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Summary 
Quantum Key Distribution (QKD) is a secure key sharing 
technology with unconditional security. Certain well-known 
protocols for QKD have been presented, which claim their 
security by means of higher eavesdropping error-rates. A 
generalized quantum key distribution protocol that can be 
optimized for arbitrary number of bases and dimensions of 
photon states is presented in this paper. The protocol can provide 
higher eavesdropping error-rates than the well-known existing 
QKD protocols like BB-84 [4] and B-92 [5]. The higher 
error-rate makes it possible for Alice and Bob to share secure 
keys on relatively large distances.       
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1. Introduction 

Cryptography is an art that has been the field of interest of 
human being from ancient times. People used to adopt 
competitively secure methods, depending upon their 
capabilities of transferring information. On the eve of and 
after the 21st century, with the rapid growth in information 
technology and electronic communications, several 
modern techniques of securing information transfer were 
introduced [1]. Few decades after the advent of modern 
physics quantum information and computation flourished 
as one of the avant-garde technologies which are believed 
to revolutionize the world of data processing and 
information security [2]. Based upon the fundamental rules 
of quantum mechanics, quantum information provides a 
technique called quantum cryptography or quantum key 
distribution (QKD) [3] for sharing secret cryptographic 
keys with unconditional security.  
 The underlying idea in quantum cryptography is that 
the secret bits of information or keys are encoded in the 
quantum particles like photons. When the encoded photons 
are transmitted from one party to another say, Alice to Bob, 
an eavesdropper Evan may not copy the message without 
introducing a significant noticeable error-rate. Although 
the basic protocol for quantum cryptography, called BB84 
[4], was published in 1984 but there have been many 
variations and novel schemes of quantum cryptography 
introduced with the notion of improving the error-rate, 
flexibility and efficiency. Bennett [5] revealed the 
generalized idea of using any two non-orthogonal quantum 
states for key distribution thereby providing more 
flexibility in the choice of bases. Bechmann-Pasquinucci 

presented the 3-states [6] and six-states [7] protocols for 
quantum cryptography creating more difficulties for Evan 
to eavesdrop.  
 In a recent work [10] it was attempted to improve the 
error-rate and efficiency in quantum key distribution by 
using higher dimensional photon states. An alternative 
quantum key distribution protocol was designed, where 
Alice and Bob use two mutually unbiased bases e and f 
with one of them encoding a ‘0’ and the other one 
encoding a ‘1’. This means that all the states in the same 
basis encode same secret bit. The security of the scheme is 
due to a minimum index transmission error-rate (ITER), 
introduced by an eavesdropper, which increases 
significantly for higher dimensional photon states. The 
beauty of the scheme is that it does not impose any 
condition on the bases other than that they form a basis. 
This provides lots of flexibility of selecting the two 
appropriate bases to maximize the error-rate introduced by 
an eavesdropper in the case of an intercept–resend attack. 
 In this paper, we present a generalized key distribution 
scheme in which Alice and Bob may choose to employ 
arbitrary number of bases with higher dimensional photon 
states for acquiring higher error-rates in secret key 
distribution. Our scheme may be seen as the generalization 
of [10] in term of number of basis. The encoding in this 
scheme is such that each basis is assigned a unique 
alphabet while all the vectors in each basis state encode 
same alphabet. It is interesting to note that increasing the 
number of bases in our scheme increases the number of 
bits transmitted by each alphabet. For example, if the 
number of basis are four such that (e 0, f 1, g 2, h 
3) then each alphabet represents two binary digits 00, 01, 
10, 11. 
 The paper is organized into four sections. Section 2 
explains the current state of the art. Section 3, presents the 
proposed generalized scheme in detail, which includes the 
new encoding and sifting process of our scheme. Section 4 
concludes this paper.               

2. QKD protocol with two bases 

In the key distribution scheme with two bases [10] Alice & 
Bob prepare and measure the states in any of the two bases 
e and f which are pair-wise orthogonal, such that 

e  { ei : i 1,...,N} 

and  
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f  { f i : i 1,...,N} 

All the states in each basis encode same bit of information, 
such that, 

e  { ei : i 1,...,N}  0  

and 

f  { f i : i 1,...,N} 1. 

Table 1. Alice and Bob’s interpretation of different basis states. If Bob’s 
measurement index is different from Alice’s index then they may assume 

a value in 0, 1 or ×. An error may occur because of the noise or 
eavesdropper. 

Alice 
sends 
states 

Bob measures states 

ej  f j  

Same 
index 

Different 
index 

Same 
index 

Different 
index 

ie  × error × 0 

if  × 1 × error 

 
Alice randomly chooses and sends any of the e or f states 
to Bob. Bob randomly selects one of the measurement 
bases, e or f, and measures the incoming photon’s state. 
Alice publicly announces the indices i of all the states 
which she sends to Bob. Bob compares the indices of 
photons as a result of his measurement outcome with the 
indices announced by Alice. Bob interprets his 
measurement outcomes as a function of the index 
announced by Alice, cf. Table 1. Alice and Bob expect 
the outcome of their interpretation as ‘0’, ‘1’ or ‘×’ 
indicating whether a ‘0’, a ‘1’ or no bit is transmitted. If 
they measure the different indices then they obtain a ‘0’ or 
a ‘1’, for e and f respectively, and if they measure the same 
indices then no bit is assumed to be shared. In an ideal 
case, it is impossible that they measure the different 
indices while measuring in the same bases but this may 
happen because of the system or signal noise or the 
intervention of an eavesdropper.    

3. The transmission error-rates and efficiency 

An eavesdropper Evan conventionally challenges the 
secure key distribution between Alice and Bob. In 
quantum key distribution whenever Evan tries to intercept 
and measure the encoded photons between Alice and Bob, 
it introduces an error, which can be measured as the error 
in the transmission of each state’s index. An index 
transmission error (ITER) occurs when a photon prepared 

in ei ( f i ) is measured at Bob’s end as e j ( f j ) 

with i ≠ j. Assuming that Alice prepares the 2N basis states 
of e and f with the same frequency and that Bob measures 

e and f with the same frequency and gk  denotes the 

Evan’s possible measurement outcomes which are 
forwarded to Bob without alteration, the ITER of the 
scheme equals 

ITERP 1
1

2N i1

N

 gk ei

4
 gk f i

4 
k1

N

        (1) 

or in case of two mutually unbiased bases,   

PITER 
N 1

2N
                              (2) 

Instead of calculating the transmission error-rate in terms 
of index, Alice and Bob may estimate the transmission 
error-rate in terms of bits. A quantum bit error-rate 
(QBER) is calculated by selecting a certain number of 
control bits from the obtained key sequence and compare 
them openly. For the existing scheme QBER is given as   

QBERP 
2N 

i1

N

 ei gk

4
 f i gk

4 
k1

N



4N 
i1

N

 ei gk

2
 f i gk

2 2
k1

N


       (3) 

Alice and Bob successfully share a key bit when both use a 
different basis provided that the index of the state 
measured by Bob should be different from the index of 
Alice’s state. The success rate of the existing scheme is 

Psuccess 
N 1

2N
.                              (4) 

It can be easily seen that as we increase the number of 
dimensions (N), the ITER and the success rate approach to 
50%. Suppose, Alice and Bob are agreed to use four 
dimensional basis states, such that 

e  { e1 , e2 , e3 , e4 } 

and 

f  { f1 , f2 , f3 , f4 } 

are mutually unbiased bases. In this case, the optimal 
choice of Evan is to measure states which lie on a line 
between the closest states of the e and the f bases, such that  

gi 
cos ei  sin f i

(1 1
2 sin(2))

1
2

                   (5) 

It can be calculated that in this case PITER  37.5%. 

4. The generalized scheme 

In order to estimate the full benefit of the existing key 
distribution scheme it is interesting to increase the number 
of bases more than two. It seems that if we increase the 
number of bases then it would create more difficulty for 
Evan to successfully perform an intercept-resend 
eavesdropping attack.  
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5. Basic idea 

Suppose, for example, Alice and Bob use three mutually 
unbiased bases e, f and h, encoded as (e0, f1, h2) 
such that 

e  { ei : i  1,...,N}  0 , 

f  { fi : i  1,...,N}  1, 

and 

h  { hi : i  1,...,N }  2. 

However, with the existing key distribution protocol in this 
case, it would be impossible for Bob to understand which 
state Alice sends to him. Suppose Alice sends the state 

ei  and Bob measures in either f j or h j with i ≠ j.  

Depending upon his measurement basis, Bob can make 
sure that the incoming photon state is not in one of the f or 
h basis but still he cannot confirm exactly in which basis 
Alice sends the photon. 
 One possible solution to this problem is to send the 
same photon state twice. If Alice again sends the same 

state ei and Bob measures in a different basis 

like f j with i ≠ j then Bob can easily confirm which 

basis state Alice sent to him. Although, repeatedly 
transmitting the same photon state solves the problem but 
this technique has some drawbacks. For relatively larger 
number of bases, say b, Alice and Bob have to prepare and 
measure (b-1) photons states to share one secret alphabet. 
Similarly, Evan will have the chance to perform 
intercept-resend attack in each round, which decreases the 
efficiency and security of the key distribution scheme. The 
better solution to this problem is that Alice and Bob create 
the pairs of bases, such that each basis has a pair with 
every other basis. In the case of three basis scheme e, f and 
h, three pairs can be constructed, 
as S1  {e, f }, S2  {e,h}and S3  { f ,h} .  

 Suppose Alice sends the state ei  and Bob 

measures in h j  with i ≠ j, then Bob publicly announces 

any of the sets, which includes h. If, for example, he 
announces S3 then Alice can make sure in which basis 
Bob did the measurement and eventually they share a 
secret alphabet ‘0’. On the other hand if, for example, Bob 
announces S2 then Alice still cannot make sure in which 

basis Bob did the measurement. Hence there is a 1
b1 

chance, after achieving the different index in their 
measurement, that Alice and Bob cannot deduce the secret 
key alphabet. However, this reduction in the key rate may 
be compensated by the significant increase in the 
error-rate. 

Table 2 Alice and Bob’s interpretation of different basis states. If Bob’s 
measurement index is different from Alice’s index then they may assume 

a value in 0, 1, 2, ..., b-1. 

Alice 
Sends 

Bob measures 
0x 1x 2x  ... ... 1bx

0x  × 0 0 0 … 0 
1x  1 × 1 1 … 1 
2x  2 2 × 2 … 2 

… … … … × … …
… … … … ... × …

1bx  b-1 b-1 b-1 b-1 b-1 × 

6. The generalized protocol  

Let us first describe the necessary conditions for our key 
distribution scheme to complete the protocol. 

1. Before starting the protocol Alice and Bob must 
agree on a set of bases  in two or higher 
dimensions to prepare and measure the photon 
states. The set  must contain any two or more 
bases which are pair-wise orthogonal. Such that 

{x 0,x1,x 2,...xb1} , where b is the total 
number of bases in .   

2. Alice and Bob must decide the encoding scheme 
of the secret keys, which depends upon the 
number of bases used in the protocol. If b is the 
number of bases then Alice may choose 0, 1, 
2…(b-1) alphabets to encode the secret key, cf. 
Table 2.    

3. Alice and Bob must prepare the pairs of all the 
bases used in the protocol, such that, each basis 
has a pair with every other basis 

{(xm , xn ) m  n}xm , xn   and 
m,n  0,1,2,...,b  1. 

4. To share a secret key Alice and Bob must reveal 
some information, through classical public 
channel, to make a strong correlation between the 
input states and the measurement.  

a. First, Alice must announce the index of 
each state after sending the photon to 
Bob.  

b. Secondly, Bob must announce a set iS in 

all the cases where Bob’s measurement 
index is different from Alice’s index. 
Bob announces the set by randomly 
choosing from the sets of bases, which 
contain his measurement basis.   

 Suppose, Alice prepares her state in mx and Bob 

measures in nx with m ≠ n and Bob’s measurement 
index is different from Alice’s index. A shared key 
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alphabet can only be interpreted, according to Table 

2, if the set announced by Bob is ( mx , nx ).  
5. Alice should have equally many states to encode 

every alphabet to retain the symmetry.  
 

In general, if N is the number of dimensions in each basis 

state, nx  denotes the nth basis and b denotes the total 
number of bases then the complete protocol works as 
follows: 

1. Alice generates a random key sequence of classical 
bits and randomly assigns each bit value a 
random index i = 1, 2, . . . , N. 

2. Alice then uses her key sequence and sends single 
photons prepared accordingly in any of the bases 

states in 1210 ,...,, bxxxx to Bob. 

3. Bob measures the state of every incoming photon, 
thereby randomly switching the measurement 

bases among 1210 ,...,, bxxxx . 

4. Alice publicly announces the random sequence of 
indices i used to establish the secret key. 

5. Bob tells Alice which photon measurements have 
been successful and announces an appropriate 
pair set for each of them.  

6. Alice tells Bob which pair sets successfully provide 
a secret key alphabet. 

7. Alice and Bob interpret the corresponding photons 
states according to Table 2. 

8. Finally, Alice and Bob determine whether an 
eavesdropper introduced an error into their 
communication. Whenever this error-rate is 
sufficiently small, Alice and Bob can assume that 
no eavesdropping has occurred otherwise they the 
protocol. 

In this protocol it can be noted that Alice and Bob have a 
large variety of alphabets in terms of number of bases used 
in the scheme. In the following research it will be explored 
that how this increase in the number of bases influences 
the error-rate and efficiency of the scheme.  

7. Conclusion 

Its is shown in this paper that increasing the number of 
dimensions or the number of bases of the photon states 
may result in a significant increase in the error-rates 

introduced by an eavesdropper as a result of an 
intercept-resend attack. However, depending upon the 
number of bases the protocol may need to be modified in 
order to complete the process of sifting successfully. This 
has been shown in an example where Alice and Bob use 
three bases. The scheme may be further optimized to 
achieve better error-rates in terms of quantum bits and 
efficiency. 
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