
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

7

Manuscript received September 5, 2012
Manuscript revised September 20, 2012

Movie-based Control Flow Objects and Operations

Alexander Vazhenin†,

University of Aizu, Graduate School Department, Aizu-Wakamatsu, Japan

Summary
This paper deals with visual programming in the framework of a
Movie-based Multimedia Environment, which includes special
movie-program objects. These objects can generate frames of an
algorithmic movie as well as executable code. The important part
of the movie-based programming is in defining activity areas in
matrix structures as well as ordering operations according to
computational steps. Specific components called control lines
and structures support referencing activity areas inside a structure.
This means that control objects divide a structure into zones each
of which can have individual colour. Paper presents multimedia
environment for specifying dynamical behaviour of control lines
for matrix structures. We show semantic and syntactical rules of
iconic programming language and main features of a GUI-
interface.
Key words:
Software Engineering, Visual Programming, Movie-based
Programming, Matrix Computing.

1. Introduction

Recently, various programming methods have been
developed along with developments in computer
architecture. The human-centric design is very often
related to a “Program Visualization (PV)” [1] or “Visual
Programming Language (VPL)” [2], under which scientists
usually understand any programming language that lets
users specify programs by manipulating program
elements graphically rather than by specifying them
textually. In contrast to traditional textual programming
languages, where multi-dimensional structures are encoded
into one-dimensional strings according to some intricate
syntax [3], VPL remove this layer of abstraction, allowing
the programmer directly observe and manipulate complex
software structures via some space-time metaphors [4].
Tanimoto [5] states that “Data Factory” indicates visual
dataflow environment. In this model, users can control
icons prepared with mathematical operations in the layout
where mathematical methods are connected to others like
belt conveyers in the factory. JAVAVIS was developed as
a tool to support teaching object-oriented programming
concepts with Java [6]. This tool monitors a running Java
program and visualizes its behaviour with two types of
UML diagrams, which are de-facto standards for
describing the dynamic aspects of a program, namely
object and sequence diagrams. We can characterize most

of the mentioned systems as very special. They are mostly
focused on solving specific problems.
The Redwood [7] is a development environment that
supports visual representation of program structure and
drag-and-drop manipulations of programming constructs
called snippets defined as templates in which a solution to
a smaller part of a problem is embedded. The XML
specification of a snippet consists of the display section (or
component visualization section) and the templates section
(or code mapping section). After snippet selection, the user
should customize its parameters. Unfortunately, the system
has no GUI-tools for designing and debugging the user-
defined snippets. Moreover, it is unclear how to control the
adequacy between both snippet sections. That is why a
large collection is needed of pre-built snippets in the
environments, in addition to the online snippet library.
The GASPARD (Graphical Array Specification for
PARallel and Distributed computing) is a visual
programming environment devoted to the development of
parallel applications [8]. Task and data parallelism
paradigm of parallel computing are mixed in GASPARD
to achieve a simple programming interface based on the
printed circuit metaphor. The programmer specifies tasks
and instantiates by plugging them into a slot (task
parallelism). The Elementary Transformation library
includes usual signal processing operations like FFT,
integration, sum, dot products, etc. Each of these
operations is supported by corresponding template that can
take input arrays and return output arrays. The user has
possibility to parameterize these templates, for example, by
the size of arrays. However, it is unclear how to optimize
the quality and performance of obtained executable code,
which depended on quality of the each hand-made template
developed. This means that the user has a small possibility
to influence on the control flow sequence.
A multimedia approach for interactive specifications of
applied algorithms and data representations is based upon
a collection of computational schemes represented in the
“film” format. It promotes high-level language constructs
is based not only on the introduction of special symbols
and images with semantic support, but also on a series of
images that can present dynamical features of algorithms.
Approach presented in [9,10], supposed to have an
enormous number of pre-created algorithmic films with
hard-coded templates for each particular domain-specific

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

8

problem in a library. So, the user with basic programming
knowledge can easily find, setup and use them. However,
to develop new films which have no pre-created templates
in a library becomes a challenging task. So far, the
template development should be performed by means of
developers at an advanced programming level.
 In our approach [11-13], the end users also don't have to
create the animation and necessary template programs
from scratch. But, to increase the library development
efficiency and maintain reusability of the template code,
we have proposed a new approach where rather complex
template programs can be synthesized automatically by
using some set of elementary templates. So, instead of the
extraction of the whole film together with hard-coded
templates, the user is able to extract parts from a film
accompanied by elementary templates, and assemble them
into a new complete film. To implement this approach, a
special concept of metaframes, domains and sub-domains
has been introduced. As a result, the template development
is become easier and may be performed even by users of a
basic programming level with less specific knowledge of
conventional programming languages. The movie-based
programming process is manipulated with special movie-
program objects (MP-objects) that generate automatically
a part of an executable code as well as producing movie
frames, which are adequate for the code generated.
An important aspect of a programming language is a
control flow problem that refers to the order in which the
individual statements, instructions or function calls are
executed or evaluated [14]. According to the movie-based
programming, it is in defining activity areas in matrix
structures as well as an ordering of operations according to
computational steps. Specific components called control
lines and structures support referencing activity areas
inside a structure. This means that control objects divide a
structure into zones each of which can have individual
colour. Paper presents multimedia environment for
specifying dynamical behaviours of control lines for matrix
structures. We show semantic and syntactical rules of
iconic programming language and main features of a GUI-
interface.
The rest of the paper is as follows. In section 2, principles
of the movie-based programming are described focusing
on dualistic features of metaframes. Section 3 presents
semantic and syntactical rules of iconic programming
language including examples of typical and complex
control lines movement. Features of a GUI allowing
graphical specification/editing/debugging of Control
Flow Formulas are shown in Section 4. The last section
contains the conclusion and future research topics.

2. Principles of Movie-based Programming

2.1 Common Remarks and Definitions

The movie-based programming is a creation of
computational process that is depicted as a movie by
correlating animation frames with solution steps. A frame
is an image representing dynamical features of an
algorithm at a particular time step. So, sequences of frames
are observable as an animation. It can be composed and
visually debugged. As shown in Figure 1, a computational
step is visualized as a combination of visual symbols
within a frame. A set of frames joined into an animated
sequence (i.e. a visualization of a computation on a
structure according to the traversal schemes and the
computational formulas for the frame) is called an
algorithmic film or just a film. It is a combination of
• S, a collection of spatial structures;

• D, a set of variable declarations;

• M, a collection of metaframes.

A metaframe is a special object representing a set of rules
and parameters which are meant to specify how frames
should be produced (visualized) in a film, and, how they
should be implemented in an executable program. As
shown in Figure 1, the two main types of metaframes,
single and episode, can be used to specify single or
multiple algorithmic steps respectively. In other words, a
metaframe is a combination of:
• T, a set of traversal schemes for node activation on

structures in S;

• F, a set of computational formulas or C-formulas to
be performed on nodes affected by schemes in T;

• C, a set of control-flow formulas exploited in the
frame-generation process.

2.2 Structures and Control Lines

A structure is a medium representing an algorithm as
computational process, and the scheme is a computational
plan, which describes this process as a flow of activities on
the structure. The activities are represented by a so-called
“flashing” of nodes on which the attached operations are
distinguished by a type of flashing. There can be a number
of flashing types: full, contour, colour, shape, etc. In the
presented work, we distinguish these operations by so-
called flashing colours of nodes; different colours are
representing different operations. Figure 2 shows a film on
the matrix structure and some matrix algorithmic scheme

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

9

where the computational “wave” is moving upside down.
This film consists of an episode metaframe, which
produces three animation frames. Figure 2 also shows that
the number of active nodes and placement of activities
areas are changing from step-to-step that is reflected in a
corresponding frame.

Fig. 2 Animation frames on an episode.

Rather often, the data structures in applications can be
regular ordered sets of elements presented as 1D, 2D or 3D
structures where structure nodes contain operable objects.
So, sets of elements involved in computations can be
related to the sub-domain nodes of these structures. The
data structures of matrix and vector types have the
following attributes (Figure 3):

• Name to identify structure (mat3 in Figure 3),

• Dimension to distinguish matrices and vectors,

• Parameters to define structure sizes (N, M for rows
and columns respectively),

• A set of structure variables (A in Figure 3) declared
to store instances of data in nodes,

• A set of control lines which are used to refer to
spatial placements and domains (for matrices, there
are vertical, horizontal, major and minor diagonal
lines).

mat1: A

Fig. 3 Structure Attributes and Shape-based Domain Decomposition.

2.3 Shape-based Specification of Computations

To specify a computational activity on a structure from S, it
is necessary to implement some appropriate traversal
schema or a combination of schemes from T. In movie-
based programming the schema is represented by a domain
(∆). Domain is a pattern describing a set of nodes to
specify particular bounded areas of activity in a structure.
Domain is aligned to control lines and depends on their
placement, so it changes its configuration from frame to
frame according to the control lines updating during
frames transitions. CF-Formulas are used to specify a
transitional behavior of control lines. Each domain
corresponds to some partial scanning loop in executable
code and is composed by sub-domains. Formally, sub-
domain is a set of nodes which coordinates are satisfied to
the system of constraints Ω. For matrix structures, general
forms of Ω are defined in (1), where (i,j) - coordinates of
nodes, H1,H2,V1,V2 - positions of appropriate control
lines or structure bounds (they are used to specify a sub-
domain activity area) and predicates Pk(i,j) - special
conditions (they are used to specify the sub-domain shape).

(1)

In general, domain ∆ ∈ T is defined as a composition of
sub-domains Ωi, i = 1,2,...,n.

 (2)

Domain has a colour attribute to be visually
distinguishable from other domains. Also, constraints Hi,Vi
(1) are visually represented by vertical or horizontal lines
which may lay over boundary of a structure. This approach
allows the user to operate with parametric relation-based
specification of computations rather than index-based to
make it more compact and perceptive.
Domains can be both regular and non-regular ones. We
consider a regular domain as a domain, which can be
visited by partial scanning of nested loops. An irregular
domain is a domain, which contains nodes that are
impossible or difficult to visit by a partially ordered
scanning of nested loops. Usually, the global irregularities
of computations appear rarely because of possible
performance degradation. However, the problem can be
very important if there is necessity to place and store
complex data in a computer memory. Our approach is
based on decomposing such irregular areas to a number of
regular sub-domains having typical shapes (row, column,
rectangle, triangle, etc.). An example of complex domain

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

10

decomposed to typical shape-based sub-domains is also
shown on Figure 3.

In order to implement a computational schema on a
visually presented domain, it is necessary to have a visitor
program, which can visit all nodes within this domain. In
fact, it is necessary to have a special code generator, which
can implement the visitor program, which depends on the
domain shape. In fact, to produce a visitor program for a
particular domain shape we use templates [11]. Template
is a special data object related to the domain implementing
an activation traversal scheme on a domain within the
frame. Any template contains a high-level description used
to visually reflect the scheme behaviour and a snippet of
source code in a conventional programming language used
to generate some fragment of executable code. Templates
are playing the key role in the film development process
since they are used as “bricks” to construct an algorithmic
movie.

3. Control Flow Semantics and Icon
Language

3.1 MP-metaframe Semantic Rules and Micro Icons

An order of operations is defined by MP-metaframes
generating a code according to computational steps each of
which corresponds to an animation frame. As was pointed
above, we distinguish two types of metaframes: a single
metaframe and episode metaframe or MP-episode. A
single metaframe represents the one algorithmic step and
generates one corresponding animation frame. An MP-
episode produces a series of frames. Importantly, the same
operations should be implemented on all its internal frames.
The Control Flow Formulas or CF-formulas are
introduced to coordinate operations between frames as
well as program the control lines behaviour. By using three
semantic rules for CF-formulas showed in Fig. 3, the user
can specify control lines movement as well as define a
corresponding number of MP-frames or program iterations
that will be generated.
In particular, CF-formulas define the control lines
expression defining how to transfer data from the current
metaframe to the next metaframe. A control line can be
depended from other lines. To make editing process more
convenient, we developed the icon language to specify CF-
formulas. These icons can be used as macros in order
assign behaviour of control lines for typical and complex
dependences. The Figure 4 depicts an icon structure for
vertical control lines.

Fig. 3 Semantic Rules of a Control Line Movement.

Figure 4. CL-micro Icon Components

The CL-icon components show visually directions of the
Control Line movement and step to get next position. If
step is omitted then a control line will take adjacent
positions. The circle specifies how the current control line
may depend on behaviour of another control line. As was
pointed above, CF-formulas allow specifying different
directions of control lines movement, for example, forward
and back movement, etc. To visualize this possibility the
CL-micro icon has a special pointer. The icon can also
show the name of control line.

3.2 Simple Control Lines Movement

In this subsection, we show examples of icons for
specification of simple CL-movement, under which we
understand the absence of any dependency between control
lines. Figure 5 demonstrates left-right movement of a
vertical control line inside a matrix as well as
corresponding icon including corresponding specification
of a CF-formula. This right-movement is implementing
until reaching the last matrix column. After this, the
Control Line will jump to the initial position.

+2

Back

Step to next Frame

Dependence for other
CL-line

Pointer for Back
Direction

CL-name

CF_ID – Control Line Name

• Initialization Rule (Start position):
CF_ID = <expression>;

• Transition Rule (Next position):
if (<condition>)

 then CF_ID = <expression 1>;
 else CF_ID = <expression 2>;

• Episode Rule (How to finish):
 if (<condition>)
 then {Generate Next Frame};
 else {Finish Episode};

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

11

 CF-formula
mat1_J1

if mat1_J1<mat1_M-1
then mat1_J1=mat1_J1+1
else mat1_J1=0

Micro-icon

Fig. 5. Examples of the Simple CL-movement

The icon can also describe the simultaneous movement of
several control lines, for example, as shown in Figure 6.

 CF-formula

mat1_J1
if mat1_J1<mat1_M-1

then mat1_J1=mat1_J1+1
else mat1_J1=mat1_J1

Micro-icon

 CF-formula
mat1_I1

if mat1_I1<mat1_M-1
then mat1_I1=mat1_J1+1
else mat1_J1=mat1_J1

Fig. 6 Concurrent CL-movement.

Table 1 contains some examples of CF-icons. The CL-
dependences can be represented as to start/stop/reverse
movement according some condition is obtained.

Table 1: Examples of CF-icons
NN Icon Explanation

1

A horizontal control line moves
down (simple behavior).

2

A vertical control line moves right.
After reaching a limit, it jumps to its
initial position.

3

A vertical control line and a
horizontal control line are moving
together and synchronously.

4

Control lines are moving in rotation,
starting by the vertical control line
(fat arrow).

5

A vertical control line turns N times.

6

A vertical control line starts
movement. After reaching some
point, it reverses its movement, and
a horizontal control line starts a
movement that also will be reversed
after reaching some point.

7

The same situation like in Case 6
the vertical control line stay during
the horizontal control line stop to
move.

3.2 Complex Scanning Sequence

The proposed approach allows to program visually
different types of scanning in 2D-structures. Figure 7
depicts a sequence of frames illustrating row-wised zigzag
scanning. To realize it, three control lines were used. The
vertical line J2 is to control the increment/decrement
movement of the line J1.

 CF-formula: mat1_I1

if mat1_I1%2==1&&mat1_I1==mat1_M||
mat1_I1%2==0&& mat1_I1==1

then mat1_I1=mat1_I1+1
else mat1_I1=mat1_I1

 CF-formula: mat1_J1
if mat1_I1==mat_J2&&mat1_I1<mat1_M|+1|

mat1_J1==mat_J2+1&& mat1_J1>1
then mat1_I1=mat1_J1+1
else mat1_J1=mat1_J1

 CF-formula: mat1_J2

…

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

12

if mat1_I1%2==1
then mat1_J2=mat1_M
else mat_J2=0

Fig. 7 Row-wised Zigzag Scanning Sequence.

Figure 7 shows also the CF-formulas for each control line.
Even they are rather complex expressions, the designed
GUI showed in the next section allows programming and
debugging them efficiently.

4. Editing and Debugging

As was discussed above, the one of key point in designing
movie-based algorithms is in defining control lines
activities in order to update control lines positions during
frame transitions. This process mostly related to the
specifying CF-formulas for Control Lines attached to a
particular structure during processing concrete MP-episode.
Therefore, each control line can have several CF-formulas
formulas inside different metaframes. CF-formulas can
also be used for specification of conditions to finish MP-
episodes. These conditions can be, for example, an
equality of the control line positions, reaching structure
boundaries, etc.

Figure 9 shows the basic GUI to specify control lines.
Operations related to the CF-formulas debugging can be
implemented simultaneously with editing operations. In
any particular metaframe the system allows to animate
control lines movement as a result of the CF-formulas
evaluation. It is also possible to browse episodes frame-to-
frame. The user interface for CF-formulas input includes
not only text-based expressions but also icon-oriented
subset to simplify some typical control line movements.
The interface consists of the following parts:

1. Metaframe view panel with selected control lines,

2. Control line editor panel,

3. CF-formula definition area,

4. Control line formula assistant editor,

5. A special set of icons for typical operations on control
line like increment/decrement of position to help
construct CF-formula quickly

To introduce new control line, the user should select a
corresponding structure; choose the type of a line
(horizontal, vertical or diagonal); input a CF-formula. The
special GUI was developed on order to manipulate with
the control lines icons. It includes the icon synthesis tools
using independent and/or cooperative behaviors of vertical,
horizontal and diagonal control lines. The basic CF-
formula interface has special tools in order to make visual
synthesizing and verifying of complex CF-formulas more
comfortable. This interface is based on the proposed icon
CF-formula language (Figure 10). From the user’s point of
view, the programming process consists of the following
actions:

1. Choose the control lines participating in actions,

2. Select the corresponding icon,

3. Correct CF-formulas by defining their boundaries.

Importantly, the user can also edit and debug CF-formulas
directly using basic text-editing tools. After finishing this
process, a new formula can be stored in the library, and an
icon will be generated or assigned to it.

Figure 10. Icon-Oriented GUI

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

13

The important feature of the Control-flow GUI is in
possibility trace all CL-positions during episode
processing. The user can watch animation frames
visualizing control line movement during frames
transitions or obtain a compact representation of these
behaviors in graphical form. Using the first approach, the
user can watch the animation movie of the CL-movement.
It is also possible to scroll one-by-one all frames in the
corresponding MP-episode. The second approach is in
graphical representations of the control line positions
during frames transitions. Fig. 11 depicts an example of a
graph showing positions of two cooperating control lines.
It is possible to distinguish and analyze dependences
between control lines as well as control lines and episode
frame numbers. This allows convenient verifying and
debugging of CF-formulas.

Figure 11. Graphical monitoring of CL-behavior

5. Conclusion

The presented technique is oriented to visualize and
simplify programming dynamical behaviors of control
lines for matrix structures. The presented semantic rules
and proposed icon language allow defining a
corresponding number of MP-frames or program
iterations that will be generated automatically. The user
can watch the animations of the CL-movement or one-by-
one scrolling of all frames in the corresponding MP-
episode. Moreover, this movement can be represented as
a graph that can reflect behaviors of several control lines.
This combination improves efficiency and time of
debugging matrix algorithms. The results of testing
confirm that the presented system can be used not only as
an algorithm demonstration tool but also as a
programming tool. The system presented is realized on
Java. It generates C/C++ programs including OpenMP

platform and can export movies in the Macromedia Flash
Animation format.
Our investigations now are oriented to extend a set of
icons in order to cover the wider range of matrix
algorithms.

References
[1] J. Stasko, J. Dominique, M. Brown, and B. Price,

Software Visualization: Programming As a Multimedia
Experience, The MIT Press, 1998.

[2] M. Boshernitsan and M. Downes. Visual Programming
Languages: A Survey, Report No. UCB/CSD-04-1368.
University of California, California, USA, 2004.

[3] J. Edwards. Subtext: Uncovering the Simplicity of
Programming. In Proc. of the 20th Annual ACM
SIGPLAN conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA'05), San
Diego, California, USA, 2005, pp. 505-518.

[4] A. Blackwell and T. R. G. Green. Does Metaphor Increase
Visual Language Usability? Proc. of the 1999 IEEE
Symposium on Visual Languages VL'99. Tokyo, Japan,
1999, pp. 246-253.

[5] S. Tanimoto, Programming in a Data Factory, Proc. of
Human Centric Computing Languages and Environments
(HCC’03), Auckland, 2003, pp. 100-107.

[6] R. Oechsle, and T. Schmitt, JAVAVIS: Automatic
Program Visualization with Object and Sequence
Diagrams Using the Java Debug Interface (JDI), LNCS,
Vol. 2269, Springer-Verlag, 2002, pp. 1-15.

[7] B. T. Westphal, F. C. Harris, and S. Dascalu, Snippets:
Support for Drag-and-Drop Programming in the Redwood
Environment, The Journal of Universal Computer Science,
Vol. 10, No. 7, 2004, pp. 859–871.

[8] Fl. Devin, P. Boulet, J.-L. Dekeyser, and Ph. Marquet.
GASPARD - a Visual Parallel Programming Environment.
Proc. of the Int. Conference on Parallel Computing in
Electrical Engineering (PARELEC'02), Warsaw, Poland,
2002, pp. 145-150.

[9] N. Mirenkov, A. Vazhenin, R. Yoshioka, Ts. Ebihara, at
al., Self-Explanatory Components: A New Programming
Paradigm, Int. Jour. of Soft. Eng. and Knowledge Eng.,
vol. 11, No. 1, 2001, pp. 5-36.

[10] Yu. Watanobe, R. Yoshioka, and N. Mirenkov.
Programming in Pictures: a Way Toward Reliable
Software, Frontiers in Artificial Intelligence and
Applications, IOS Press, Vol. 231, pp. 183-197, 2011.

[11] D. Vazhenin and A. Vazhenin. MP-templates Operating
Toolkit in Movie-based programming. Proc. of the IEEE
Japan-China Joint Workshop on Frontier of Computer
Science and Technology, Nagasaki, Japan, 2008, pp. 67-
74.

[12] D. Vazhenin and A. Vazhenin, On-line Debugging
Methods and Tools in Movie-based
Programming, Proceedings of the 10th WSEAS
International Conference on Applied Computer Science
(ACS'10), Iwate, Japan, 2010, pp. 418-425.

[13] D. Vazhenin and A. Vazhenin, Implementation of Movie-
based Matrix Algorithms on OpenMP Platform, Proc. of

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

14

the Federated Conference on Computer Science and
Information systems (FedCSIS 2011), Szczecin, Poland,
2011, pp. 491 – 494.

[14] L. Grunske, K. Winter, and N. Yatapanage. Defining the
Abstract Syntax of Visual Languages with Advanced
Graph Grammars - a Case Study Based on Behavior Trees,
J. Vis. Lang. Comput. Vol. 19, No 3, 2008, pp. 343-379.

[15] Eddy Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen.
On-the-fly Elimination of Dynamic Irregularities for GPU
Computing. Proc. of the Sixteenth Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS '11), NY, USA, 2011. ACM,
pp.369-380.

Alexander Vazhenin received his M.S
in Computer Engineering from the
Novosibirsk State Technical University
(Russia) in 1978. He received his PhD in
Computer Science from the Institute of
Informatics Systems of the Siberian
Division of the Russian Academy of
Sciences in 1993. He published about
100 refereed academic papers. His

research and educational interests include parallel architectures,
algorithms and programming tools, self-explanatory software
high-accuracy computations, visual, and multimedia and
Internet technology. He has been program and organizing
committee member of many international conferences. He is
currently senior associate professor at the University of Aizu,
Japan.

