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Summary 
Applications of network-based systems like cluster and grid 
systems have increased considerably in recent years. Load 
balancing is an important concept in these systems, which is 
implemented with the purpose of reducing execution time of 
applications and increasing utilization of resources. An algorithm 
is proposed in this paper for load balancing in the grid systems 
which operates on the basis of harmony search algorithm. This 
algorithm which is called Dynamic and Adaptive Harmony 
Search (DAHS) distributes the load among heterogeneous 
resources in a centralized and dynamic manner. DAHS 
parameters are defined adaptively in order to solve the 
difficulties of initialization. For creating a better load balancing, 
the amount of load in each resource is evaluated after formation 
of every harmony, such that a new task will not be assigned to it 
if a resource has extra load. The required simulations are done in 
GridSim simulator to investigate performance of this algorithm 
and it was demonstrated that utilization of resources was greater 
than 92% in DAHS method with mean square deviation being 
smaller than 0.06%. Meanwhile, makespan of the proposed 
method was found 10% lower in comparison with that of genetic 
method.  
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1. Introduction 

Grid computing enables access to computing resources 
distributed in different positions for users [1],[2]. Such an 
environment has distinctive characteristics which 
distinguish them from other distributed systems and also 
conventional parallel processing systems. Heterogeneity, 
geographic distribution and being dynamic are some of the 
most important characteristics. Method of task scheduling 
and load balancing in these systems are of great 
significance due to their heterogeneous and dynamic 
features [1]-[3]. Load balancing includes distribution of 
tasks on the computing resources with minimum execution 
time and maximum utilization of resources. 
One classification which has been presented for load 
balancing methods, involves three general schemes, 
namely centralized, distributed and hierarchical [4],[5]. In 
the centralized method, all tasks are assigned to one 
scheduler who is responsible for scheduling tasks on the 

resources. In this method, since all information related to 
scheduling are available, much better scheduling decisions 
would be made. In the distributed method, there is no 
central scheduler and scheduling is done by local 
schedulers. This method is developable though the 
produced scheduling might not be the optimal one. 
Distributed methods are divided into cooperative and non-
cooperative methods based on whether they have 
cooperation with each other or not [6]. In this method all 
scheduling units are located at the same level, while 
different levels of management are defined in the 
hierarchical method. This method is in fact a combination 
of two previous methods. From another point of view they 
can be categorized as static, dynamic and adaptive [7]. In 
the static algorithms, decisions associated with load 
balancing are made within compile time and based on the 
information guessed. Advantage of static load balancing is 
its low overhead costs, because decision making is 
accomplished just once before calculations. However, this 
method can not conform to changes in computational 
requirements of applications and state of system.  On the 
other hand, dynamic algorithms react toward changes in 
state of the system and allocate tasks to resources during 
execution time. In dynamic load balancing, it is possible to 
reassign tasks to processors upon running the program. If a 
node has extra load in the system, the task which has 
caused the extra load shall be transferred to another node 
and processed there. Task migration might incur great 
overhead costs to the system. Dynamic load balancing 
strategies are usually preferred to static load balancing 
strategies when this overhead cost is controlled reasonably. 
Adaptive algorithms are a special type of dynamic 
algorithms. They accommodate their activities with 
changes in state of the system which is done through 
changing characteristics of the algorithm [8]. 
Numerous load balancing algorithms are provided in this 
field so far some examples of which will be discussed here. 
Zomaya and Teh introduced a dynamic genetic algorithm 
for load balancing in distributed systems. They assumed 
that the characteristics of tasks can be defined in advance 
[9]. Le et al. presented algorithm which was a combination 
of FCFS and genetic algorithms [10]. In this algorithm, 
since there are small number of tasks in the queue, FCFS 
algorithm can be used alternatively. The purpose of this 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012 
 

 

25 

 

algorithm is to reduce execution time of the selected task 
considering the information existing in the central 
scheduler. Once the number of tasks available in the queue 
is increased, genetic algorithm is used for load balancing. 
In this situation, objective function is comprised of 
makespan and mean square deviation of utilization from 
resources. One major disadvantage of these two algorithms 
is their not being adaptive. Ludwig et al. have presented 
two distributed evolutionary algorithms for load balancing, 
one based on ant colony optimization (ACO) and the other 
based on particle swarm optimization (PSO) [11]. 
Performance of these algorithms has been compared in 
terms of makespan and load balancing level with stochastic 
algorithms and other common algorithms. The obtained 
results indicate that the proposed PSO algorithm has a 
superior performance as compared with the proposed ACO 
algorithm. Maximum level of load balancing in these 
algorithms is 81%. 
Authors of this paper in [12] have used dependent task 
scheduling in distributed systems statically which leads to 
improved results of the suggested algorithm versus other 
harmony algorithms. 
Harmony search (HS) has been utilized for load balancing 
in the grid, which distributes independent and 
heterogeneous tasks in a dynamic and adaptive manner on 
heterogeneous resources. Due to adaptive nature of the 
algorithm, problems of choosing appropriate parameters 
for it are solved. Task migration from overloaded 
resources to underloaded resources is one step of dynamic 
load balancing algorithms. Since task migration is rather 
costly and practically complicated during execution or 
after being allocated to the resources, it is usually 
overlooked in some load balancing algorithms [13],[14]. 
One load rebalancing is implemented on it to solve this 
problem after generating a new solution. In this case, if a 
resource has some extra load then the new tasks which are 
assigned to it will be handed over to the resource having 
load shortage. Moreover, to evaluate fitness of each 
solution, three criteria are considered: makespan, average 
utilization of resources and mean square deviation of 
resources load. 
The remaining paper is organized as follows. In sections 2 
and 3 load balancing and harmony algorithms are briefly 
introduced. The proposed algorithm will be presented in 
section 4, while simulation results have been demonstrated 
in section 5. Finally, conclusions and future works will be 
explained in section 6. 

2. Load Balancing 

One important issue in grid systems is load balancing 
which is implemented in order to reduce execution time 
and enhance performance. The system adopted in this work 

has been shown in Fig. 1. This system includes N 
heterogeneous resource with different processing power 
and bandwidth. Processors are connected to each other 
thoroughly. It has been assumed that the processors are 
connected to each other without any interference. Tasks 
are independent and indivisible. Tasks can be executed on 
each of the resources having stochastic entry time and 
Poisson distribution. Grid information service (GIS) is a 
unit which collects dynamic information of resources in 
definite time intervals and offers them to the scheduler.   

 

Fig.1 system model  

After sending the tasks by the user, they are placed in a 
central queue which is related to the scheduler. A request 
is sent for the scheduler when one of the resources 
becomes idle. The scheduler selects from existing tasks in 
the queue according to the size of sliding window and 
executes the load balancing algorithm. If the number of 
tasks waiting in the queue is smaller than the sliding 
window, the scheduler will wait for a specific time and if 
the number of tasks still remains smaller than the size of 
window, it will select the same number of tasks and 
transfers them for the resources. Harmony algorithm is 
executed after selecting the tasks and then the tasks are 
sent to the appropriate resource. 

3. Harmony Search Algorithm 

Harmony search algorithm is an evolutionary algorithm 
introduced by Geem et al. in 2001 for the first time [15]. 
This algorithm imitates musical improvisation process. 
Every solution is called a harmony in this algorithm. At 
first, population of harmonies are generated stochastically 
and then stored in harmony memory (HM). 
HS generates the new solutions using three principles, 
namely harmony memory consideration, pitch adjusting 
and random selection [15-17]. Assuming the new harmony 
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as )}(),...,2(),1({ NhhhH newnewnewnew = , this process 
can be implemented as below: 
 

(1) ),...,2,1()()( HMSijhjh inew ∈= , 
(2) ,())()( bwrandjhjh newnew ×±= 
(3)      ,))()((())()( jhjhrandjhjh LULnew −×+= 

 
where, ()rand is a random number with uniform 
distribution within range of [0,1]. HMCR , PAR  and 
HMS represent harmony memory consideration rate, 
pitch adjusting rate and harmony memory size, 
respectively. )( jhL and )( jhU  are lower limit and upper 

limit of the variable under study, respectively, while bw  
stands for desired bandwidth. 
Having generated the new harmony, if its fitness value 
outperforms that of the worst harmony in memory, it will 
be replaced and harmony generation is repeated until 
termination condition is met. 

4. Proposed Algorithm 

4.1 Coding  

In DAHS, a harmony is an array whose length is equal to 
the size of sliding window. Each harmony represents the 
resources to which the tasks are allocated. Fig. 2 shows the 
harmony for load balancing problem with six tasks. 
 

JR1 JR2 JR3 JR4 JR5 JR6 
3 1 1 2 3 1 

Fig. 2 Harmony representation 

4.2 Fitness Function 

Fitness function is a key feature of load balancing 
algorithm which in fact indicates the amount of fitness for 
each solution. Effective criterions of the fitness function 
are introduced here first and then the fitness function is 
expressed. 
Eq.(4) describes how to calculate execution time of the 
tasks allocated to each resource which is called load of 
each resource hereafter. This value is comprised of the 
time needed to accomplish calculations and the time 
consumed to transfer tasks to resources.    
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where, iR  is the desired resource, currentload  is the 

current load of each resource, tasklengh  gives the 

processing requirement of each task, )( iRpp  represents 

the processing power of each resource, BW  is the 
bandwidth between each resource with scheduler, and 
finally, outputsize  and inputsize  offer the sizes of 
output and input files, respectively. Makespan is the 
completion time of the last task allocated to resources 
which is provided by Eq.(5). Meanwhile, N  is the number 
of resources. 
 

},...,2,1{))(max( NiRloadMakespan i ==     (5) 
 
Utilization of each resource is defined as the ratio of 
desired resource load to makespan which is explained by 
Eq.(6). Average utilization of each resource is stated in 
Eq.(7) as the criterion effective on fitness of a solution. 
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The next criterion which is used to assess fitness of a 
solution is mean square deviation of load (Eq.(8)). 
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Fitness function is defined in this algorithm as a function 
of makespan, average utilization of resources and mean 
square deviation of load, which is explained by Eq.(9). The 
fitness function is inversely related to makespan and mean 
square deviation. It is expected to decrease by increasing 
each criteria of solution fitness. Fitness function is directly 
related to the average utilization of resources because 
increased average utilization is indicative of an acceptable 
load balancing. Each criterion is applied with a specific 
coefficient in the fitness function which can be modified 
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according to important of each for the user. Simulations 
have been launched here assuming that α=β=γ=1. 
 

(9) 
σγβ
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4.3 Algorithm Parameters 

Previous studies reveal that definition of HMCR , PAR  
and bw  in an adaptive manner improves performance of 
HS [12],[17]. 
In this paper, HMCR , PAR  and bw  in are considered 
as functions of harmony fitness generated in the earlier 
iteration which are described by Eq.(10), Eq.(11) and 
Eq.(12), respectively. Parameters are the same as the ones 
used in [12]. HMCR  will be increased if the harmony of 
former iteration shows a worse fitness versus the best 
harmony available. Thereby, the existing harmonies in the 
memory are used at a higher probability and changes are 
less probable to be introduced on them. 
Otherwise, HMCR  will be decreased to choose the 
harmony having greater probability stochastically. This 
will cause not to be located in an inappropriate position so 
that search will become possible throughout the whole 
solution space. 
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4.4 Load Rebalancing  

When the resource has extra load and a task has been 
allocated to it, then the task will be transferred to the 
resource with the lowest load. 

4.5 Process of DAHS Algorithm 

Different steps of this algorithm are listed below: 
Step 1: Parameters of the algorithm such as HMS , PAR , 
HMCR  and bw  must be initialized first. 
Step 2: Harmony memory is generated stochastically by 
uniform distribution. 
Step 3: Algorithm parameters are defined adaptively. 
Step 4: A new harmony is created. 
Step 5: Load rebalancing is implemented. 
Step 6: If the fitness of the new harmony outperforms that 
of the fitness of worst harmony available, then this 
harmony will be replaced by the worst harmony and the 
algorithm will return to step three in order to realize one of 
the two termination conditions, namely definite number of 
iterations and constant fitness of the best harmony 
available for 10% of total number of iterations. 

5. Simulation Results 

 A grid environment including a number of users and ten 
resources has been taken into account for the purpose of 
simulation. The resource characteristics of which are 
summarized in Table 1. The resources defined are testbed 
resources of WWG extracted from literature [18]-[20]. The 
used simulation toolkit is GridSim. 

Table 1: Characteristics of resources [20] 

 

APE 
SPEC/MIPS 

Rating 

Simulated resource characteristics 
Vendor, Resource type, Node OS, 

No of PEs 
Resource 

name 

515 Compaq, AlphaServer, CPU, 
OSF1, 4 RR0 

377 Sun, Ultra, Solaris, 4 RR1 

377 Sun, Ultra, Solaris, 4 RR2 

377 Sun, Ultra, Solaris, 4 RR3 

380 Intel, Pentium/VC820, Linux, 2 RR4 

410 SGI, Origin 3200, IRIX, 6 RR5 

410 SGI, Origin 3200, IRIX, 16 RR6 

410 SGI, Origin 3200, IRIX, 6 RR7 

380 Intel, Pentium/VC820, Linux, 2 RR8 

410 SGI, Origin 3200, IRIX, 4 RR9 

377 Sun, Ultra, Solaris, 8 RR10 
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In the following, the results of this method will be 
compared with genetic algorithm to investigate 
performance of DAHS. The genetic algorithm provided in 
[9] is a dynamic load balancing algorithm which is chosen 
as an appropriate reference for the purpose of comparison 
[10],[21]. Parameters of this algorithm have been listed in 
Table 2. The genetic algorithm under study is abbreviated 
as DGA hereafter. 

Table 2: Parameters of DGA 
values Parameters  

10 Window size 
0.9 Crossover rate 

0.14 Mutation rate 
20 Population size 
20 Number of generation 

 
The size of harmony memory is defined as 5 for DAHS, 
while number of iterations and sliding window size have 
been assumed as 100 and 10, respectively. 

5.1 Determination of Harmony Memory Size 

Harmony memory size is one of the effective factors on 
algorithm accuracy. A large harmony memory would 
increase divergence which enhances the probability to 
choose the worse element. However, a very small harmony 
memory could increase the possibility to be located within 
local optima. Therefore, selection of a reasonable size of 
the harmony memory can establish equilibrium between 
divergence and convergence of the solutions. 
In order to achieve an appropriate value for harmony 
memory size with a system whose characteristics are 
summarized in Table 1, diagram of makespan in terms of 
harmony memory size is are illustrated in Fig. 3, for 300 
tasks having a length of 4000 to 8000, respectively. To 
mitigate the stochastic effect of results, this experiment 
was repeated 50 times. Results of simulation show that the 
harmony memory size of 5 offers the minimum makespan. 
Furthermore, this diagram confirms reduced performance 
of very large and very small harmony memories. 
 

100

105

110

115

120

125

130

3 5 7 9

M
ak

es
pa

n 
(s

ec
on

d)

Size of Harmony Memory 

DAHS

 
Fig. 3 Makespan of DAHS algorithm versus harmony memory size for 

100 tasks 

5.2 Changing the Number of Iterations 

These experiments were done on 900 tasks with lengths of 
4000 to 8000. It is well known that the number of 
examined solutions by DAHS algorithms is increased by 
raising the number of iterations which will lead to 
increased accuracy of the algorithms and provision of the 
most solution. First, the experiment was done assuming 
that the sliding window size was 10 and its obtained results 
are illustrated in Fig. 4. The following figure shows that 
the value of makespan varies less than 2% after 100 
iterations. 
 

 
Fig. 4 Makespan of DAHS algorithm versus number of iterations for 900 

tasks having length of 4000 to 8000 and sliding window size of 10 

In order to select the best size for sliding window, the same 
experiment was repeated for sizes of 20 and 30. The 
obtained results are shown in Fig. 5 and Fig. 6. As can be 
seen in the following figures, the value of makespan is set 
to 2% of its final value for sliding window size of 20 after 
400 iterations and for sliding window size of 30 after 800 
iterations. 
 

 
Fig. 5 Makespan of DAHS algorithm versus number of iterations for 900 

tasks having length of 4000 to 8000 and sliding window size of 20 

Investigation on the results obtained from three 
experiments show that at small number of iterations (lower 
than 50), the large sliding window size has produced much 
better results. However, at large number of iterations, the 
best answer seems to occur for the smaller sliding window 
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size. In further experiments, the sliding window size is 
decreased and the number of iterations is increased to 
reach more appropriate solutions. Thus, it is recommended 
to take the sliding window size and the number of 
iterations equal to 10 and 100, respectively. 
 

 
Fig. 6 Makespan of DAHS algorithm versus number of iterations for 900 

tasks having length of 4000 to 8000 and sliding window size of 30 

5.3 Changing the Number of Tasks 

The number of tasks is varied from 100 to 1100 and the 
length of tasks has been assumed in the range of 4000-
8000. Makespan, mean square deviation of load, and 
average utilization of resources have been shown in Fig. 7, 
Fig. 8 and Fig. 9 for a specific number of tasks out of 20 
runs of the algorithm. It can be observed that performance 
of the algorithm is increased by raising the number of tasks 
and this algorithm attains a good extendibility.  
Performance of DAHS algorithm has been compared 
versus that of DGA algorithm. The results uncover that 
DAHS algorithm has smaller makespan in all cases. Mean 
square deviation of DAHS is reported 2% smaller than 
DGA, while average utilization of it is 2.73% higher than 
that of DGA. 
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Fig. 7 Makespan versus number of tasks for DAHS and DGA algorithms 

 
Fig. 8 Average utilization of resources versus number of tasks for DAHS 

and DGA algorithms 

 

Fig. 9  Mean square deviation of load versus number of tasks for DAHS 
and DGA algorithms 

5.4 Changing the Length of Tasks 

Makespan, mean square deviation of load, and average 
utilization of resources have been evaluated for 300 tasks 
with a length of 4000 to 8000. Generally speaking, the 
execution time of tasks is increased at longer lengths of 
them and choosing inappropriate is expected to incur great 
variations in the load of resources. A look on Fig. 10 
implies that increasing the lengths of tasks will naturally 
raise scheduling length. Therefore, in order to assess 
performance of the algorithm, mean square deviation of 
load and average utilization of resources must be examined 
(Fig. 11 and Fig. 12). It can be seen that DAHS algorithm 
reduces the mean square deviation 3.24% in comparison 
with DGA algorithm, while raises the average utilization of 
resources for about 1.8%. Results of simulation reveal that 
DAHS algorithm is more efficient for smaller tasks, so one 
should increase the number of iterations to attain better 
time solutions with longer tasks. 
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Fig. 10   Makespan versus length of tasks for 300 tasks in DAHS and 

DGA algorithms 

 

Fig. 11   Mean square deviation of load versus length of tasks for 300 
tasks in DAHS and DGA algorithms 

 
 

 
Fig. 12  Average utilization of resources versus length of tasks for 300 

tasks in DAHS and DGA algorithms 

6. Conclusion 

The aim of this paper was to provide an algorithm which 
was able to create load balancing and grid computing. 
Harmony algorithms were utilized for this purpose. 
Parameters of the algorithm were defined as adaptive to 

improve this algorithm. These parameters are a function of 
fitness from the previous generation.  
When a resource has extra load and a task has been 
allocated to it in the new solution, this task would be 
transferred to the underload resource. The results of 
simulation show that utilization of resources and mean 
square deviation in DAHS are more than 92% and less 
than 0.06%, respectively. Comparison of DAHS versus 
DGA reveals a 10% improvement in makespan as well as a 
3% enhancement in utilization. 
Future works can concentrate on a combination of the 
proposed algorithm with the evolutionary algorithms in 
order to increase rate of convergence. Meanwhile, the 
current algorithm can be applied to cloud computing by 
addition of some more specifications. 
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