
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

49

Manuscript received August 5, 2012
Manuscript revised August 20, 2012

Viewpoints Diagram: Towards an innovative diagram in the
UML Language

Ahmed Ettalbi†, Mahmoud Nassar† and Boubker Sbihi††

†University of Mohamed V-Souissi, ENSIAS, Rabat, Morocco
††Information Sciences School, Rabat, Morocco

Summary
The objective in this paper is to put forward a modeling of
multiview classes by making use of the Petri networks formalism.
The object approach aims at modeling complex systems and
allows to take into account the views of the different users of the
system and their access rights. Thus, in the present work we
propose a representation of multiview classes by Petri networks.
This representation allows the administrator to follow the
dynamic evolution of viewpoints and to monitor the access rights
of users.
Key words:
Complex systems, UML, View and Viewpoint, Modeling, Petri
networks.

1. Introduction

The modeling of complex systems cannot be carried out
by a unique viewpoint because of the different needs and
rights of access to information that are specific to each
user. The object approach has shown its power in the field
of software development. Among the approaches that have
been inspired by the object approach, there is the object
approach by viewpoints that is interested in the
development of complex systems. The viewpoint approach
is based on the notion of multiview class. Several research
studies have investigated the possibility of incorporating
the viewpoints in UML.
The remainder of this paper is organized as follows.
Section Two introduces complex systems and their
characteristics. Section Three presents the notion of view
and viewpoint and its use in software development. In
Section Four, we deal with views and viewpoints in the
object approach. Section Five tackles Petri networks and
some areas of their use. In Section Six we put forward our
approach which aims at modeling a multiview class by
Petri networks. Section Seven provides a brief conclusion
and gives an overview of our future works.

2. Complex systems

A complex system is defined as a system that is
irreducible to a finite model regardless of its size, the
number of its components and of the intensity of their

interaction [12]. The complexity of a system is due to two
main dimensions:
The temporal dimension: it is the fact that a complex
system is always unpredictable in time, deterministic (not
reducible to a finite state system), and the same observer,
with the same viewing angle but at different times (or
sessions) can make different representations of the
observed system. This can be referred as the dynamicity or
metamorphosis of the system.
The spatial dimension: depending on the place of
observation and the observer (or profile), the amount of
information that the observer has on the system is different.
Indeed, steeped in a system of value, culture and
endogenous factors, each observer understands, thinks and
acts towards a system in a different way. The relationship
between the amount of information the observer has on the
system and the amount of information actually contained
in this system can range from 0 (chaotic system) to a
(simple).
This complexity is apprehended by the interested observer
(view / time). The modeler, trying to make sense of the
actual information of the system, artificially represents the
latter according to the design and the view that it sets up
and receives with respect to this system. A system can be
represented by a set of possible varieties according to the
projection of the actor, the purpose of the system, etc.
Every complex system is, therefore, inherently multiview,
and each interaction observer / system can be regarded as
an interactive experience. As such, we can argue that
every space-time provided by the observer, is associated
with a space-time (views) of the system.
When developing a complex system [12], the construction
of a comprehensive model taking into account both the
needs of all players is impossible. In reality, either several
partial models are developed separately and coexist with
the associated risks of inconsistency, or the global model
must be frequently challenged, sometimes deeply, when
the users’ needs evolve.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

50

3. Views and viewpoints in software
development

In the object approach, a class is a template from which
we can create physical representatives called object or
instance. The object represents a real world entity
characterized by attributes and methods. Attributes model
the state of the object and the methods its behavior.
In the object approach by viewpoint, a view is defined as
being a partial abstraction of the model; it is a sub-model.
A viewpoint is a user's view of the model. A viewpoint is,
thus, a combination of several views.
The modeling of complex systems cannot be carried out
using a unique point of view. This is due to the different
needs and rights of access to information specific to each
user. It is, therefore, necessary to take into account the
viewpoints of the different users of the system during its
modeling. Indeed, each user has his own profile that
defines the set of needs and access rights associated with
that user.
The introduction of the notion of viewpoint in object-
oriented modeling of complex systems can elaborate a
unique model that is shareable and accessible following
next several viewpoints [4]. The advantage of this new
approach appears at the consistency of data, deletion of
some redundancy, enhancement of the multi-model
approach and the definition of access rights.
In the object viewpoint approach, a flexible class is
defined as a class in which we declare a set of views to be
selected when choosing one viewpoint at instantiation.
The notion of views has been addressed in the area of
programming including programming by topics [19],
aspects [10] and by object [2] [5] [13] [14] [22] [28]. It
was also studied in the case of systems such as TROPES
LOOPS [27] in the field of knowledge representation, role
models [8] and also in O2Views, MultiView and
COCOON systems [21] for databases.

4. Views and viewpoints in the object
approach

In the object approach, various research works have dealt
with the concept of views in order to integrate it. These
include the work of [4], the VBOOM method (View
Based Object Oriented Method) proposed by [11] and
VBOOL language (View Based Object Oriented
Language) put forward by [13] and VBOOL compiler [16].
After the emergence of the Unified Modeling Language
(UML) [1] and its standardization by the OMG [18], and
given the interest to take into account in any modeling a
standard modeling language used by the scientific
community, it is necessary to migrate the notion of
viewpoints to UML.

In this vein, several approaches have been proposed to
integrate the notion of visibility in object modeling. We
can also cite the work of Clarke [3], those of Desmond
and Wills [6], the VUML profile (View based Unified
Modeling Language) proposed by [17] and the method
proposed by U_VBOOM [9]. On the other hand, we
proposed in [23] [24] [25] [26] a filtering mechanism to
move from a VBOOM class diagram to a UML class
diagram in order to target object languages other than
VBOOL (single target language of VBOOM) such as Java
and C++.
At the formalization level, we proposed in [7] an approach
for moving from one viewpoint to an ordinary Petri
network in which places represent the viewpoints and
transitions of viewpoints activation or deactivation.

5. Petri networks and areas of use

Petri networks actually allow to study complex dynamic
systems. They were proposed in the 60's by Carl Adam
Petri [20], then developed at MIT (Massachusetts Institute
of Technology) in 1975 [15]. They are now used to
specify, model and understand the systems in which
several processes are interdependent.
A Petri network consists mainly of place and transition.
Places represent states and transitions events. An arc can
connect a place to a transition or a transition to a place.
Each place contains a positive integer or zero marks or
tokens. The tokens are usually resources in the modeled
system. M Marking defines the state of the system
described by the network at any given time. It is a column
vector of dimension the number of places in the network.
The ith element of the vector is the number of tokens
contained in the ith place.
A transition is passable when all the input places of the
transition contain at least one token. The clearing of a
transition consists of removing a token from each of the
input places and adding one token to each output place of
the same transition.
Petri networks are widely used in modeling, specification
and verification of the behavior of competitive systems,
dynamic systems, real-time systems and distributed
systems. They are also used to validate communication
protocols, man-machine interfaces and to synchronize
processes and production systems.
The following figure shows an example of a Petri network.
The network models a system comprising two computers
competing for the use of shared memory. Initially, the two
computers do not need memory (one token in PBM place)
and, hence, the memory is available in this state.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

51

Figure 1: Example of Petri networks

There is a variety of Petri networks. These include colored
networks, stochastic networks, temporal networks and
inhibitor arcs networks. This actually gives the choice to
adopt the type of Petri networks that is best suited to
model a given problem.

6. Using Petri Networks to model viewpoints

In this section we focus on the application of our approach
to model multiview classes by Petri networks. This
approach is illustrated below:
PLACES
At every viewpoint i, we associate two places:
- VPiDS: corresponds to the deactivated state of
Viewpoint i,
- VPiAC: corresponds to the activated state of Viewpoint i,
At each view i, we associate a place:
- Vi corresponds to the activated or deactivated state of
View i,
TRANSITIONS
- AVPi: corresponds to the event Activate Viewpoint i,
- AVVPi: corresponds to the event Activate Views of
Viewpoint i,
- DVPi: corresponds to the event Deactivate Viewpoint i.
INITIAL STATE
Initially, all viewpoints are deactivated. So, VPiDS places
each contain each a token, other places do contain no
token.
Below, we will apply our approach on two different
examples. The first is the multiview class Article that
supports three viewpoints: that of the Client, another for
the Cashier and the third concerns the Seller. In the second
example, we are interested in the class Course that also
supports three viewpoints: that of a Student, a second is

related to the Tutor and the third is that of the Responsible.
In each example, we first determine for each viewpoint the
fields that the user has and for which he has access to
depending on his viewpoint. Then, we highlight the views
of our class. After, we establish the views associated with
each user on the basis of highlighted views. Finally we
apply our approach to this multiview class and we give the
Petri network associated with it.

6.1 Example 1: Multiview Class : Article

This multiview class includes the following fields:
- AN: Article Number
- Name: Article Name
- UPP: Unit Purchase Price
- USP: Unit Selling Price
- QS: Current Quantity in Stock
- MinTQS: Minimum Threshold Quantity in Stock
- MaxTQS: Maximum Threshold Quantity in Stock
This class supports three viewpoints: that of the Client,
another associated with the Cashier and the third is related
to the Seller. Table 1 shows the fields accessible for each
user according to his views.

Table 1: Accessible fields for each viewpoint

Client Cashier Seller

AN AN AN

Name Name Name

USP USP USP

 QS QS

 MinTQS MinTQS

 UPP

 MaxTQS

In Table 2, we present the views of the class Article. Three
views can be distinguished: V1, V2 and V3. Each view
contains fields. The views are then grouped to give views.

Table 2: Views related to the class Article

View V1 View V2 View V3

AN QS UPP

Name MinTQS MaxTQS

USP

In Table 3, we present for each viewpoint, the views
composing it. Therefore, the viewpoint of Client consists
of View V1. That of the Cashier is composed of Views V1
and V2 whereas Views V1, V2 and V3 are the Seller's
viewpoint.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

52

Table 3: Composition of viewpoints in terms of views

VP1: Client VP2: Cashier VP3: Seller

V1 V1+V2 V1+V2+V3

Within the proposed approach, the Petri network
associated with the class Article is illustrated in Figure 2
below.

Figure 2: Petri network associated with the multiview class Article

6.2 Example 2: Multiview Class Course

This multiview class has the following fields:
- Id : Course Identifier
- Title : Course Title
- Responsible : Person in charge of the Course
- Remarks : List of remarks on the Course
- Exam : Exam associated with the Course
- Exercises : List of exercises
- Resources : Course resources
- Difficulties : Difficulties associated with the

Course
- Questions : List of students’ questions related to

the Course
- Answers : List of the tutor’s answers to asked

questions
- Fees : Course fees
- EnrolledStudents : List of students enrolled in

the Course

It supports three viewpoints: that of the Student, another
associated with the Tutor and the third is related to
Responsible. Table 4 shows the accessible fields for each
user depending on his views.

Table 4: Accessible fields for every viewpoint

Student Tutor Responsible

Id Id Id

Title Title Title

Responsible Responsible Responsible

Remarks Remarks Remarks

Exam Exam Exam

Exercises Exercises Exercises

Fees Resources EnrolledStudents

Resources Difficulties

Difficulties Questions

Questions Answers

Answers EnrolledStudents

In Table 5, we present the views of our class Course.
There are four views: V1, V2, V3 and V4. Each VIEW
contains fields. The views will be then grouped to give the
viewpoints of users.

Table 5: Views associated with the class Course

ViewV1 View V2 View V3 View V4

Id Fees Resources EnrolledStudents

Title Difficulties

Responsible Questions

Remarks Answers

Exam

Exercises

In the table that follows (Table 6), we present for each
point of view, the views that compose it. Thus, the view of
the Student consists of Views V1, V2 and V3. That of the
Tutor consists of Views V1, V3 and V4, whereas the
views V1 and V4 are the Viewpoints of the Responsible.

Table 6: Composition of viewpoints in terms of views

PV1: Student PV2: Tutor PV3: Responsible

V1 + V2 + V3 V1 + V3 + V4 V1 + V4

Under our approach, the Petri network associated with the
class Course is shown in Figure 3 below.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

53

Figure 3: Petri network associated with the

multiview class Course

7. Conclusion and perspectives

In this paper we presented an approach for modeling a
multiview class by Petri networks. After briefly describing
complex systems, we introduced the notion of view and
viewpoints, its interest for complex systems and its
integration in software development including object
modeling. Then, we presented our approach which
attempts to associate each multiview class to a Petri
network. Moreover, we applied our approach on an
example, namely the multiview class Article that supports
three different viewpoints.
In our future works, an attempt will be made to extend our
approach so as to systematically translate a multiview
classes diagram to a Petri network. Our perspectives also
include the use of colored Petri networks to reduce the
complexity of a regular network as well as the use of
simulation tools of Petri networks such as CPNTool.
Another perspective might be to propose a new diagram in
the UML object modeling language to represent multiview
classes.

References
[1] Booch G., Rumbaugh J., Jacobson J., Le guide de

l'utilisateur UML,
http://www.omg.org/spec/UML/2.4.1/2000.

[2] Carré, B. Dekker, L. et Gei b, J., Multiple and Evolutive
Representation in the ROME Language, TOOLS2, p.101-
109, 1990.

[3] Clarke, S., Extending standard UML with model
composition semantics, Science of Computer Pogramming,
Elsevier Science, 2002.

[4] Coulette, B. Kriouile, A. Marcaillou, S., L’approche par
points de vue dans le développement orienté objet des
systèmes complexes, Revue l’Objet, vol. 2, n°4, p. 13-20,
1996.

[5] Debauwer, L. Caron, O. Carré, B., Contextualization of
OODB Schemas in CROME., 11th International
Conference DEXA septembre 2000, London.

[6] Desmond, S. and Wills, S., Objects, Components and
Frameworks With UML : The Catalysis Approach,
Addison-Wesley, 1999.

[7] Ettalbi A., Sbihi B., Hair A., La modélisation des classes
multivues par les réseaux de Petri, Conférence
Internationale sur les Mathématiques Appliquées et les
Sciences de l’Ingénieur, CIMASI’2002, 23-25 Octobre,
2002, Casablanca, Maroc.

[8] Gottlob, G. Schrefl, M. et Rock, B., Extending Object-
Oriented Systems with Roles, ACM Transactions on
Information Systems (TOIS), page 268-296, 1996.

[9] Hair A., Sbihi B., Ettalbi A., Object-oriented modeling by
viewpoint using UML, Advanced Modeling and
Optimisation, Volume 5, Number 2, pp : 107-115, 2003.

[10] Kiczales G., Lamping J., Mendhekar A., Maeda C.,
Videira Lopes C., Loingtier J.-M., and Irwin J., Aspect-
Oriented Programming, In European Conference on Object-
Oriented Programming (ECOOP), Springer-Verlag LNCS
1241. pp. 220-42, june 1997, Finland.

[11] Kriouile, A., VBOOM, une méthode orientée objet
d’analyse et de conception par points de vue, Thèse de
doctorat d’Etat, Université Mohammed V de Rabat, 1995.

[12] Le Moigne J.L., la modélisation des systèmes complexes,
Dunod, 1990.

[13] Marcaillou, S, Intégration de la notion de points de vue
dans la modélisation par objets – Le Langage VBOOL,
Thèse de l'Université Paul Sabatier de Toulouse, 1995.

[14] Mili, H. Dargham, J. Mili, A., Views : A Framework for
Feature-Based Development and Distribution of OO
Applications, Proceedings, Thirty-Third Hawaii
International Conference on System Sciences, Honolulu, HI,
january 2000.

[15] http://web.mit.edu.
[16] Nassar, M. Kriouile, A. Coulette, B., Programmation par

objets et points de vue – le compilateur VBOOL, 6e
Conférence Maghrébine des Sciences Informatiques
MCSEAI’2000, Fès, Maroc, novembre 2000.

[17] Nassar, M., Analyse/Conception par points de vue : le profil
VUML, Thèse de l’Institut National Polytechnique de
Toulouse, 2005.

[18] OMG, Unified Modeling Language (UML), version 1.4,
OMG Document formal/2001-09-07, septembre,
http://www.omg.org/cgi - bin/doc?formal/01-09-67.

[19] Ossher, H. Kaplan, M. Harrison, W. Katz, A. and Kruskal,
V., Subject-oriented composition rules, in Proceedings of
OOPSLA’95, Austin, TX, p. 235-250, 1995.

[20] Petri C.-A., Communication par les automates, thèse de
doctorat de l'université technologique de Darmstadt,
Allemagne, 1962.

[21] Rundensteiner, A., A Classification Algorithm for
Supporting Object-Oriented Views, Proceedings of the 3rd
International Conference on Information and Knowledge
Management (CIKM' 94), pages 18-25, Gaithersburg,
Maryland, USA, ACM Press, 1994.

[22] Sbihi B., Kriouile A., Ettalbi A., Hair A., Marzak A., La
génération du multicible en VBOOM, Conférence
Internationale sur les Mathématiques Appliquées et les

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

54

Sciences de l’Ingénieur, CIMASI’2002, 23-25 Octobre,
2002, Casablanca, Maroc.

[23] Sbihi B., Kriouile A., Ettalbi A., Coulette B., Toward a
generation of code multi-target for the VBOOM method,
International Conference on Software Engineering,
Research and Practice, 23-25 June 2003, Las Vegas,
SERP’03, USA.

[24] Sbihi B., Kriouile A., Ettalbi A., Marzak A.,
L’implémentation en UML du diagramme final de
VBOOM, The International Conference on Image and
Signal Processing, ICISP’2003, 25-27 Juin, Agadir,
Morocco.

[25] Sbihi B., Kriouile A., Ettalbi A., Nassar M., The
implementation in UML of the points of view’s notion in
a Distance Education System, The 4th International
Conference on Information Technology Based Higher
Education and Training, ITHET’2003, 7-9 July, Marrakech,
Morocco.

[26] Sbihi B., Hair A., Ettalbi A., L’implémentation en UML du
diagramme final de VBOOM, The International
Conference on Image and Signal Processing, ICISP’2003,
25-27 Juin, Agadir, Morocco.

[27] Sbihi B., Hair A., Ettalbi A., The implementation in UML
of the points of view’s notion in a Distance Education
System, The 4th International Conference on Information
Technology Based Higher Education and Training,
ITHET’2003, 7-9 July, Marrakech, Morocco.

[28] Tropes, Tropes 1.0 reference manual, INRIA Rhônes-Alpes
IMAG-LIFIA, Grenoble, France, 1995.

[29] Vanwormhoudt, G., CROME : un cadre de programmation
par objets structurés en contextes, PhD thesis, Laboratoire
d’Informatique Fondamentale de Lille I, Lille, 1999.

