
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

39

Manuscript received September 5, 2012
Manuscript revised September 20, 2012

Hybrid Job Scheduling Mechanism Using a Backfill-based
Multi-queue Strategy in Distributed Grid Computing

Kiejin Park † Changhoon Kang †† and Sungsook Kim †††

†Ajou University, Suwon, Gyeonggi-do, South Korea
†† Gangdong College, Icheon, Gyeonggi-do, South Korea

††† Anyang University, Anyang, Gyeonggi-do, South Korea

Summary
In a distributed computing environment, effective job scheduling
is a critical challenge. In this paper, a hybrid job scheduling
mechanism is proposed that considers both the meta-scheduling
scheme for distributing jobs to overall nodes and the local job
scheduling scheme for assigning jobs within a local node at a
simultaneous time. Depending on the number of required
processors and the expected execution time of jobs, the order of
priorities is established. Jobs with high priority are then allocated
to a job queue whereas those with low priority are assigned to a
backfill queue with remote jobs that are sent from other nodes.
Experiments conducted to evaluate the performance of the
proposed mechanism show that the utilization of a grid
computing system becomes more efficient and waiting times are
considerably reduced.
Key words:
Meta-scheduling, Job scheduling, Backfill scheduling, Distributed
Grid computing

1. Introduction

As modern technologies advance, high-performance
computing power is more desired to solve complex and
large-scale computation problems. To meet this need, a
significant amount of research has been conducted to
exploit grid computing, which binds up heterogeneous
computing resources into a single high performance system
[1]. Recently, a variety of grid tools have been developed
to support the basic grid services such as 1) grid resource
discovery service to locate available resources that are
connected to grids [2], 2) grid job scheduling service to
distribute and schedule jobs for an efficient processing, 3)
grid security service for the system protection, and 4) grid
accounting service to assess costs incurred by using the
computing resources [3]. In addition, the research on the
grid middleware like Globus [4] and Legion [5] have made
implementations of grid application programs much easier.
In a grid computing environment, effective job scheduling
is a critical challenge. The functions of the scheduler in a
grid computing environment can basically be classified
into two categories that include: 1) meta-scheduling

function regarding the distributed processing of the
complex problem among nodes and 2) the local job
scheduling function within a local node [6]. The meta-
scheduling can improve system utilization by dispatching
jobs to local nodes in an efficient manner, and the local job
scheduling can reduce the slowdown of job processing by
scheduling jobs within a node. So far, a majority of
researchers have considered these two types of functions
separately. Therefore, it is desirable to develop a hybrid
job scheduling mechanism that considers both the meta-
scheduling scheme and the local job scheduling scheme in
order to improve the overall performance of the grid
computing system. For example, Lawson et. al.[7]
presented a scheduling for both remote jobs that is
migrated from another node and local jobs by use of the
multi-queue concept in a distributed parallel processing
environment.
Although a variety of distributed computing scheduling
algorithms have been studied [8], they tend to consider
only the problem’s complexity, and they may be unsuitable
to be directly used in a geographically distributed grid
computing environment. A backfill algorithm [9] that fits
for a heterogeneous distributed parallel computing
environment was introduced to achieve a faster response
time in grid computing. However, there exist trade-offs
among performance metrics because the algorithm may
yield different job dispatching results depending on the
characteristics and priorities of jobs. More specifically,
priorities of a job that are determined to increase the
system utilization can incur job slowdown, and as a
consequence may result in a decrease of system utilization.
It is well known that NP-completeness results when the
utilization of the grid computing system and job slowdown
is simultaneously improved by adjusting the priority of
jobs based on job characteristics [10].
Motivated by this, we propose a hybrid job scheduling
mechanism that can exploit both the meta-scheduling
scheme and the local job scheduling scheme. This paper is
organized as follows. In section 2, related work is
presented, and the hybrid job scheduling mechanism is
then presented in section 3. Section 4 discusses the

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

40

backfill-based multi-queues scheduling scheme. In section
5, the experiments and the results are provided to illustrate
the performance of the proposed mechanism, and the
research summary and future directions for possible
research are discussed in Section 6.

2. Related Work

The meta-scheduling schemes can be classified into
centralized scheduling and de-centralized scheduling. In
the centralized scheduling, all grid jobs are submitted to
the meta-scheduler that distributes them to nodes based on
the status of the nodes in which this status information is
managed by the scheduler. Although this approach can be
satisfactory, it may not be scalable because the meta-
scheduler needs to manage all information and distribute
the jobs. On the other hand, the de-centralized scheduling
does not require a separate meta-scheduler since all the
jobs are submitted directly to the schedulers of the relevant
local node. Depending on a scheduling policy, the
scheduler of each node then assigns jobs to itself or sends
them to another available node. Although high scalability
can be realized by this approach, this scheme is
considerably more difficult to implement, and
synchronization is hard to achieve [11]. Most of the
research on grid scheduling is conducted based on the de-
centralized scheduling scheme where submitted jobs in a
certain node are assigned to other nodes when the jobs
cannot be processed in that node [12]-[14].
With regard to the job processing types, there are three
types: batch processing, interactive processing, and
parallel processing. Since the batch processing and the
interactive processing are executed in a single node,
submitted jobs are usually allocated to the least-loaded
node. If a node is overloaded, the jobs being executed in
that node are sent to another node. On the other hand, the
parallel processing requires multiple concurrent processors
to process jobs. Therefore, heavy delays in communicating
among nodes or long job execution times can be incurred if
the jobs that are being executed on multiple nodes do not
run in a synchronous manner [15].
Variable partitioning scheme is one of the most frequently
used scheduling schemes for parallel processing job
scheduling. In this scheme, assignments of jobs can be
described as rectangular shapes in a graph with the
required resource space on the x-axis and the job execution
time on the y-axis. As Fig. 1 shows, the occupied area
represents the system utilization of a parallel system.
It is worth noting that a job with a low priority cannot be
executed even when resources are available since the
variable partitioning follows the first-come first-served

(FCFS) policy. As shown in Fig. 1, it is obvious that job
(j4) that arrives after job (j3) has been completed cannot
be executed since the resource is not enough due to the two
jobs (j1 and j2) that are being currently processed. Nor can
job (j5) be executed even though there exists sufficient
available resources to process it. This is because job (j5)
has a lower priority than job (j4) according to FCFS policy.
This causes fragmentation that decreases the system
performance as a result of being unable to use idle
resources. Therefore, it can be inferred that the response
time for job (j5) can be reduced if the job can be assigned
without influencing job (j4).

Waiting
Job (j4)

Waiting
Job (j5)

Shortage

Running
Job (J1)

T
im

e

Running
Job (J2)

Running
Job (J3)

Job 4 arrives

Job 5 arrives

System resource

Fig. 1 Variable partitioning scheme.

The backfill scheme has been proposed to address the
fragmentation problem [9]. This scheme changes the
priority of grid jobs in the job queue in such a way that a
job can be moved to the top of the job queue if it can be
executed by currently available resources without delaying
the processing of higher priority jobs. A number of
schemes based on backfill scheduling have been developed
to enhance performance by: 1) reducing job slowdown by
assigning a high priority to a job with short execution time
[16], 2) reducing job slowdown by sorting job orders
according to the waiting time since their submission [17],
and 3) increasing system utilization by allowing job
slowdowns incurred by jobs with short execution time or
low priority [18]. In spite of the research, the trade-off
between system utilization and job slowdowns remains to
be addressed [19]. Although gang scheduling [20] and
dynamic partition [21] have also been proposed for the
purpose of addressing the fragmentation problem, several
limitations such as communication overhead or clock
synchronization in a node have restricted their extensive
use.
In the backfill scheduling schemes, the conservative
backfill schemes allow execution of a low priority job only

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

41

when it does not cause any slowdowns of all the other jobs
with higher priority. The EASY backfill schemes execute
low priority jobs in a queue when the slowdown of only the
first job in the queue is not caused. The EASY backfill can
increase the system utilization of the entire system by
backfilling more jobs than the conservative backfill.
However, it may not be able to guarantee job completion
times to users due to possible unbounded delays caused by
the job slowdowns.
In this paper, a hybrid job scheduling mechanism is
presented to increase system utilization that is not easy to
achieve by the conservative backfill and to prevent the
unbounded delay incurred by the EASY backfill. The
mechanism distributes high-priority jobs to the job queue
where reserved jobs are stored. Also, it allocates jobs with
low priority or remote jobs that are sent from other nodes
to the backfill queues. Several experiments are conducted
to evaluate the proposed mechanism with real data, and the
results show that the utilization of a grid computing system
increases while job slowdown decreases at the same time.

3. Structure of Distributed Grid Computing
System

Fig. 2 shows the architecture of the grid computing system
that enables the hybrid job scheduling mechanism. In the
architecture, grid workers (i.e. computers) constituting a
grid computing node are linked as a single logical group
through the Internet, and they operate as a single computer
system. Each node consists of grid workers, a meta-
scheduler, and a local job scheduler. The hybrid job
scheduling mechanism proposed in this paper supports the
interactions between a meta-scheduler and a local job
scheduler to minimize the scheduling load within a local
node and to facilitate cooperation among nodes. As such, it
can improve the efficiency and the availability of a grid
computing system by allowing both the meta-scheduling
and the local job scheduling to be simultaneously utilized.
When a user submits a job to a node (0. Initiate Job), the
scheduler of the node either allocates the job to the job
queue for the submitted job to be processed by a local job
scheduling policy, or sends it to one of the backfill queues
where the job waits to be assigned to the job queue (1.
Request Job). If it is found to be impossible to execute the
job at the node due to excessive load, the scheduler
requests other nodes for processing it (2. Request Remote
Job). If resources are available in other node(s) by
broadcasting and replying among nodes (3. Discover & 4.
Volunteer), the job is sent to the other node(s) (5.
Negotiate & 6. Request Job). At this time, the local
scheduler in the receiving node communicates with the

meta-scheduler that keeps track of processing requests for
remote jobs, and it then allocates the job in the job queue if
the meta-scheduling policy is not violated (7. Allocate Job).
After the receiving node completes the job in accordance
with a local job scheduling strategy, it notifies the user (8.
Reply Job).

Fig. 2 Architecture of distributed grid computing system.

To put it another way, the proposed architecture for the
hybrid job scheduling can incorporate centralized
hierarchical scheduling strategies that can be exercised by
meta-schedulers and de-centralized scheduling policies
implemented by local job schedulers simultaneously. Thus,
communication bottlenecks, SPOF (Single Point of
Failure) problems, or scalability problems can be
addressed with the grid computing architecture.

Fig. 3 Multi-queue scheduler of computing nodes.

Fig. 3 shows the structure of the multi-queue scheduler of

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

42

local nodes in a distributed grid computing system. Each
local node consists of workers participating in the grid
computing and a scheduler that supports both the meta-
scheduling and the local job scheduling by means of the
multi-queue backfill mechanism. The scheduler again
consists of two types of queues: The first is the job queue
that stores local jobs that are executed by FCFS policy, and
the second are the two backfill queues where jobs are
waiting for backfilling.
It should be noted that the scheduler considers both the
states of all the workers and the job characteristics when it
employs the scheduling strategy. In other words, a job that
is submitted to an arbitrary node is assigned to one of the
three queues within the node by the local job scheduler. To
which queue a job is assigned is determined based on the
number of required processors and the expected execution
time of the job. Jobs that require a large number of
processors are assigned to the job queue where other jobs
are reserved depending on a job priority. On the other hand,
local jobs requiring a small number of processors and jobs
that are received from other nodes are sent to the backfill
queues. If the node is overloaded, it is sent to other node
with the least-loaded backfill queues by the meta-scheduler.
The job is then stored in one of the backfill queues of the
receiving node.

4. Multi-queue Scheduling Mechanism

4.1 Multi-queue Management Strategy

The multi-queue management strategy (MMS) is related to
the process that allocates submitted jobs to either the job
queue or the backfill queues based on their characteristics.
In backfill scheduling, it is important to determine how
many jobs are to be backfilled in an efficient way. Jobs
that require a small number of processors may have high
possibility of being backfilled since it is easier for them to
acquire available processors within a node. This approach
can increase the likelihood of improving the utilization of
the processors. In addition, while jobs in the job queue are
executed in FCFS fashion, jobs in the backfill queue can
be backfilled whenever a backfill is possible even when a
job in the job queue is being executed. Thus, MMS
strategy can be applied when 1) a job is submitted to a
local node, 2) a job on the local node is completed, or 3) a
remote job is dispatched from other nodes.
It is worth remarking that priorities of remote jobs are set
to be lower than those of the local jobs. This is applied by
allocating them to the backfill queues rather than to the job
queue. It can contribute to guaranteeing the completion

time of local jobs that are submitted directly to a local
node. More specifically, in order to prevent a local job
submitted to a certain node from being slowed down by
remote jobs, flags are given to jobs of specified job types
such as a local job or a remote job.

4.1.1 Job Classification and Priority Assignment Strategies
for Local Jobs

For the meta-schedulers and the local job schedulers to
apply MMS, they reference basic information that includes
job number ()i , job arrival time ()iTA , and node number ()k
on the grid. In addition, jobs submitted to a certain local
node contain the parameters with regard to the number of
the required processors ()iP for execution and the expected
execution time ()iTES . Thus, a job can be represented by
the following expression (1).

(, , ,)i i i iJOB TA TES P k (1)

Based on information about jobs, MMS classifies and
prioritizes jobs through the following steps. In step 1, jobs
are classified into three groups depending on the total
number of required processors in the node to which they
are directly submitted or remotely dispatched. In step 2,
each group is further classified into two subgroups
according to the expected execution time. For those jobs
that are classified in one of six groups that are formed
through these steps, MMS is applied in such a way that 1)
jobs requiring a large number of processors are allocated
to the job queue for fast completion, and 2) those requiring
a small number of processors are assigned to the backfill
queues for the higher system utilization through more
frequent backfills (refer to Figure 4). In step 3, priorities of
jobs are assigned.

 n.multi.distribute (j)
if (j.req <= n.processor * 1/3)
 n.multi.enqueue(j, backfill2);
else if (j.req <= n.processor * 2/3)
 n.multi.enqueue(j, backfill1);
else n.multi.enqueue(j, jobqueue);

n.multi.migrate(n′, j);

n′.multi.enqueue(j, backfill1);

Fig. 4 Multi-queue management strategy pseudo-code.

▌Step 1 – Job classification by the number of processors

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

43

In this step, jobs are classified into three groups based on
the number of required processors as expressed by
conditions (2) – (4), where jTP is the number of

processors in node j. After being classified, jobs are
allocated to the queues in a node. Large jobs are stored in
the job queue, and medium jobs and small jobs are stored
in the first backfill queue and the second backfill queue,
respectively.

L(Large Job) : 2
3j i jTP P TP × ≤ ≤ 

 (2)

M(Medium Job) : 1 2
3 3j i jTP P TP   × ≤ < ×   

 (3)

S(Small Job) : 11 3i jP TP ≤ < × 
 (4)

▌Step 2 – Job classification by expected execution time
In this step, jobs in each group formed by the step 1 are
further divided into two types based on the expected
execution time. If the expected execution time of a job is
longer than the average execution time of jobs that have
been completed in the receiving node up to a current point
of time, the job is classified as L-type (Long Job).
Otherwise, it is characterized as S-type (Short Job). This
classification is expressed in conditions (5)-(6):

L(Long Job) : i jTES TMEAN≥ (5)

 S(Short Job) : i jTES TMEAN< (6)

where iTES is the expected execution time of the job i, and

jTMEAN is the average execution time of jobs that have
been executed on the receiving node j.

It should be noted that the average execution time in a
node varies as the node continues to process multiple jobs.
Therefore, the classification criterion changes in a
dynamical manner.

SS
(Small Short)

SL
(Small Long)

ML
(Medium Long)

MS
(Medium Short)

LL
(Large Long)

LS
(Large Short)

priority
HighLow

Fig. 5 Priority order of local jobs.

▌ Step 3- Priority assignment by job class
A job type that is obtained through the above mentioned
job classification steps is used to determine the priority of
job processing in the job queue and the sequence of the
backfill in the backfill queues. More specifically, S-type
jobs have higher priorities in processing or backfilling than
L-type jobs. Fig. 5 shows the priorities of local jobs that

are determined by the two steps described above. Jobs in
the rightmost cells have the highest priority, and those in
the leftmost have lowest priority.

4.1.2 Job Classification and Priority Assignment Strategies
for Remote Jobs

As aforementioned, remote jobs sent from other nodes are
allocated to the backfill queues of a receiving node. The
second part in Fig. 4 shows the step that processes the
remote jobs. Any remote jobs are assigned to the backfill
queue (e.g. Backfill1) of a receiving node by the
distribution strategy for remote jobs. This is in order to
give the local jobs higher priority over remote jobs so that
they can be processed earlier than the remote jobs.
The classification of the remote jobs is done in a similar
way as the local jobs. In the first step, remote jobs are
classified according to the number of the required
processors)(iP for execution, and they are labeled as
either Remote Large (RL) jobs or Remote Small (RS) jobs
depending on conditions (7) – (8).

RL (Remote Large Job) : 1
2j i jTP P TP × ≤ ≤ 

 (7)

RS (Remote Small Job) : 11 2i jP TP ≤ < × 
 (8)

In the second step, they are further classified based on the
execution time as in conditions (9)-(10). When a job is sent
from another node, the receiving node references
information concerning job execution time and compares it
with the average execution time up to a current point of
time to determine the type of the remote job.

RL (Remote Long Job) :

i jTES TMEAN≥ (9)

RS (Remote Short Job) :
i jTES TMEAN< (10)

The Fig. 6 shows the priority orders of remote jobs that are
determined by the two steps mentioned above.

RSS
(Remote Small Short)

RSL
(Remote Small Long)

RLL
(Remote Large Long)

RLS
(Remote Large Short)

priority
HighLow

Fig. 6 Priority order of remote jobs.

4.2 Hybrid Job Scheduling Strategy

The meta-scheduling strategy aims at improving the system
utilization of the entire grid system and the local job

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

44

scheduling strategy helps achieve an efficient job
distribution within a node. Jobs in the backfill queues can
be delayed unboundedly when required processors for
execution of a job are not obtained, and the jobs are not
reserved in the backfill queue. In particular, the probability
of unbounded delay of remote jobs can be larger than that
of local jobs. The drawbacks of both the conservative and
the EASY backfill mechanisms that were described in
section 2 can be alleviated by the mechanism proposed in
this paper, which prevents unbounded delays and improves
system utilization.

n.global.discover (j)
V = volunteer list with idle resources;
for each v ∈ V
v.global.negotiate(n, j);

n.global.negotiate (n′, j)
runnable = n.local.create(j);
if (runnable) n′.global.commit(n, j);
else n′.global.wait(n, j);

n.global.commit (n′, j)
n.multi.migrate(n′, j);

n.global.wait (n′, j)
if (n.multi.j.resv_counterG++ > Threshold){
fix job j’s priority into the urgent level;
n.global.reserve(j);

}

(a) meta scheduler

n.local.create (j)
span = some runs during an admitted time;
if (n.avail >= j.req) n.local.execute (j, span);
else {
q = n.multi.distribute(j);
n.local.wait(j);
}

n.local.remote (j)
n.global.discover(j);

n.local.execute (j, span)
j.met = j.met – span;
if (j.met == ∅) n.multi.depart(j);
else {
span = some runs during an admitted time;
n.local.execute(j, span);
}

n.local.wait (j)
if (n.multi.j.rcounterL++ > Threshold){
fix job j’s priority into the urgent level;
n.local.reserve(j);
}

n.local.reserve (j)
span = the reserved execution slots for j.req;
n.local.backfill(j, span);

n.local.backfill (j, span)
j.met = j.met – span;
if (j.met == ∅) n.multi.depart(j);
else n.local.execute();

n.local.volunteer ()
newly = current idle resources;
n.avail = n.avail + newly;

(b) local scheduler

Fig. 7 The meta- and the local job scheduling procedure.

▌Meta-scheduling Strategy:
When a job is submitted to a node, the meta-scheduler
determines whether the job is to be processed in the
receiving node or to be sent to another node based on the
status of receiving node and grid system. In this stage, the
meta-scheduler negotiates with meta-schedulers of other
nodes for better job allocation. Fig. 7 (a) shows the
procedures of the meta- scheduling. When a job (j) is
submitted to a node (n), the meta-scheduler of node (n)
searches for volunteer nodes for processing a job (j) (n.
global.discover (j)). At this time, the meta-scheduler of a
volunteer node (e.g., node v) communicates with the local
job scheduler to check resource availability for processing
the job (j). If a resource is available, node (v) responds
with a commit message (n.global.commit (v, j)). Then, job
(j) is migrated from node (n) to node (v) (n.global.migrate

(v, j)).
▌Local Job scheduling Strategy:
The local job schedulers can manage information about a
node status regarding the number of available processors,
the system utilization (memory usage, network usage, etc.),
system slowdowns, and expected response time. Based on
this information, the scheduler makes a decision with
regard to job execution and dispatching to other node
(refer to Fig. 7 (b)).
To prevent unbounded delay of jobs in the job queue, a
certain number of jobs are reserved to be executed so that
they are not slowed down due to other jobs in the backfill
queue. By doing this, the system utilization can also be
increased more than the EASY backfill whereas only the
first job is reserved in the EASY backfill mechanism. The
number of the reserved jobs (

rJ) in the job queue is
determined by (11):

r nJ Jα= ⋅ , 0.1 0.5α≤ ≤ (11)

where nJ is the number of queued jobs in the job queue,
and α is the threshold value used to adjust the number of
the reserved jobs.

To prevent unbounded delays of jobs in the backfill queue,
a reservation technique is also applied to jobs in the
backfill queue. More specifically, when the number of jobs
that are not backfilled (

NBJ) is found to be larger than a
threshold value (β) at a certain point of time, those jobs
are dispatched to the job queue, or sent to other node if
they can be executable in that node. It can be expressed as
(12).

β≥NBJ (12)

When the slowdowns of jobs in the backfill queues occur
even if the jobs are reserved by condition 12, those jobs
need to be sent to another node. In this case, those jobs
become remote jobs in the other node that receives them.
To determine which node the jobs are to be sent to, the
mechanism proposed in this paper checks whether the jobs
can be executed in the receiving node in consideration of
execution and transfer time of the jobs. By doing this, the
influence of remote jobs in a receiving node can be
minimized. The number of reserved jobs plays a key role
in the proposed mechanism. It is set to greater than in the
EASY backfill and less than in the conservative backfill.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

45

5. Performance Evaluation

In order to evaluate the performance of the hybrid job
scheduling mechanism proposed in this paper, several
experiments were conducted. In this type of experiment,
input data play a critical role in evaluating the performance
of different mechanisms because of their influence on the
job load. According to the following two steps, the input
data are generated. In the first step, parameters of
independent variables (e.g., mean arrival time, mean
estimated execution time, mean number of processors,
mean width, etc.) are generated from the set of workload
logs of Feitelson Archive [22]. Table 1 shows the
parameters that are generated from CTC trace (CTC: the
Cornell Theory Center 512-node IBM SP2, 79,296 jobs)
and Feitelson workload. The nodes of the CTC computer
are not all identical and they differ in type and memory.

Table 1: Workload data

In the second step, with the parameters that are generated
in the first step, other parameters for the experiments are
then obtained based on the probability functions which are
described as follows. The average job arrival, the job
request time, and the average number of required
processors are assumed to follow an exponential
distribution with the rate of 0.167/min. (≈ 7200
jobs/month), an exponential distribution with the average
of 100 min, and a uniform distribution from 1 to 64,
respectively [9]. Finally, a grid system with 8 nodes of 64
processors each is used.
The backfilling ratios that is the ratio of the number of
backfilled jobs to the number of queued jobs with regard to
the system utilization are measured, and the impact of the
hybrid multi-queue and the remote job processing is
assessed in terms of the slowdown ratio of the jobs
(SlowdownRatio, refer to equation 14). In addition, the
slowdowns caused by different scheduling strategies are

compared by means of the average response time metrics.
The average slowdown time of the job can be obtained
using (13): [16]

N
iexecSiwidth

iresp

wdownTimeAverageSlo

N

i
∑
== 1))(,max(*)(

)(
 (13)

where N is the total number of jobs, S is the processing
time of the job with the shortest execution time, resp(i) is
the time elapsed between job submission and completion,
exec(i) is the execution time of the job, and width(i) is the
number of the processors required for the job to be
executed.

To compare the effectiveness of the multi-queue
(AverageSlowdownTimem) and the single queue
(AverageSlowdownTime1) strategies, the slowdown ratio is
used.

),min(1

1

m

m

wdownTimeAverageSlowdownTimeAverageSlo
wdownTimeAverageSlowdownTimeAverageSlo

tioSlowdownRa
−

=
 (14)

As can be observed in (14), a positive value of
SlowdownRatio means that the average slowdown of the
single queue strategy is greater than that of the multi-queue
strategy. On the other hand, negative value of
SlowdownRatio indicates that the multi-queue strategy
causes greater slowdowns due to the management
overheads.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
System Utilization

Ba
ck

fill
in

g
Ra

tio

CONS

EASY

HYBRID

Fig. 8 Backfilling ratios depending on the system utilization.

Fig. 8 shows the changes of the backfilling ratios of three
different strategies depending on the system utilization that
is calculated by dividing the job arrival time by the average

Month Total A Type B Type

July 7950 7933 7897

Aug. 7273 7279 7234
Sep. 6167 6180 6106
Oct. 7257 7277 7270
Nov. 7917 7841 7816
Dec. 7896 7893 7888
Jan. 7519 7538 7506
Feb. 8189 8177 8159
Mar. 6915 6933 6909
Apr. 6124 6102 6085

May. 6082 5984 5962

Average 7208.09 7194.27 7166.55

A Type: Jobs requiring at most 256 nodes, B Type: Jobs requiring at most 128 nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

46

processing time. Therefore, more frequent job requests can
increase the system utilization. As can be observed in Fig.
8, the EASY backfill method has more backfills than the
conservative backfill method. Furthermore, backfills occur
the most frequently when the hybrid multi-queue
scheduling mechanism is applied, which means that hybrid
multi-queue scheduling mechanism improves the system
utilization of the entire grid system.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

SS SL MS ML LS LL

Job Classification

Sl
ow

do
w

n
R

at
io

CONS

EASY

HYBRID

Fig. 9 The changes of the slowdown ratio.

Fig. 9 shows the changes of the slowdown ratio of jobs
according to the number of required processors and the
expected execution time for which both are used job
classification. It can be observed that the hybrid multi-
queue is more effective to decrease the job slowdown ratio
than the single queue regardless of scheduling strategy. In
addition, the slowdowns occur for the jobs (LS and LL)
that require a large number of processors due to the
backfills of the jobs with low priority. However, the hybrid
multi-queue scheduling mechanism causes fewer
slowdowns than both the conservative and the EASY
backfill methods even if a single queue is used. From this
observation, it can be inferred that the hybrid job
scheduling method can have advantages that include the
unbounded delay prevention and the increased backfill
ratio which are the drawbacks of the conservative backfill
method and of the EASY backfill methods, respectively.
Fig. 10 shows the changes of the average response time
with regard to the system utilization. In case of the EASY
backfill method, higher system utilization incurs a steep
increase in the average response time due to increased
number of backfills. In the case of the hybrid method
proposed in this paper, the average response time is greater
than the conservative method in spite of smaller job
slowdown. This is because the hybrid method dispatches
jobs to other nodes more frequently than the conservative
method. Therefore, it can be inferred that the overhead of

dispatching jobs to remote nodes plays an important role in
improving the response time of job executions if a
dedicated network is not used to connect nodes of a grid.
Note that the increased system utilization does not always
mean reduced job response time.

10

12

14

16

18

20

22

24

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

System Utilization

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(in
 1

03 s
ec

)

CONS

EASY

HYBRID

Fig. 10 Average response time according to system utilization.

0

5

10

15

20

25

0.1

0.2

0.3

0.4

0.5

0.6

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

2163264
128

256

512

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(in
 1

03 s
ec

)

α
β

Fig. 11 Average response time with parameters (α , β) used in the
reservation policy.

Fig. 11 shows the graph of the average response times
according to the value of α (the threshold value that is used
to adjust the ratio of the reserved jobs to queued jobs in
job queue) and β (the threshold value for those jobs that
are backfilled for execution) that are introduced to
implement the reservation policy of the conservative and
the EASY backfilll methods and to prevent unbounded
delay of the EASY backfill method, respectively. As α
increases, the average response time also increases. This is
because more jobs are moved to the job queue and
backfilled, resulting in longer waiting time of jobs that are

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

47

not backfilled. Also, the decrease of the threshold value of
β that restrains the backfill of jobs that can otherwise be
backfilled causes the increase in the average response time.
However, the impact of the value of β on the average
response time is observed to decrease for somewhat large
values of β (e.g., β ≥ 64). This is more obvious in case of
small values of α. In particular, because there can be more
available processors if each node has more processors, the
probability of the slowdowns caused by the backfills
decreases.

6. Conclusion

Although a significant amount of research has been
conducted on the developments of scheduling mechanisms
to reduce job slowdown, improve the response time and
the system utilization of a grid system, most of the research
has been pursued in a separate manner to solve problems
of the meta-scheduling methods that distribute jobs to each
node and the local job scheduling methods within a node.
In order to address this situation, we have proposed the
hybrid job scheduling mechanism that considers both the
meta-scheduling and the local job scheduling approaches
at the same time.
Jobs that are submitted to grid computing nodes are
classified based on the number of required processors and
the expected job execution time. This classification schema
is then used to determine whether jobs are processed in a
local node or dispatched to other node(s) according to the
job load. As the backfilling ratio and job slowdowns are
improved with the hybrid multi-queue scheduling
mechanism, the utilization of a grid computing system
becomes more efficient and waiting times are reduced.
Future work will include the investigation of the impact of
the network communication overhead on overall
performance of a grid system and will be checking for the
implementation issues with various input data sets.

Acknowledgments

This work (Grants No. C0023120) was supported by
Business for Cooperative R&D between Industry,
Academy, and Research Institute funded Korea Small and
Medium Business Administration in 2012 .

References
[1] I. Foster, et. al., “Grid Services for Distributed System

Integration," Computer, Vol. 35, No. 6, pp. 37-46, 2002.
[2] Kiejin Park, et. al., “Credible Worker Selection Mechanism

for Grid Computing,” IEICE Transactions on Information
and Systems, Vol. E89-D, No.2, pp. 605-611, Feb. 2006.

[3] K. Krauter, et. al., “A Taxonomy and Survey of Grid
Resource Management Systems for Distributed
Computing,” Software Practice and Experience Journal, Vol.
32, No. 2, pp. 135-164, Feb. 2002. Summary: Grid
computing is concerned with the sharing and coordinated
use of diverse resources in distributed "virtual
organizations." The dynamic and multiinstitutional nature of
these environments introduces challenging security issues
that demand new techn.....

[4] I. Foster, et. al., “Globus: A Metacomputing Infrastructure
Toolkit,” The International Journal of Supercomputer
Applications and Performance Computing, Vol. 11, No. 2,
pp. 115-128, Oct. 1997

[5] A. Grimshaw, et. al.,”Legion: Lessons Learned Building a
Grid Operating System ,” Proceedings of the IEEE, Vol. 93,
Issue 3, pp. 589 – 603, Mar. 2005.

[6] H. Shan, et. al., “Job Superscheduler Architecture and
Performance in Computational Grid Environments,” In SC
2003 Conference, 2003.

[7] B. Lawson, et. al., "Multiple-queue Backfilling Scheduling
with Priorities and Reservations for Parallel Systems," The
8th International Workshop, JSSPP 2002 Edinburgh,
Scotland, UK, pp. 72-87, July 2002.

[8] T. Braun, et. al., “A Comparison of Eleven Static Heuristics
for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems,” Journal of
Parallel and Distributed Computing, Vol. 61, pp. 810-837,
2001.

[9] A. Mualem, et. al., “Utilization, Predictability, Workloads
and User Run time Estimates in Scheduling the IBM SP2
with Backfilling,” IEEE Trans. Parallel and Distributed
System, Vol. 12, No. 6, pp. 529-543, June 2001.

[10] O. Ibarra, et. al., “Heuristic Algorithm for Scheduling
Independent Tasks on Nonidentical Processors,” Journal of
ACM, Vol. 24, No. 2, pp. 280-289, Apr. 1977.

[11] V. Hamscher, et. al., "Evaluation of Job-Scheduling
Strategies for Grid Computing," The 1st IEEE/ACM
International Workshop on Grid Computing (Grid 2000) at
the 7th International Conference on High Performance
Computing (HiPC-2000), LNCS 1971, pp. 191-202, 2000.

[12] V. Subramani, et. al., “Distributed Job Scheduling on
Computational Grids Using Multiple Simultaneous
Requests,” The 11th IEEE International Symposium on
High Performance Distributed Computing (HPDC-11 2002),
pp. 359-368, July 2002.

[13] Q. Wang, et. al., “De-centralized Job Scheduling on
Computational Grids Using Distributed Backfilling,” Grid
and Cooperative Computing - GCC 2004: Third
International Conference, LNCS 3251, pp. 285-292, Oct.
2004.

[14] K. Li, “Job Scheduling for Grid Computing on
Metacomputers,” The 19th International Parallel and
Distributed Processing Symposium (IPDPS 2005),
Abstracts Proceedings, Apr. 2005.

[15] D. Feitelson, et. al., “Theory and Practice in Parallel Job
Scheduling,” Job Scheduling Strategies for Parallel
Processing, IPPS'97 Workshop, Geneva, Switzerland,
LNCS 1291, pp. 1-34, Apr. 5, 1997.

[16] D. Zotkin, et al., “Job-Length Estimation and Performance
in Backfilling Schedulers,” The 8th IEEE International

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.9, September 2012

48

Symposium on High Performance Distributed Computing
(HPDC'99), Aug. 1999.

[17] S. Srinivasan, et al., “Characterization of Backfilling
Strategies for Parallel Jobs Scheduling,” 31st International
Conference on Parallel Processing Workshops (ICPP 2002
Workshops), pp. 514-522, Aug. 2002.

[18] W. A. Ward Jr., et al., “Scheduling Jobs on Parallel Systems
Using a Relaxed Backfill Strategy,” , 8th International
Workshop on Job Scheduling Strategies for Parallel
Processing(JSSPP’2002), pp. 88-102, July 2002.

[19] B. G. Lawson, et al., “Self-Adapting Backfilling Scheduling
for Parallel Systems,” 31st International Conference on
Parallel Processing (ICPP 2002), pp. 583-592, Aug. 2002.

[20] D. Feitelson, et al., “Improved Utilization and
Responsiveness with Gang Scheduling,” Job Scheduling
Strategies for Parallel Processing, IPPS'97 Workshop,
Geneva, Switzerland, LNCS 1291, pp. 238-261, Apr. 1997.

[21] R. McCann, et. al., “A Dynamic Processor Allocation Policy
for Multiprogrammed Sharedmemory Multiprocessors,”
ACM Trans. on Computer System, Vol. 11, No. 2, pp. 146-
178, May 1993.

[22] D. Feitelson, “Logs of Real Parallel Workloads from
Production Systems,” Available:
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

Kiejin Park received the B.S. degree in
industrial engineering from Hanyang
University, Seoul, Korea, in 1989, the M.S.
degree in industrial engineering from
Pohang University of Science and
Technology, Pohang, Korea, in 1991, and
the Ph.D. degree from the Department of
Computer Engineering, Graduate School,
Ajou University, Suwon, Korea, in 2001.

From 1991 to 1997, he was with the Software Research and
Development Center, Samsung Electronics Company Ltd.,
Suwon, as a Senior Researcher. From 2001 to 2002, he was with
the Network Equipment Test Center, Electronics and
Telecommunications Research Institute, Daejeon, Korea, as a
Senior Researcher. From 2002 to 2004, he was with the
Department of Computer Engineering, Anyang University,
Anyang, Korea, as a Professor. Since 2004, he has been an
Associate Professor with the Division of Industrial and
Information Systems Engineering, Ajou University. From 2010
to 2011, he was with Rutgers, The State University of New
Jersey, Piscataway, as a Visiting Professor. His research interests
include in-vehicle network, fault-tolerant computing, and cloud
computing.

Changhoon Kang was born in Daejeon,
Korea. He received the B.S. and M.S.
degrees in computer science from
Chungnam National University, Korea, in
1986 and 1988, respectively, and Ph. D.
degree in Department of Computer
Engineering, Graduate School of Ajou
University in Korea in 2006. He is
currently an Associate Professor in

Department of Visual Broadcasting Media, Kangdong College.
From 1990 to 1993, he worked in the Computer Center of
Chungnam National University, Korea, as an Assistant Teacher.
His research interests include cluster computing, and grid
computing.

Sung sook Kim received the B.S
degree in Educational technology from
Hanyang University, Seoul, Korea, in 1991,
the M.S. degree in E-Learning from Ajou
University, Suwon, Korea, in 2009,
respectively, where she is currently
working toward the Ph.D. degree in the
Department of Computer Science &
Engineering in Anyang University. Her

research interests include real-time data mining from mobile log
data and task scheduling for MapReduce software framework in
cloud computing.

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

