standard. 

Table 1: The Object Dictionary Index Range 

Index Range Description 

0000h Reserved 

0001h – 0FFFh Data Types 

1000h – 1FFFh Communication Entries 

2000h – 5FFFh Manufacturer Specific 

6000h – 9FFFh Device Profile Parameters 

A000h – FFFFh Reserved 

 
The SDO allows for read/write access to all of the OD 
entries of all the ECUs that are connected to the network, 
so it is useful for the network initialization. However, the 
SDO has many communication overhead fields, making 
the exchange of real process data inefficient. Thus, the 
PDO is defined in CANopen in order to minimize the 
communication overhead and to allow for the best usage 
of the available network bandwidth. Before CANopen 
messages on the application layer such as the SDO and the 
PDO are processed, they turn into the CAN messages on 
the data link layer. The CAN message ID is used in the 
CAN when determining whether an ECU receives a sent 
message or not. CANopen, on the other hand, can 
determine if an ECU receives a sent message by the OD 
index, which can be referred to using the PDO ID [7]. 

Table 2: The OD Index Range of Parameters for the PDO 
Communication Service 

Index Range Description 

1400h – 15FFh RPDO Communication Parameters 

1600h – 17FFh RPDO Mapping Parameters 

1800h – 19FFh TPDO Communication Parameters 

1A00h – 1BFFh TPDO Mapping Parameters 

 
The PDO communication service allows several data to be 
packed into one PDO, and this PDO is further classified as 
either a Transmit PDO (TPDO) or a Receive PDO 
(RPDO). CANopen supports up to 127 ECUs in the 
system and each ECU can use up to four TPDOs and four 
RPDOs. A problem exists when one node requires more 
than four TPDOs or four RPDOs, but this problem can be 
resolved by reducing the maximum number of ECUs that 
the system can support and by assigning a CAN ID to each 
PDO manually. There are communication parameters and 
mapping parameters for the PDO communication service, 
which are placed in the OD index range from 1400h to 
1BFFh (see Table 2). For example, the TPDO mapping 
parameter of ECU 5 is located at the index 1A04h and the 
RPDO communication parameter of ECU 7 is located at 
the index 1406h. The communication parameter has values 
for the communication configuration, including the PDO 
ID, and the mapping parameter has the information of the 
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data packed into the PDO. Thus, carrying out the PDO 
packing means inserting, deleting, and modifying the PDO 
mapping parameter within the OD. 
Fig. 3 shows an example of the PDO packing that packs 
five data into one PDO. The five PDO mapping 
parameters are stored at the index 1A04h in the OD. At the 
sub-index 0, the number of data that exist as mapping 
information (i.e. 5) is stored, and the 5 packs of data of the 
mapping information are stored at the sub-index from 1 to 
5. The mapping information has a 32-bit length. The upper 
16 bits and the following 8 bits are the OD index and the 
sub-index where the data is stored, respectively. The 
remaining 8 bits represent the length of the data. 
Consequently, each 1 byte data of ‘Hour’, ‘Minutes’ and 
‘Seconds’ at the OD index 2013h and each 2 bytes data of 
‘Temperature’ and ‘Pressure’ information at the OD index 
5010h are packed into the TPDO 5, which has 7 bytes of 
data. 
 

 

Fig. 3 The Configuration of the Mapping Parameter for the PDO Packing. 

3. The PDO Packing Mechanism 

The object of the PDO packing mechanism is to improve 
the network utilization of the CANopen communication 
system when the set of PDO is schedulable. Subsection 
3.1 describes the schedulability analysis of CANopen 
messages. Subsection 3.2 defines the system model and 
describes the PDO packing mechanism. Finally, 
Subsection 3.3 presents the procedure of the on/off-line 
implementation of the PDO packing mechanism. 

3.1 The Schedulability Analysis of CANopen 
Messages  

CANopen message im  can be classified as schedulable 
only if the worst-case response time iR  is less than or 
equal to the deadline of the message iD . The worst-case 
response time iR  can be calculated by the sum of the jitter 

iJ , the queuing delay it , and the transmission delay iC  as 
follows [12]: 
 

iiii CtJR ++=                (1) 

 
The schedulability of the message im , iS  is defined with 
the value of either 0 or 1, where 1=iS  means that the 
message im  is schedulable (i.e., ii DR ≤ ), and otherwise 

0=iS . Finally, the schedulability of a whole system, S  
can be derived from the product of iS  over all of the 
messages. 

3.2 The System Model 

The network system model for the PDO packing 
mechanism consists of p  CANopen ECUs and one CAN 
bus (see Fig. 4). In order to develop the frame packing 
mechanism, some assumptions are made: 1) there are no 
hardware failures and transmission errors in the CANopen 
communication system; 2) there is more than one unit of 
signal data to be sent within each node; 3) all PDO 
transmit periodically. 
 

 

Fig. 4 The CANopen Network System Model. 

The combination of PDO packing that allows the net-work 
utilization to be a minimum should be found under the 
condition of the system being schedulable. To find this 
combination, analysis of the schedulability and the 
network utilization for every combination of the PDO 
packing is needed. The frame packing problem is similar 
to the ‘bin packing’ problem and it was to be NP-hard in 
[15]. Therefore, in this paper, we have suggested a 
heuristic method for PDO packing mechanism. 
The PDO packing mechanism begins by initializing the 
system and then repeats the following operations: 1) 
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selecting 2 PDOs that satisfy the PDO packing conditions 
which are explained below and 2) packing them into one 
PDO until the PDO packing mechanism cannot operate 
any longer (see Fig. 5). It is also defined that every PDO 
can be in one of three states (i.e., the packable state, the 
non-packable state, and the temporarily non-packable 
state) during the operation of the PDO packing mechanism, 
and if every PDO is in the non-packable state, then the 
PDO packing mechanism has finished. 
 

 

Fig. 5 The Flowchart of the PDO Packing Mechanism. 

At the initial state of the system, there are as many PDOs 
as there are the number of data to be transmitted by each 
node. Each PDO is defined as im  regardless of the 
number of nodes, where i  represents the priority of the 
PDO; a small number of has a high priority, meaning 1m  
has the highest priority. The (Deadline–Jitter)-monotonic 
algorithm can be applied to assign the appropriate priority 
to the PDO. This works because the (D-J)-monotonic 
algorithm is an optimal priority assignment algorithm 
when the deadlines of all the messages are less than or 
equal to their periods [17]. Here, the period and the 
deadline of im  are denoted by iT  and iD , respectively. 
The number of data bytes is also represented by  ib . 
The number of PDOs at the initial state of the system can 
be decreased by repeating the PDO packing operation. The 
PDO packing only operates under following conditions: 

1. (C1) The PDO packing is operated only for the PDO 
that is in the identical node. 

2. (C2) The whole length of the data packed into the 
PDO should be less than or equal to 8 bytes.  

3. (C3) The worst-case response time of all the PDOs 
should be less than or equal to their deadlines.  

4. (C4) The network utilization of CANopen should be 
decreased as compared to before the PDO packing. 

It is very inefficient to calculate the worst-case response 
times of all the PDOs to check whether C3 is satisfied or 
not. It is more efficient not to consider the PDO with a 
higher priority than im  when calculating the worst-case 
response time of the PDO because the way this calculation 
is done has not changed, even after the PDO packing 
operations of im  and jm  having priorities i  and j )<( ji , 
respectively. 
The network utilization before and after the packing 
should be compared in order to check C4. The network 
utilization of a PDO can be calculated from the duration 
that the CAN bus is occupied during the PDO 
transmission, per unit time. For example, in the case of the 
packing of xm  and ym ( yx TT ≤ ), when the number of 
bytes of each PDO is   and the transmission time is 

yx CC   , , we can obtain the network utilization before the 
packing ( beforeU ) as the following equation: 
 

{ }
yx

bitxyyxyx

y

y

x

x
before TT
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=+=       (2) 

 
where bitτ  is the transmission time for a single bit. 
After the PDO packing of xm  and ym , the number of 
bytes and the period become yx bb +  and xT , respectively. 
Consequently, the network utilization after packing 
( afterU ) can be calculated from the following: 
 

{ }
x

bityx
after T

τbb
U

)+(10+55
=                       (3) 

 
The procedure of the selection of two packable PDOs, 
PDO1 and PDO2, is described in Fig. 5. The PDO1 is the 
packable PDO having the highest priority and another 
PDO, that is adequate for packing along with the PDO1, 
becomes the PDO2. The criteria for selecting the PDO2 is 
based on the four conditions from C1 to C4. 
The PDO1 goes into the un-packable state if there is no 
PDO2 to be selected, and then another PDO1 can be 
selected. In the case that multiple PDOs can be selected, 
the PDO that minimizes the network utilization is selected 
as the PDO2. Here, the PDO that has the same period as 
that of PDO1 has higher priority than the other PDOs 
whose period is different from PDO1’s because PDOs 
whose period is the same as the PDO1’s, regardless of the 
number of bytes they hold, minimize network utilization. 
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Another reason for this packing procedure is to pack first 
the data used together, such as ‘Hours’, ‘Minutes’ and 
‘Seconds’, as is seen in Fig. 3. If there are multiple PDOs 
that have the same priority as PDO1’s, the PDO that has 
the highest priority is chosen, and if there are no such 
PDOs, the PDO that decreases network utilization the 
most is chosen. 
The PDO2 could be the most adequate for packing along 
with the PDO1, but not necessarily vice versa. Therefore, 
a new PDO that can be packed with the PDO2 is needed 
and it is denoted as PDO3. If the PDO3 is identical to the 
PDO1, the PDO packing operation occurs. Otherwise, 
another PDO2 is searched for, after the selected PDO2 
goes into a temporary non-packable state. Here, the 
temporary non-packable state was defined in order to find 
another PDO2 that did not include the PDO2 already 
selected. 

3.3 The Implementation of the PDO Packing 
Mechanism 

The PDO packing mechanism can be implemented for 
both off-line and on-line operations. The off-line PDO 
packing mechanism is easy to implement because it 
operates during the design phase. The off-line PDO 
packing mechanism is operated based on the data 
transmission property required in the system (e.g. jitter, 
period and deadline). As is described in Section 2, this 
mechanism is implemented by inserting, deleting and 
modifying the PDO mapping parameters in the OD of 
each node, which means creating, deleting, and modifying 
the EDS or the DCF automatically. 
 

 

Fig. 6 The Operation of the On-line PDO Packing Mechanism. 

The on-line packing mechanism, alternatively, provides 
network flexibility during the system operation phase. 
When a new node or data is added to the  
CANopen network system, the on-line PDO packing 
mechanism is automatically operated within the master 
node, and every node except for the master node is 
changed into the initialization state by the network 
management (NMT) message (see Fig. 6). Continually, 
each node is turned into a pre-operational state and 
receives the result of the PDO packing mechanism in the 

form of EDS or DCF through the SDO received from the 
master node. This subsection only provides the guideline 
for implementing the on-line packing mechanism, and the 
feasibility of the on-line packing mechanism is not 
discussed. 

4. Performance Evaluation 

We use the benchmark data reported by the Society of 
Automotive Engineers (SAE) [18] to evaluate the PDO 
packing mechanism. The data set includes the lengths, 
jitters, periods, and deadlines of the 53 signals that are 
transmitted from the 7 ECUs. 
The 53 signals are packed into 17 CAN messages by using 
the ‘piggyback’ [11,12]. The worst-case response times of 
the signals are calculated at a bus speed of 125 Kbit/s. The 
worst-case response time of every CAN message meets 
the deadlines at this bus speed, and the bus utilization here 
is 84.44% (see Table 3). 

Table 3: Analysis of the Worst-case Response Time of CAN Messages 
Using ‘piggyback’ 

# Size 

(bit) 

Jitter 

(ms) 

Period 

(ms) 

Deadline 

(ms) 

WCRT

(ms) 

1 1 0.1 50 5 1.544 

2 2 0.1 5 5 2.128 

3 1 0.1 5 5 2.632 

4 2 0.1 5 5 3.216 

5 1 0.1 5 5 3.720 

6 2 0.1 5 5 4.304 

7 6 0.2 10 10 5.192 

8 1 0.2 10 10 8.456 

9 2 0.2 10 10 9.040 

10 3 0.2 10 10 9.696 

11 1 0.2 50 20 10.128 

12 4 0.3 100 100 19.088 

13 1 0.3 100 100 19.592 

14 1 0.2 100 100 20.096 

15 3 0.4 1000 1000 28.904 

16 1 0.3 1000 1000 29.408 

17 1 0.3 1000 1000 29.912 

 
A total of 17 PDOs are packed using the PDO packing 
mechanism, and at a bus speed of 125 Kbit/s the worst-
case response times of all the PDOs meet their deadlines 
(see Table 4). The CAN bus utilization is 74.54% when 
the PDO packing mechanism is applied, which results in a 
decrease by about 10% when compared to the previous 
work that used the ‘piggyback’. Fig. 7 compares the 
worst-case response times of the PDOs packed in Table 4 
and the CAN messages in Table 3. This graph shows that 
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the worst-case response times of the PDOs are similar to 
or less than the previous research. 

Table 4: Analysis of the Worst-case Response Time Using the PDO 
Packing 

# Size 

(bit) 

Jitter 

(ms) 

Period 

(ms) 

Deadline 

(ms) 

WCRT

(ms) 

1 1 0.1 50 5 1.563

2 2 0.1 5 5 1.641

3 1 0.1 5 5 2.070

4 2 0.1 5 5 2.734

5 1 0.1 5 5 3.164

6 4 0.1 5 5 3.984

7 8 0.8 50 20 4.805

8 6 0.8 50 20 5.391

9 3 0.5 50 20 9.141

10 1 0.3 20 20 9.883

11 8 0.2 50 20 14.023

12 8 0.2 50 20 14.141

13 1 0.4 100 100 14.648

14 1 0.2 100 100 18.633

15 2 1.6 1000 1000 19.219

16 3 1.0 1000 1000 19.648

17 1 0.3 1000 1000 20.002
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Fig. 7 Comparison of the Worst-Case Response Time of the ‘Piggyback’ 
and PDO Packing Mechanism. 

5. Conclusion 

Minimizing the worst-case response time and improving 
the network utilization of the CAN messages is necessary 
to guarantee real-time performance. This paper presented 
the PDO packing mechanism that can reduce the overhead 
for data transmission by effectively using the OD and the 
PDO communication service supported in the CANopen 

protocol on the application layer of the CAN. SAE 
benchmark data was used for the performance evaluation 
of the mechanism, and this study demonstrated that the 
network utilization of CANopen decreased by about 10%. 
The PDO packing mechanism can minimize the network 
utilization of CANopen without using another mechanism 
on the data link layer for packing the CAN messages. Our 
future studies will research the dynamic ID assignment 
mechanism using the OD and the SDO of CANopen for 
guaranteeing the response time of CAN messages. 
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