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Summary 
In this paper, we compared the score functions for edge 
orientation problem in estimation of genetic network from DNA 
microarray data. We focused four score functions, Bayesian 
Information Criterion(BIC), Bayesian-Dirichlet Metric(BDM), 
K2 Metric and PageRank Orientation Metric(PROM). To 
compare and evaluate the performance of each score function in 
various situations, we generated genetic networks changes of 
gene expression level, artificially. To generate such artificial 
networks, we used subsampling technique from large-scale real 
transcriptional regulatory network. To determine the set of genes 
that observed their expression level changed, we considered not 
only the structures of generated networks, but also the certain 
type of gene regulation that it makes difficult to detect the change 
of expression levels in knock-out or knock-down DNA 
microarray experiments. 
Key words: 
TRNs estimation, Edge Orientation Problem, Bayesian score 
functions, PageRank Orientation Metric 

1. Introduction 

Inside life-form cells, many genes or proteins interact each 
other, and these interactions utilize certain biological 
functions. Recently years, the understanding of these 
complex interactions had received attentions. The 
technique that can observe the expressions of large amount 
of genes at a time gives us massive information about the 
internal connections among genes in life-form cells. As a 
instance of such technique, we can see DNA microarray[1]. 
Up to now, various studies using DNA microarray data has 
been done. In those studies, the estimation of 
transcriptional regulatory networks(TRNs) is the one of 
most challenging topic. TRNs represent the relationships 
about regulatory among genes as a directed and edge-
labeled graph in which each node represent a gene and 
edge denotes that existence regulatory relationship among 
genes. The labels on each edge are corresponding to 
whether the corresponding regulation is positive or 
negative regulation. 

Recently years, various methods to estimate TRNs from 
DNA microarray data have been proposed. As first 
example of them, we can cite Boolean network. Boolean 
network represents gene expression as binomial value, on 
or off, and considers the relationships among genes as 

logical functions constructed from logical operators such 
NOT, OR and AND among them. Akutsu et al[2] and 
Liang[3] used gene expression data based on various 
experimental conditions and proposed the method to 
estimate Boolean network. While Boolean network model 
can represent the complex relationships among genes 
simply, it has pointed out its weakness to the noise on 
DNA microarray data. To solve that, Akutsu[4] and 
Shumulevich et al[5] proposed that new Boolean network 
model that can handle noise and method to estimate it 
from noisy DNA microarray data. 

As the another example of the estimation method, 
Friedman et al[6] proposed that method based on Bayesian 
network model that is one kind of graphical model. The 
method that based on Bayesian network model had 
succeeded to reconstruct the relatively large TRNs 
comparing to another method. However, almost Bayesian 
network model has to discretize continuous DNA 
microarray data as the processing of estimation. This 
denotes that the estimation results may depend on the 
result of discretization. To solve that problem, Friedman et 
al[6] extended Bayesian network by linear model and 
Imoto et al[7] produced the method that based on non-
parametric regression model. While the approaches based 
on Bayesian network were very successful, they have a 
difficulty for application to estimation of actual TRNs. 
That is, the class of TRNs that Bayesian network model 
can handle limited to that ones have no cyclic structure. It 
is said that such cyclic structures exist in real life-form 
system such as metabolic system for glucose. Therefore, 
there are some difficult cases to apply Bayesian network 
approach to. To exceed that limitation, Kim et al[8] 
proposed new kind of Bayesian network, that called 
Dynamic Bayesian network. By using time series 
expression data, the model can estimate the cyclic 
regulatory relationships. However, it is said that 
computational complexity of such Bayesian methods that 
use time-seriese data is so high and then, it becomes 
difficult to estimate TRNs in practical size. 

The methods that showed above estimated TRNs as 
directed networks. On the other hand, Toh et al[9] and 
Basso et al[10] had proposed the method to estimate 
genetic network as undirected network. However, it is 
difficult to say that we can understand the underlying 
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phenomena, such as disease developments, without the 
knowledge about the directions of regulatory relationships. 

To overcome the problem that undirected network 
estimation methods contain, Afuso et al[11] proposed the 
method was constructed from two steps. At first step of 
that method, causal relationships among genes are detected 
as paths without direction. And next, searching the 
orientation to obtained undirected paths such that 
maximize certain score function would be utilized. To 
determine the orientation of undirected edge, i.e., to 
determine the direction of causal relationships, we can use 
several score functions. As traditional score function, one 
can see Bayesian Information Criterion(BIC), Bayesian 
Dirichlet Metric(BDM) and K2 Metric. And also, in 
Afuso[], new kind of score function, called PageRank 
Orientation Metric(PROM), had been proposed for 
orientation to undirected edges. Although, in actual case, it 
is difficult to determine which score function is more 
suitable for orientation to given undirected graphs. 

In this paper, we compared four score functions above, 
BIC, BDE, K2 and PROM, to determine which score 
function can lead more accurate edge orientation. To 
compare those score functions in various situations, we 
need varied patterns of DNA microarray data and TRNs. 
But it is difficult to collect such actual data. Then, in this 
paper, the artificial TRNs and DNA microarray data were 
generated. Using artificial TRNs and generated DNA 
microarray data from those, comparisons of four score 
functions were utilized according to local landscape 
around the true orientation. 

The rests of this paper were organized as follows. First 
we gave the explanation about the problem that originally 
defined in Afuso[11] and modified it slightly to make the 
comparison of score function easier. Second, we showed 
brief introduction about four score functions compared in 
this paper. Next, the generation method of artificial TRNs 
was shown. After that, we proposed the method to 
generate artificial data denotes DNA expression level 
changes from artificial TRNs. After that, we utilized the 
comparative experiments using TRNs in E.coli. And 
finally, we concluded our results. 

2. Edge Orientation Problem 

In this paper, we focused the problem that corresponds to 
Edge Orientation Phase in Afuso[11]. We call this problem 
Edge Orientation Problem. it is to find the orientation to 
each edge in given undirected graph such maximize 
certain score function. The problem is formulated as 
follows. 
 
[INPUT] 
1. Undirected graph G that represents direct interaction 
among genes. 

2. (n, d) matrix M contains the resulted value of DNA 
microarray experiments. Where n and d denote the number 
of samples and the one of vertices, respectively. Note that 
this matrix M contains continuous value corresponding 
expression of each gene in its elements. 
3. Score function score for evaluation of the directed graph 
G’ that obtained by assigning orientations to each edge in 
undirected graph G. 
[OUTPUT] 
Directed graph G’ such that maximize the value of given 
score function, score. 
 
Originally, the one of input of edge orientation problem 
was a matrix that elements contain the results of DNA 
microarray experiments. On the other hand, we need to 
discretize given data to calculate the BIC or other score 
function. Then, in actual analysis, we have to distinguish 
the genes which their expression level had been changed 
from these continuous values. There are various criteria to 
make such decision among biologists and it has huge 
effect for DNA microarray analysis. We wanted to 
compare just only ability of edge orientation without 
considering such critical problem. To do so, we modified 
above problem as follows. 
 
[INPUT] 
1. Undirected graph G that represents direct interaction 
among genes. 
2’ (n, d) binary matrix M’ contains the {0, 1} value 
according to corresponding gene’ expression level 
changed or not.  
3. Score function score for evaluation of the directed graph 
G’ that obtained by assigning orientations to each edge in 
undirected graph G. 
[OUTPUT] 
Directed graph G’ such that maximize the value of given 
score function, score. 
 
Modified point is only that continuous input matrix M to 
binomial matrix M’. Matrix M’ contains the information 
about the change of expression level for each gene. In this 
sense, we refer this matrix M’ as Gene Expression Level 
Change(GELC) data matrix. Considering this modified 
Edge Orientation Problem, we compared the performance 
of each score function for edge orientation. 

3. Score Functions for Edge Orientation 

In the Edge Orientation Problem, there are four score 
functions. Bayesian Information Criterion(BIC) is most 
popular one of Bayesian approach. In this score function, 
all variables in the network are assumed that they are 
samples from multinomial distribution.  It is based on 
maximization of posterior probability. BIC score of 
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directed graph S is calculated with following expression 
Eq.1 

   (1) 

 
where denote the number of  variables, the one 
of value configuration of parents of variable i and one of 
instances of variable i, respectively. corresponds to the 
frequency of k-th  instance of the value of variable i, in the 
j-th situation of parents’ condition. The term Dim(S)log(N) 
is the penalty for complexity of the structure of directed 
graph S. is the prior information about the frequencies 
of corresponding instances in each parents’ state. That 
constant can be considered as the pseudo-frequency of the 
instances that not observed in actual data. If one has no 
information about the variables, they set to zero. 
Bayesian Dirichlet Metric(BDM) is a another score 
function based on Bayesian approach. Given a directed 
graph S, corresponding BDM score BDM(S) is calculated 
by following formula, Eq.2. 
 

 (2) 

 
where  denotes the gamma function and  are the 
parameters that Dirichlet distribution. BDM can be 
obtained based on the assumption, so-called Dirichlet 
prior. In that assumption, each variable in given Bayesian 
network is considered should be observed in the data 
according to corresponding parameters in Dirichlet 
distribution. In other words, each variable is Dirichlet 
distributed under the certain prior conditions. If there is no 
prior information about the probability distributions of 
variables, then its parameters  are set to one certain 
value. In such special and typical case, BDM are also 
called Bayesian Dirichlet equivalent Metric(BDe). 
As one more another kind of score function based on 
Bayesian approach, we can see K2 Metric. K2 Metric is 
special case of BDM. In BDM, if we have no information 
about the probability distribution that each variable is 
distributed, the parameters in Dirichlet distribution are set 
to certain same value. In K2 Metric, in addition, the value 
set to 1. In such case, variables are not according to 
Dirichlet distribution. Instead of that, they are distributed 
by unique distribution. K2 Metric can be calculated by 
using following formula, Eq.3. 

 (3) 

Previous four score functions are based on probabilistic 
approach. On the other hand, in Afuso[11], the score 
function is based on network structure had been pro- posed. 
This score function is called as PageRank[12] Orientation 
Metric(PROM). In the calculation of it, at first, we 
estimate PageRank of the target TRNs from given DNA 
microarray data. Next, PageRank value of candidate TRNs 
is also calculated. And finally, these two PageRank values 
are compared and if these values are similar, then 
candidate and target TRNs are considered as also be 
similar. To estimate the PageRank value from DNA 
microarray data, the absolute values in the data are 
summed up over the experiments and normalized it to 
ensure that its 1-norm is 1, same like to original PageRank 
vector is. To measure the similarity between estimated 
PageRank from data and the one from candidate TRNs, we 
used correlation function because PageRank is relative 
value.  To summarize, the PROM value PROM(S) 
corresponding to given directed graph S is calculated with 
the formula, Eq.4. 
 

  (4) 
 
In Eq.4, denote the estimated and 
calculated PageRank, respectively. 
Using these four score functions, we can estimate structure 
of Bayesian network. In other words, we can obtain the 
orientation to each path in given undirected graph. 

4. Generation of Artificial Data for 
Comparison Experiment 

To compare the score functions above in varied situations, 
we need various type of TRNs that are known whole 
structure in advance and DNA microarray data 
corresponding those networks. However, it is difficult to 
collect such actual data. Instead of that, we used the 
artificial data. The generation method of artificial data is 
constructed from two parts, generation of artificial TRNs 
and one of artificial GELC data matrix.  

4. 1 Generation of Artificial TRNs 

For valid comparison, it is necessary to produce realistic 
TRNs. In other words, we need to generate the network 
that has structural property similar to actual TRNs. In 
some researches, such structural property had been shown. 
As one interesting example of that, we can see the 
existence of network motifs[13] in actual TRNs. Network 
motifs denote the sub-structures that occur in given 
network, significantly. As other example, there are two 
major structural property, Scale-free[14] and Small-world 
property[15]. Scale-free property denotes that the network 
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has hierarchical structure. Small-world property can be 
considered that denotes rough density of edges in any sub-
structure. To generate realistic network that has properties 
above artificially, the generation method had been 
proposed[16]. Its main idea is the extraction of sub-
structure in large actual network given in advance.  The 
subgraphs extracted with such way are called Modules. 
The method to extract modules used the certain score, so-
called Modularity[17]. Modularity reflects the significance 
of edge density in extracted module. It represents the 
difference of expectation value of edge density in given 
module comparing with the one that assumed its vertices 
were connected at random. Module extraction starts from a 
seed vertex that is selected randomly among the nodes of 
the source network. From this seed, a subgraph is grown 
by iteratively adding vertices to it until a desired size is 
reached. At each step, from all neighbors of the subgraph, 
we select the vertex that leads to the highest modularity Q. 
 

   (5) 

 
where m is the total number of edges in the graph, s is the 
index vector defining the module such that if vertex 

i  is part of the module and , if vertex i is not. 
Matrix B is called Modularity matrix with elements 

.  is the actual number of edges between 
vertex i and j and  is expected number of 

edges in a randomized graph.  is a degree of vertex i.  
Using this modularity extraction method and real large 
TRNs of E.coli[18] we generated artificial TRNs in our 
experiments. 

4. 2 Generation of Artificial Data 

To generate GELC data matrix from given TRN, we were 
used the effect propagation model. It was constructed from 
following assumptions. First, in the each DNA microarray 
experiment, only one gene would be changed its 
expression level by experimental stimulation. This means 
that we can control each gene’s expression level ideally. 
Second, the generated effect of expression level changes in 
a particular gene g would be propagated to a gene g’ that is 
regulated by gene g and g’ would be chosen at random 
from genes regulated by g. This assumption models that 
selective regulation of genes controlled by unobservable 
variables. And Finally, in each DNA microarray 
experiment, the changes of expression level never vanish 
until they are observed. This assumption is corresponding 
to that speed of effect propagation is high enough 
comparing to the interval of observation in DNA 
microarray experiments. Summing up above assumption, 

in our propagation model, each effect of expression level 
change is propagated at random according to the structure 
of corresponding TRN. In other words, propagation can be 
considered as a random walk over the TRN. By iterating 
this random walk, we generated artificial gene expression 
level change data corresponding to given TRN. From 
adjacency matrix A corresponding to given TRN, we 
generated artificial gene expression data matrix M’ with 
following pseudo-code, GENERATEARTICIFIALDATA. 
 
procedure GENERATEARTIFICIALDATA(Adjacency matrix 
A of corresponding to TRN, Size of data m) 
1  :   matrix M’ = 0. 
2  :   i = 0 
3  :   WHILE(i < m) 
4  :      vector v = 0 
5  :      vector u = v 
6  :      Select a index i of v at random 
7  :       
9  :       REPEAT 
10:          

11:         Select a index j from which elements of  is 1. 
12:          
13:         u = u + v 
14:      UNTIL any elements of u were unchanged. 
15:      Set u to i-th row of M’ 
16:      i = i + 1 
15:   END WHILE 
18:   RETURN M’ 

Procedure. 1  Procedure of  Data Generation from given TRN. 

Using above procedure, we generated the artificial gene 
expression level data that elements have 0 or 1.  

5. Design of Comparison Experiments 

To clarify which score function lead to accurate 
orientation, we compared the four score functions, BIC, 
BDM, K2 and PROM. For utilization of valid comparison 
of them, we designed comparison experiments as follows. 

5. 1 Data Preparation 

In the generation of artificial TRNs using module 
extraction method shown in Section 3.1, we have only one 
real large TRN of E.coli[18]. Because of such restriction, 
we have to confirm extracted TRNs contain varied sub-
structures of real one. On the other hand, to capture the 
feature of structure of given network, some network 
characteristics had been proposed, such as average 
clustering coefficient[19]. It is possible to represent given 
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network as a vector of such network characteristics value. 
Then, we prepared TRNs that have 100 vertices for each 
using following steps.  
1. Generate 160 TRN that each one has 100 vertices 

using module extraction method and large real E.coli 
TRN[18]. The real TRN we used contains 1,565(about 
1,600) vertices and initial vertex of module extraction 
was determined at random. From these facts, we 
extracted 160 TRNs so that each vertex in real TRN 
could be extracted ten times averagely. 

2. Calculate 13 network characteristics for each generate 
TRNs to represent each TRN as a 13 dimensional 
vector. After such vector representation, normaliza-
tion of each dimension was utilized. Now, we have 
160 vectors in 13-dimensional space. See Appendix 
for details of 13 network characteristics we used. 

3. Execute clustering using Ward method and Euclid 
distance. By considering obtained dendrogram, we 
manually divide them into some clusters. 

4. Choose centroids for each cluster as test subject TRNs.  
 

By using above steps, we can generate artificial TRNs 
that contains varied structure similar to real one. In this 
paper, we generated 11 representative TRNs as test subject. 
From obtained TRNs, we constructed GELC data matrix 
using Procedure.1 shown in Section 3.2. Considering that 
the accuracy of PageRank estimation from artificial data 
might be influenced by the number of sampled random 
walks, we generated GELC data matrix in three cases, the 
matrix consists of 1000, 10,000, and 100,000 samples. 
And also, considering that the source point of random 
walk is chosen at random, we produced 30 GELC data 
matrix for each case. Eventually, we constructed the 
dataset consists of 11 TRNs and for each TRN, 
corresponding GELC data that contains 30 GELC data 
matrices in three cases. 

5. 2 Evaluation Index 

In the comparison of score functions, we focused the point 
whether true orientation of each TRN would be optimum 
solution when some candidates of orientations are given. 
That is to say, we focused the coherence of score functions 
to true orientation. If given score function of orientation 
doesn’t have such coherence, it becomes difficult to find 
true orientation by solving optimization problem with such 
score function. In this sense, the coherence is critical index. 
In the evaluation of score functions using coherence, we 
need to determine the set of candidates as solutions of 
edge orientation problem. To this end, we produced 
candidates from each TRN by alternating the direction for 
each edge in true TRN. To measure the coherence of score 
functions, we used the ratio of the solutions that has better 
score value than true TRNs, as score. We referred this 
score as R score in this paper. As shown in Section 4.1, 

GELC dataset contained 30 data for each case of the 
number of samples. Then, we calculated minimum and 
maximum of R score in 30 data for each case. They 
correspond to best and worst coherence in 30 trials, 
respectively. Using minimum and maximum of R score, 
the coherence of score function had been measured in the 
comparison experiments.  

5. 3 Other Parameter Settings 

In the experiments, we assumed that no information about 
the probability of each gene expression was given. Then, 
all parameters to BDM were set to 10. For calculation of 
PageRank of candidate directed graph, the damping factor 
was set to 0.85. 

6. Experimental Result 

In this section, we showed the comparison results in 
obtained from above experiments.  

The minimum values of R score in each case of the 
number of samples were shown in Table.1 to .3. In those 
tables, the best value was typed in bold and underlined.  
As shown in Table.1 to .3, PROM resulted best in almost 
TRNs.  And K2 could not lead best result in any case in 
these experiments. In these experiments, it was shown that 
PROM is preferred for almost TRNs  that extracted from 
E.coli TRN in view of best coherence. However, from 
Table.4, we can see that PROM resulted worst value and 
BIC lead best value for all TRNs. These results show that 
it is risky to use PROM for edge orientation in the case 
that the number of samples is small. But Table.5 and .6, 
such risk decreases as increasing the number of samples. 
Eventually, as shown in Table.6, PROM would be best 
choice in the case such we have enough number of 
samples comparing to the number of vertices. And PROM 
only had such monotonic response against the increasing 
the number of samples.  

Summing up above results, PROM would be better 
choice in the case that we can assume that give data was 
produced under the random propagation model. 

7. Conclusion 

In this paper, we compared four score functions for edge 
orientation problem to clarify which one is suitable for 
various TRNs’ structures. To this end, we generated many 
artificial TRNs using the module extraction method. And 
next, we selected representatives to ensure that obtained 
TRNs contain varied structure of real TRN of E.coli. 
Using generated TRNs, GELC data was constructed by 
using certain model that means ideal experimental 
conditions in DNA microarray experiments. The 
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comparison was utilized focusing to the coherence of score 
functions because that property of score function is critical 
for finding the accurate edge orientation by solving 
optimization problem. The comparison results showed that, 
PROM would be better choice under the situation we can 
assume that given data was produced by random walk over 
TRNs with enough large sample size. 

In this paper, we focused only ideal GELC data 
generation model. Then as future task, we can see other  
comparison experiments under the more plausible GELC 
generation model. 
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Table 1 Minimum R scores with 1,000 samples 

Function TRN #1 TRN #2 TRN #3 TRN #4 
BIC 0.039 0.000 0.483  0.052 

BDM 0.039 0.000 0.425  0.052 
K2 0.137  0.033  0.266  0.260  

PROM 0.000  0.000  0.053  0.000  
Function TRN #5 TRN #6 TRN #7 TRN #8 

BIC 0.311  0.057 0.037  0.270  
BDM 0.246  0.057 0.029  0.390  

K2 0.275  0.209 0.119  0.306  
PROM 0.004  0.021 0.000  0.000  

Function TRN #9 TRN #10 TRN #11 
BIC 0.012  0.016  0.217 

BDM 0.006  0.016  0.200 
K2 0.234  0.213  0.356 

PROM 0.028  0.012  0.018 
 

Table 2 Minimum R scores with 10,000 samples 
Function TRN #1 TRN #2 TRN #3 TRN #4 

BIC 0.039  0.000  0.491  0.052  
BDM 0.078  0.279  0.366  0.052  

K2 0.186 0.101 0.375  0.513  
PROM 0.000  0.000  0.000  0.000  

Function TRN #5 TRN #6 TRN #7 TRN #8 
BIC 0.362 0.057  0.037 0.290  

BDM 0.434 0.076 0.246 0.418 
K2 0.420  0.257 0.276 0.597 

PROM 0.000  0.136 0.000  0.000  
Function TRN #9 TRN #10 TRN #11 

BIC 0.018 0.016 0.200 
BDM 0.066 0.180 0.278 

K2 0.349 0.270 0.408 
PROM 0.004  0.000  0.000 

 
Table 3 Minimum R scores with 100,000 samples 

Function TRN #1 TRN #2 TRN #3 TRN #4 
BIC 0.029 0.000 0.425 0.000 

BDM 0.049 0.338 0.241 0.304 
K2 0.166 0.084 0.350 0.747 

PROM 0.000 0.000 0.000 0.000 
Function TRN #5 TRN #6 TRN #7 TRN #8 
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BIC 0.311 0.047 0.022 0.294 
BDM 0.362 0.104 0.328 0.597 

K2 0.391 0.219 0.425 0.824 
PROM 0.000 0.122 0.000 0.000 

Function TRN #9 TRN #10 TRN #11 
BIC 0.006 0.008 0.217 

BDM 0.271 0.319 0.234 
K2 0.475 0.532 0.400 

PROM 0.004 0.000 0.000 
 

Table 4 Maximum R scores with 1,000 samples 
Function TRN #1 TRN #2 TRN #3 TRN #4 

BIC 0.059 0.305 0.558 0.243 
BDM 0.490 0.331 0.658 0.417 

K2 0.853 0.881 0.725 0.826 
PROM 0.875 1.000 0.750 0.538 

Function TRN #5 TRN #6 TRN #7 TRN #8 
BIC 0.449 0.200 0.194 0.311 

BDM 0.522 0.400 0.284 0.458 
K2 0.812 0.714 0.858 0.582 

PROM 0.714 0.835 0.641 0.616 
Function TRN #9 TRN #10 TRN #11 

BIC 0.181 0.107 0.383 
BDM 0.247 0.393 0.600 

K2 0.693 0.820 0.765 
PROM 0.882 0.795 0.380 

 
Table 5 Maximum R scores with 10,000 samples 

Function TRN #1 TRN #2 TRN #3 TRN #4 
BIC 0.245 0.178 0.633 0.252 

BDM 0.598 0.805 0.575 0.461 
K2 0.892 0.873 0.675 0.843 

PROM 0.600 1.000 0.447 0.092 
Function TRN #5 TRN #6 TRN #7 TRN #8 

BIC 0.449 0.419 0.239 0.315 
BDM 0.558 0.638 0.567 0.478 

K2 0.819 0.667 0.851 0.765 
PROM 0.022 0.705 0.019 0.007 

Function TRN #9 TRN #10 TRN #11 
BIC 0.133 0.262 0.278 

BDM 0.373 0.648 0.565 
K2 0.729 0.910 0.800 

PROM 0.373 0.487 0.038 
 

Table 6 Maximum R scores with 100,000 samples 
Function TRN #1 TRN #2 TRN #3 TRN #4 

BIC 0.176 0.364 0.500 0.374 
BDM 0.863 0.831 0.358 0.643 

K2 0.882 0.983 0.442 0.939 
PROM 0.008 0.254 0.008 0.000 

Function TRN #5 TRN #6 TRN #7 TRN #8 
BIC 0.370 0.476 0.201 0.315 

BDM 0.536 0.533 0.619 0.649 
K2 0.623 0.400 0.910 0.912 

PROM 0.013 0.345 0.006 0.000 
Function TRN #9 TRN #10 TRN #11 

BIC 0.048 0.320 0.548 
BDM 0.506 0.762 0.548 

K2 0.741 0.861 0.713 
PROM 0.085 0.006 0.025 
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Appendix: List of Network Characteristics 

We used following 13 network characteristics to represent 
give TRN as a vector.  

List of  network characteristics used in this paper 
Density of edges, Mean of in-degrees, Variance of in-
degrees, Mean of out-degrees, Variance of out-degrees, 
Mean of path length, Variance of path length, Mean of 
clustering coefficient, Variance of clustering coefficient, 
Mean of closeness, Variance of closeness, Mean of 
betweenness and Variance of betweenness 
 
 


