
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

24

Manuscript received September 5, 2012
Manuscript revised September 20, 2012

Dynamic and Adaptive Load Balancing using Harmony Search
in Grid Computing

Fatemeh Heydari† and Hadi Shahriar Shahhoseini††,

†,†† Electrical Engineering Department, Iran University of Science and Technology, Tehran, Iran

Summary
Applications of network-based systems like cluster and grid
systems have increased considerably in recent years. Load
balancing is an important concept in these systems, which is
implemented with the purpose of reducing execution time of
applications and increasing utilization of resources. An algorithm
is proposed in this paper for load balancing in the grid systems
which operates on the basis of harmony search algorithm. This
algorithm which is called Dynamic and Adaptive Harmony
Search (DAHS) distributes the load among heterogeneous
resources in a centralized and dynamic manner. DAHS
parameters are defined adaptively in order to solve the
difficulties of initialization. For creating a better load balancing,
the amount of load in each resource is evaluated after formation
of every harmony, such that a new task will not be assigned to it
if a resource has extra load. The required simulations are done in
GridSim simulator to investigate performance of this algorithm
and it was demonstrated that utilization of resources was greater
than 92% in DAHS method with mean square deviation being
smaller than 0.06%. Meanwhile, makespan of the proposed
method was found 10% lower in comparison with that of genetic
method.
Key words:
Load balancing,Harmony search, Grid computing, Makespan

1. Introduction

Grid computing enables access to computing resources
distributed in different positions for users [1],[2]. Such an
environment has distinctive characteristics which
distinguish them from other distributed systems and also
conventional parallel processing systems. Heterogeneity,
geographic distribution and being dynamic are some of the
most important characteristics. Method of task scheduling
and load balancing in these systems are of great
significance due to their heterogeneous and dynamic
features [1]-[3]. Load balancing includes distribution of
tasks on the computing resources with minimum execution
time and maximum utilization of resources.
One classification which has been presented for load
balancing methods, involves three general schemes,
namely centralized, distributed and hierarchical [4],[5]. In
the centralized method, all tasks are assigned to one
scheduler who is responsible for scheduling tasks on the

resources. In this method, since all information related to
scheduling are available, much better scheduling decisions
would be made. In the distributed method, there is no
central scheduler and scheduling is done by local
schedulers. This method is developable though the
produced scheduling might not be the optimal one.
Distributed methods are divided into cooperative and non-
cooperative methods based on whether they have
cooperation with each other or not [6]. In this method all
scheduling units are located at the same level, while
different levels of management are defined in the
hierarchical method. This method is in fact a combination
of two previous methods. From another point of view they
can be categorized as static, dynamic and adaptive [7]. In
the static algorithms, decisions associated with load
balancing are made within compile time and based on the
information guessed. Advantage of static load balancing is
its low overhead costs, because decision making is
accomplished just once before calculations. However, this
method can not conform to changes in computational
requirements of applications and state of system. On the
other hand, dynamic algorithms react toward changes in
state of the system and allocate tasks to resources during
execution time. In dynamic load balancing, it is possible to
reassign tasks to processors upon running the program. If a
node has extra load in the system, the task which has
caused the extra load shall be transferred to another node
and processed there. Task migration might incur great
overhead costs to the system. Dynamic load balancing
strategies are usually preferred to static load balancing
strategies when this overhead cost is controlled reasonably.
Adaptive algorithms are a special type of dynamic
algorithms. They accommodate their activities with
changes in state of the system which is done through
changing characteristics of the algorithm [8].
Numerous load balancing algorithms are provided in this
field so far some examples of which will be discussed here.
Zomaya and Teh introduced a dynamic genetic algorithm
for load balancing in distributed systems. They assumed
that the characteristics of tasks can be defined in advance
[9]. Le et al. presented algorithm which was a combination
of FCFS and genetic algorithms [10]. In this algorithm,
since there are small number of tasks in the queue, FCFS
algorithm can be used alternatively. The purpose of this

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

25

algorithm is to reduce execution time of the selected task
considering the information existing in the central
scheduler. Once the number of tasks available in the queue
is increased, genetic algorithm is used for load balancing.
In this situation, objective function is comprised of
makespan and mean square deviation of utilization from
resources. One major disadvantage of these two algorithms
is their not being adaptive. Ludwig et al. have presented
two distributed evolutionary algorithms for load balancing,
one based on ant colony optimization (ACO) and the other
based on particle swarm optimization (PSO) [11].
Performance of these algorithms has been compared in
terms of makespan and load balancing level with stochastic
algorithms and other common algorithms. The obtained
results indicate that the proposed PSO algorithm has a
superior performance as compared with the proposed ACO
algorithm. Maximum level of load balancing in these
algorithms is 81%.
Authors of this paper in [12] have used dependent task
scheduling in distributed systems statically which leads to
improved results of the suggested algorithm versus other
harmony algorithms.
Harmony search (HS) has been utilized for load balancing
in the grid, which distributes independent and
heterogeneous tasks in a dynamic and adaptive manner on
heterogeneous resources. Due to adaptive nature of the
algorithm, problems of choosing appropriate parameters
for it are solved. Task migration from overloaded
resources to underloaded resources is one step of dynamic
load balancing algorithms. Since task migration is rather
costly and practically complicated during execution or
after being allocated to the resources, it is usually
overlooked in some load balancing algorithms [13],[14].
One load rebalancing is implemented on it to solve this
problem after generating a new solution. In this case, if a
resource has some extra load then the new tasks which are
assigned to it will be handed over to the resource having
load shortage. Moreover, to evaluate fitness of each
solution, three criteria are considered: makespan, average
utilization of resources and mean square deviation of
resources load.
The remaining paper is organized as follows. In sections 2
and 3 load balancing and harmony algorithms are briefly
introduced. The proposed algorithm will be presented in
section 4, while simulation results have been demonstrated
in section 5. Finally, conclusions and future works will be
explained in section 6.

2. Load Balancing

One important issue in grid systems is load balancing
which is implemented in order to reduce execution time
and enhance performance. The system adopted in this work

has been shown in Fig. 1. This system includes N
heterogeneous resource with different processing power
and bandwidth. Processors are connected to each other
thoroughly. It has been assumed that the processors are
connected to each other without any interference. Tasks
are independent and indivisible. Tasks can be executed on
each of the resources having stochastic entry time and
Poisson distribution. Grid information service (GIS) is a
unit which collects dynamic information of resources in
definite time intervals and offers them to the scheduler.

Fig.1 system model

After sending the tasks by the user, they are placed in a
central queue which is related to the scheduler. A request
is sent for the scheduler when one of the resources
becomes idle. The scheduler selects from existing tasks in
the queue according to the size of sliding window and
executes the load balancing algorithm. If the number of
tasks waiting in the queue is smaller than the sliding
window, the scheduler will wait for a specific time and if
the number of tasks still remains smaller than the size of
window, it will select the same number of tasks and
transfers them for the resources. Harmony algorithm is
executed after selecting the tasks and then the tasks are
sent to the appropriate resource.

3. Harmony Search Algorithm

Harmony search algorithm is an evolutionary algorithm
introduced by Geem et al. in 2001 for the first time [15].
This algorithm imitates musical improvisation process.
Every solution is called a harmony in this algorithm. At
first, population of harmonies are generated stochastically
and then stored in harmony memory (HM).
HS generates the new solutions using three principles,
namely harmony memory consideration, pitch adjusting
and random selection [15-17]. Assuming the new harmony

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

26

as)}(),...,2(),1({ NhhhH newnewnewnew = , this process
can be implemented as below:

(1)),...,2,1()()(HMSijhjh inew ∈= ,
(2) ,())()(bwrandjhjh newnew ×±=
(3) ,))()((())()(jhjhrandjhjh LULnew −×+=

where, ()rand is a random number with uniform
distribution within range of [0,1]. HMCR , PAR and
HMS represent harmony memory consideration rate,
pitch adjusting rate and harmony memory size,
respectively.)(jhL and)(jhU are lower limit and upper

limit of the variable under study, respectively, while bw
stands for desired bandwidth.
Having generated the new harmony, if its fitness value
outperforms that of the worst harmony in memory, it will
be replaced and harmony generation is repeated until
termination condition is met.

4. Proposed Algorithm

4.1 Coding

In DAHS, a harmony is an array whose length is equal to
the size of sliding window. Each harmony represents the
resources to which the tasks are allocated. Fig. 2 shows the
harmony for load balancing problem with six tasks.

JR1 JR2 JR3 JR4 JR5 JR6
3 1 1 2 3 1

Fig. 2 Harmony representation

4.2 Fitness Function

Fitness function is a key feature of load balancing
algorithm which in fact indicates the amount of fitness for
each solution. Effective criterions of the fitness function
are introduced here first and then the fitness function is
expressed.
Eq.(4) describes how to calculate execution time of the
tasks allocated to each resource which is called load of
each resource hereafter. This value is comprised of the
time needed to accomplish calculations and the time
consumed to transfer tasks to resources.

∑

∑

=

=

+
+

+=

m

j i

m

j i
ii

RBW
jinputsizejoutputsize

Rpp
jtasklenghRtloadcurrenRload

1

1

)(
)()(

)(
)()()(

, (4)

where, iR is the desired resource, currentload is the

current load of each resource, tasklengh gives the

processing requirement of each task,)(iRpp represents

the processing power of each resource, BW is the
bandwidth between each resource with scheduler, and
finally, outputsize and inputsize offer the sizes of
output and input files, respectively. Makespan is the
completion time of the last task allocated to resources
which is provided by Eq.(5). Meanwhile, N is the number
of resources.

},...,2,1{))(max(NiRloadMakespan i == (5)

Utilization of each resource is defined as the ratio of
desired resource load to makespan which is explained by
Eq.(6). Average utilization of each resource is stated in
Eq.(7) as the criterion effective on fitness of a solution.

(6)
Makespan

RloadRU i
i

)()(= .

(7)

N

kU
AveU

N

k
∑
== 1

)(

The next criterion which is used to assess fitness of a
solution is mean square deviation of load (Eq.(8)).

(8)
N

loadloadN

i i∑=
−

= 1
2)(

σ .

Fitness function is defined in this algorithm as a function
of makespan, average utilization of resources and mean
square deviation of load, which is explained by Eq.(9). The
fitness function is inversely related to makespan and mean
square deviation. It is expected to decrease by increasing
each criteria of solution fitness. Fitness function is directly
related to the average utilization of resources because
increased average utilization is indicative of an acceptable
load balancing. Each criterion is applied with a specific
coefficient in the fitness function which can be modified

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

27

according to important of each for the user. Simulations
have been launched here assuming that α=β=γ=1.

(9)
σγβ

α
×××

×
=

Makespan
AveUfitness .

4.3 Algorithm Parameters

Previous studies reveal that definition of HMCR , PAR
and bw in an adaptive manner improves performance of
HS [12],[17].
In this paper, HMCR , PAR and bw in are considered
as functions of harmony fitness generated in the earlier
iteration which are described by Eq.(10), Eq.(11) and
Eq.(12), respectively. Parameters are the same as the ones
used in [12]. HMCR will be increased if the harmony of
former iteration shows a worse fitness versus the best
harmony available. Thereby, the existing harmonies in the
memory are used at a higher probability and changes are
less probable to be introduced on them.
Otherwise, HMCR will be decreased to choose the
harmony having greater probability stochastically. This
will cause not to be located in an inappropriate position so
that search will become possible throughout the whole
solution space.

(10)

<

≥×−

+

=

−

−
−

bestk

bestk
k

best

ffHNCR

ff
f
fHMCR

HMCRHMCR

kHMCR

1max

1
1

min

maxmin

)

(

)(

(11)

<

≥×−

−

=

−

−
−

bestk

bestk
k

best

ffPAR

ff
f
f

PAR

PARPAR

kPAR

1min

1
1

min

maxmax

)

(

)(

<

≥×−

−

=

−

−
−

bestk

bestk
k

best

ffbw

ff
f
f

bw

bwbw

kbw

1min

1
1

min

maxmax

)

(

)((12)

4.4 Load Rebalancing

When the resource has extra load and a task has been
allocated to it, then the task will be transferred to the
resource with the lowest load.

4.5 Process of DAHS Algorithm

Different steps of this algorithm are listed below:
Step 1: Parameters of the algorithm such as HMS , PAR ,
HMCR and bw must be initialized first.
Step 2: Harmony memory is generated stochastically by
uniform distribution.
Step 3: Algorithm parameters are defined adaptively.
Step 4: A new harmony is created.
Step 5: Load rebalancing is implemented.
Step 6: If the fitness of the new harmony outperforms that
of the fitness of worst harmony available, then this
harmony will be replaced by the worst harmony and the
algorithm will return to step three in order to realize one of
the two termination conditions, namely definite number of
iterations and constant fitness of the best harmony
available for 10% of total number of iterations.

5. Simulation Results

 A grid environment including a number of users and ten
resources has been taken into account for the purpose of
simulation. The resource characteristics of which are
summarized in Table 1. The resources defined are testbed
resources of WWG extracted from literature [18]-[20]. The
used simulation toolkit is GridSim.

Table 1: Characteristics of resources [20]

APE
SPEC/MIPS

Rating

Simulated resource characteristics
Vendor, Resource type, Node OS,

No of PEs
Resource

name

515 Compaq, AlphaServer, CPU,
OSF1, 4 RR0

377 Sun, Ultra, Solaris, 4 RR1

377 Sun, Ultra, Solaris, 4 RR2

377 Sun, Ultra, Solaris, 4 RR3

380 Intel, Pentium/VC820, Linux, 2 RR4

410 SGI, Origin 3200, IRIX, 6 RR5

410 SGI, Origin 3200, IRIX, 16 RR6

410 SGI, Origin 3200, IRIX, 6 RR7

380 Intel, Pentium/VC820, Linux, 2 RR8

410 SGI, Origin 3200, IRIX, 4 RR9

377 Sun, Ultra, Solaris, 8 RR10

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

28

In the following, the results of this method will be
compared with genetic algorithm to investigate
performance of DAHS. The genetic algorithm provided in
[9] is a dynamic load balancing algorithm which is chosen
as an appropriate reference for the purpose of comparison
[10],[21]. Parameters of this algorithm have been listed in
Table 2. The genetic algorithm under study is abbreviated
as DGA hereafter.

Table 2: Parameters of DGA
values Parameters

10 Window size
0.9 Crossover rate

0.14 Mutation rate
20 Population size
20 Number of generation

The size of harmony memory is defined as 5 for DAHS,
while number of iterations and sliding window size have
been assumed as 100 and 10, respectively.

5.1 Determination of Harmony Memory Size

Harmony memory size is one of the effective factors on
algorithm accuracy. A large harmony memory would
increase divergence which enhances the probability to
choose the worse element. However, a very small harmony
memory could increase the possibility to be located within
local optima. Therefore, selection of a reasonable size of
the harmony memory can establish equilibrium between
divergence and convergence of the solutions.
In order to achieve an appropriate value for harmony
memory size with a system whose characteristics are
summarized in Table 1, diagram of makespan in terms of
harmony memory size is are illustrated in Fig. 3, for 300
tasks having a length of 4000 to 8000, respectively. To
mitigate the stochastic effect of results, this experiment
was repeated 50 times. Results of simulation show that the
harmony memory size of 5 offers the minimum makespan.
Furthermore, this diagram confirms reduced performance
of very large and very small harmony memories.

100

105

110

115

120

125

130

3 5 7 9

M
ak

es
pa

n
(s

ec
on

d)

Size of Harmony Memory

DAHS

Fig. 3 Makespan of DAHS algorithm versus harmony memory size for

100 tasks

5.2 Changing the Number of Iterations

These experiments were done on 900 tasks with lengths of
4000 to 8000. It is well known that the number of
examined solutions by DAHS algorithms is increased by
raising the number of iterations which will lead to
increased accuracy of the algorithms and provision of the
most solution. First, the experiment was done assuming
that the sliding window size was 10 and its obtained results
are illustrated in Fig. 4. The following figure shows that
the value of makespan varies less than 2% after 100
iterations.

Fig. 4 Makespan of DAHS algorithm versus number of iterations for 900

tasks having length of 4000 to 8000 and sliding window size of 10

In order to select the best size for sliding window, the same
experiment was repeated for sizes of 20 and 30. The
obtained results are shown in Fig. 5 and Fig. 6. As can be
seen in the following figures, the value of makespan is set
to 2% of its final value for sliding window size of 20 after
400 iterations and for sliding window size of 30 after 800
iterations.

Fig. 5 Makespan of DAHS algorithm versus number of iterations for 900

tasks having length of 4000 to 8000 and sliding window size of 20

Investigation on the results obtained from three
experiments show that at small number of iterations (lower
than 50), the large sliding window size has produced much
better results. However, at large number of iterations, the
best answer seems to occur for the smaller sliding window

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

29

size. In further experiments, the sliding window size is
decreased and the number of iterations is increased to
reach more appropriate solutions. Thus, it is recommended
to take the sliding window size and the number of
iterations equal to 10 and 100, respectively.

Fig. 6 Makespan of DAHS algorithm versus number of iterations for 900

tasks having length of 4000 to 8000 and sliding window size of 30

5.3 Changing the Number of Tasks

The number of tasks is varied from 100 to 1100 and the
length of tasks has been assumed in the range of 4000-
8000. Makespan, mean square deviation of load, and
average utilization of resources have been shown in Fig. 7,
Fig. 8 and Fig. 9 for a specific number of tasks out of 20
runs of the algorithm. It can be observed that performance
of the algorithm is increased by raising the number of tasks
and this algorithm attains a good extendibility.
Performance of DAHS algorithm has been compared
versus that of DGA algorithm. The results uncover that
DAHS algorithm has smaller makespan in all cases. Mean
square deviation of DAHS is reported 2% smaller than
DGA, while average utilization of it is 2.73% higher than
that of DGA.

0

50

100

150

200

250

300

350

400

450

100 300 500 700 900 1100

M
ak

es
pa

n
(s

ec
on

d)

Number of Tasks

DAHS

DGA

Fig. 7 Makespan versus number of tasks for DAHS and DGA algorithms

Fig. 8 Average utilization of resources versus number of tasks for DAHS

and DGA algorithms

Fig. 9 Mean square deviation of load versus number of tasks for DAHS
and DGA algorithms

5.4 Changing the Length of Tasks

Makespan, mean square deviation of load, and average
utilization of resources have been evaluated for 300 tasks
with a length of 4000 to 8000. Generally speaking, the
execution time of tasks is increased at longer lengths of
them and choosing inappropriate is expected to incur great
variations in the load of resources. A look on Fig. 10
implies that increasing the lengths of tasks will naturally
raise scheduling length. Therefore, in order to assess
performance of the algorithm, mean square deviation of
load and average utilization of resources must be examined
(Fig. 11 and Fig. 12). It can be seen that DAHS algorithm
reduces the mean square deviation 3.24% in comparison
with DGA algorithm, while raises the average utilization of
resources for about 1.8%. Results of simulation reveal that
DAHS algorithm is more efficient for smaller tasks, so one
should increase the number of iterations to attain better
time solutions with longer tasks.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

30

0

200

400

600

800

1000

1200

6300 18900 31500 44100 56700

M
ak

es
pa

n
(s

ec
on

d)

Lengh of Tasks

DAHS

DGA

Fig. 10 Makespan versus length of tasks for 300 tasks in DAHS and

DGA algorithms

Fig. 11 Mean square deviation of load versus length of tasks for 300
tasks in DAHS and DGA algorithms

Fig. 12 Average utilization of resources versus length of tasks for 300

tasks in DAHS and DGA algorithms

6. Conclusion

The aim of this paper was to provide an algorithm which
was able to create load balancing and grid computing.
Harmony algorithms were utilized for this purpose.
Parameters of the algorithm were defined as adaptive to

improve this algorithm. These parameters are a function of
fitness from the previous generation.
When a resource has extra load and a task has been
allocated to it in the new solution, this task would be
transferred to the underload resource. The results of
simulation show that utilization of resources and mean
square deviation in DAHS are more than 92% and less
than 0.06%, respectively. Comparison of DAHS versus
DGA reveals a 10% improvement in makespan as well as a
3% enhancement in utilization.
Future works can concentrate on a combination of the
proposed algorithm with the evolutionary algorithms in
order to increase rate of convergence. Meanwhile, the
current algorithm can be applied to cloud computing by
addition of some more specifications.

References
[1] Foster, I., Zhao, Y., Raicu, I., Lu, S., “Cloud Computing

and Grid Computing 360-Degree Compared,” Grid
Computing Environments Workshop, pp. 1-10, 2008.

[2] Zeng, J.T., Xia, J.W., Li, J.Z., Li, M.H., “Multi-objective
Optimal Grid Workflow Scheduling with QoS Constraints,”
Journal of Advances in Soft Computing, pp. 839-847, 2009.

[3] Hu, Y., Xing, L., Zhang, W., Xiao, M.H., Tang, D., “A
Knowledge-Based Ant Colony Optimization for a Grid
Workflow Scheduling Problem,” Lecture Notes in Computer
Science, pp. 241-248, 2010.

[4] K. Li, “Optimal load distribution in nondedicated
heterogeneous cluster and grid computing environments,”
Journal of Systems Architecture, pp. 1-13, 2007.

[5] Y. Li, Y. Yang, M. Ma, L. Zhou, “A hybrid load balancing
strategy of sequential tasks for grid computing
environments,” Journal of Future Generation Computer
Systems, Vol. 25, pp. 819-828, 2009.

[6] M. El-Darieby, D.Krishnamurthy, "A Scalable Wide-Area
Grid Resource Management Framework", Proceedings of
the International conference on Networking and Services,
pp. 76–84, 2006.

[7] N.G. Shivaratri, P.Krueger, and M.Singhal, “Load
Distributing for Locally Distributed Systems,” Computer,
Vol. 25, Issue 12, pp.33-44, 1992.

[8] M. Beltrán and A. Guzmán, “How to balance the load on
Heterogeneous cluster,” International Journal of High
Performance Computing Applications, Vol. 23, No. 1, pp.
99–118, 2009.

[9] Zomaya, A.Y., Teh, Y.H.,“ Observations on using genetic
algorithms for dynamic Load Balancing,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 12,
Issue 9, pp. 899-912, 2001.

[10] 3T Li 3T, Y., 3T Yang3T, Y., 3T Zhu 3T, R., “A Hybrid Load Balancing
Strategy of Sequential tasks for Grid Computing
Environment,” Future Generation Computer Systems, Vol.
25, Issue 8, pp.819-828, 2009.

[11] 3T Ludwig3T, S.A., 3TMoallem3T, A., “Swarm Intelligence
Approaches for Grid Load Balancing, ” 3TJournal of Grid
Computing3T, 3T Vol. 9, No. 3 3T, pp. 0T279-301, 2011.

[12] 0THeydari, F., Shahhoseini 0T, 0T H.S., 0T “Adaptive Algorithm for
Task scheduling in the Distributed Heterogeneous Systems

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yajun%20Li.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yuhang%20Yang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Rongbo%20Zhu.QT.&newsearch=partialPref
http://www.springerlink.com/content/?Author=Simone+A.+Ludwig
http://www.springerlink.com/content/?Author=Azin+Moallem
http://www.springerlink.com/content/1570-7873/
http://www.springerlink.com/content/1570-7873/
http://www.springerlink.com/content/1570-7873/9/3/

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

31

using Harmony Search,” The 7th International Conference
on Networked Computing (INC), pp.11-16, 2011.

[13] Subrata, R., Zomaya, A.Y. and Landfeldt, B., “Artificial life
techniques for load balancing in computational grids,”
Journal of Computer and System Sciences, 73(8):1176-
1190, 2007

[14] Lazowska, E. D., Eager, D. L. and Zahorjan, J., "The limited
performance benefits of migrating active processes for load
sharing", Performance Evaluation Review, pp. 63-72, 1998.

[15] Geem, Z.W., Kim, J.H. and Loganathan, G.V., “A new
heuristic optimization algorithm: harmony search,”
Simulation, Vol. 76, pp.60-68, 2001.

[16] Chen, J., Pan, Q. and Li, H., “Harmony search algorithm
with dynamic subpopulations for scheduling identical
parallel machines,” Sixth International Conference on
Natural Computation, Vol. 5, pp.2369-2373, 2010.

[17] Mahdavi, M., Fesanghary, M. and Damangir, E., “An
improved harmony search algorithm for solving
optimization problems,” Mathematics and Computation,
Vol. 188, pp.1567-1579, 2007.

[18] Buyya, R. and Murshed, M., “Gridsim: A toolkit for the
modeling and simulation of distributed resource
management and scheduling for grid computing,” Journal
of Concurrency and Computation: Practice and Experience,
Vol. 14, pp.13-15, 2002.

[19] Sulistio, A., Buyya, R., “A grid simulation infrastructure
supporting advance reservation,” Proceedings of the 16th
International Conference on Parallel and Distributed
Computing Systems, pp. 1-7, 2004.

[20] David Abramson, Rajkumar Buyya, Manzur Murshed, and
Srikumar Venugopal. Scheduling parameter sweep
applications on global Grids: A deadline and budget
constrained cost-time optimisation algorithm. International
Journal of Software: Practice and Experience (SPE), 35(5):
491-512, 2005.

[21] Sahoo, B., Mohapatra, S. and Jena, S.K., “A Genetic
Algorithm Based Dynamic Load Balancing Scheme for
Heterogeneous Distributed Systems,” Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications, Vol. 2, pp. 499-
505, 2008.

Fatemeh Heydari received her MSEE
degrees from the Iran University of
Science and Technology (IUST) in 2011.
Her research interests include performance
evaluation of distributed systems, grid
computing and scheduling.

Hadi Shahriar Shahhoseini received his
BS degree in electrical engineering from
the University of Tehran in 1990, his MS
degree in electrical engineering from Azad
University of Tehran in 1994, and his PhD
degree in electrical engineering from the
IUST in 1999. He is an assistant professor
of the electrical engineering department in
the IUST. His areas of research include

networking, supercomputing, and reconfigurable computing.
More Than 130 papers have been published from his research
works in scientific journals and conference proceedings.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6047356
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6047356
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5584549&queryText%3Dharmony+search+algorithm+with+dynamic+subpopulation%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5584549&queryText%3Dharmony+search+algorithm+with+dynamic+subpopulation%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5584549&queryText%3Dharmony+search+algorithm+with+dynamic+subpopulation%26openedRefinements%3D*%26searchField%3DSearch+All

