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Summary

We take a finite lattice-ordered monoid as the truth-value
domain for fuzzy sequential machines in this paper.The
notion of L-valued finite sequential machines(L-FSMs.for
short)occurring in [1]is modified and some related
properties are also discussed.Moreover,we formulate the
definition of behavior mapping to determine the operation
of an L-FSM,and give an algorithm to compute the image
of the behavior mapping for a given L-FSM. Finally, its
statewise equivalence relations are defined, based on
which we present a minimization algorithm for an L-FSM.
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1.Introduction

As soon as the concept of fuzey sequential ma-
chines has heen introduced, Santos [2.[3] investigated
the minimization problems for finite max-min fuzzy
machines and finite max-product fuzzy machines. It
iz worth of mention that Qiu [4),[53] established a
fundamental framework of automata theory based
on complete residuated lattice-valued logic. to a cer-
tain extent, automata theory based on lattice-ordered
monoids initiated by Li and Pedryez [6], which is

the generalization of previous studyv. Many authors

have contributed to this field such as Cheng and Mo
8. Recently, Lei and Li [T] presented an algorithm
aimed at the minimization of states in automata the-
pry based on latticesordered monoids. Following the
notion of L-valued sequential machines introduced by
Xing and Qin [1], in this paper, we study the mini-

mization of this fuzzy sequential machine. Unlike L
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valued sequential machines ocourring in |1, whose ba-
sic structure of membership value was complete resid-
unated lattice, the minimization problem is still not
considered. For that reason, we focus our attention
#+ N + - - 1 1 T+ b | E— - £ al
to efficient minimization ALgOrItnm Oy Means ol defins
ing a behavior mapping to determine the operation
of an L-FEM. In detail, we refer to the recent studies
from [1], [6.[7]. In a sense, the paper is arranged in
the following wavs.

In Section 2 we first define L-valued finite se-
quential machine (L-FSM, for short) based on lattice-

£s.

ordered monoids and discuss some related properti
In Theorem 2.1, two equivalence conditions about
latticesordered monoids are displayved. In Section 3, a
behavior mapping determining the operation of an L-
F8M is given, and an algorithm computing the image
of the mapping for a given L-FSM is presented. The
algorithm with finite steps is proved by Theorem 3.2.
Section 4 deals with the minimization problem of an
L-FSM. We give two kinds of statewise equivalence

relations and obtain its minimization algorithm with

A
nnite seps.

1. L-VALUED FINITE SEQUENTIAL MACHINE

Definition 2.1 /6] Given a lattice L, Y and /\ rep-
resent the supsrmum and infimum operation on L re.
apectively, U and 1 are the least and largest elemeant.
Assume that there i3 a binary opsration » on L such
that (L.e.e) i a monid with dentity e € L. We call
L m ordered-monoid if it satisfies the following cone

ditiomn:
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fi/Va.be Loa< b= %Yre Loex < bex and " :Qx X*xY*xQ— L

rea<zeb: (qez.v.05) — (g7 1. q5)

if L is an ordered-monoid and it satisfizs the distribu- _ { e.if z=y=~A and g =g

tive lows: 0. otherwise.

(ii) Yabc € Las (b\c) = (a ob)\/(aec), and fﬁstmtlﬁh 05) — 6" (gi,za. yb. g5)

(b cieo=(bea)f(ceal. Then we call L a lattics- = V [0*(g.7. 9. 0.) ® §{gu.a. b, g )]

ordered monoid. '.:' (o (z/y) ® By (alb)]
Remark: Without any explicit specification, in what €Q
follows, we will be referring to L as a finite lattice- | i
ordered monoid and (L. e.g) as an ordered=monoid G0N = Enune Engn = | i
without nilfactor, that is, for any a. b € L, if o #
0,670, thenne b 0. £ E-° E
Definition 2.2 Lst (L.e /1 bs a latticseordsrsd for any (z.y) € X* x Y™ and (a.b) € X x V.
monoid. A gquadruple A = (Q.X.Y.8) is called an L- Proposition 2.1 Let (L.e.%/) be a lattice-ordered

monoid and 4 = (@, X, ¥, §) be an L.-FS8M. Then § =
8% gux =y x-

Proof: Let (g.b) e X = ¥, then §*(ab) =46%{ra A
b) = d*{ala) e dlalh) = Eyun o dlalb) = dialb).
Proposition 2.2 Let (L.« /) be o lattice-ordered
monoid and 4 = (Q. X.¥.d) be an L-FSM. For any
g.p & Qand (zy) € X* = ¥V* if 2z # . then
§*(g.z.y.p) = 0.

Proof: Letgpe Q. (z.y)eX*=¥Y*and = # y.

Without loss of generality, we assume lz) > |y and

valusd finite sequential machine (L-FSM, for short),
whers § = {gr.ge.-.gat, X = {e1.00,---.am },
Y ={bi.bs.---. Iy} ars nonempty finits ssts of states,
input letters and output lstters, respectively.  And
§ & LO*X*Y*Q an Levalued subsets of Qx X xY x (),
ig the L-valued transition-output function of A.
In the cass of singls input-output:
F:0x X =Y «Q— L
(@i Basbry q) — B(gs ag. b, g;) = Bij{m.be)
flaslb-) = [Filasbe)nens = LZ.---.muir =
1,2 L

We regard 8;(0.b.) € L as the membership de-
gres that L-FSM A will enter state g; € () and produce

y| = n. and proceed by induction on n.
For the case of n =10, it is obvious that y = A and

T # A. By Definition 2.3 we have §%(g, z.y.p) = 0.

output b. € ¥ given that the present statz s q; € For the case of n = 1, suppose the proposition
and the input is g, € X. hold when |y| = n — 1, the proposition is also true

. ) . rhe = n. Indeed:
The free monoid of the words pver the sst X(Y) WHRE 15l = 1. g

) ) _ Write £ = ua.y = vh where (wv) € X* x
ts denoted by X*(Y'*) with the empty word A as the

Y . lu > v.lv)=n—-land (o.b) € X x¥. Bv hy-

pothesis. for any g.p € @, we have §*(q u,v.p) = 0.

So f*g.z.y.p) =8 (qua.vh.p) = \ [§"(gu.v.r) e
rEQ'

tdentity slement. The length of the word z € X*(y €
Y'*) iz denoted by z/(ly]). By definition | A = 0.

Forz € X* and y € Y*. if z = y. we d{r.a.b,p] = 0. i.e. the proposition holds when
write (zly) € (X¥)*. to distinguish it from the case | >yl
(z.y) € X* x Y™ Similarly, we can show the result is true if |z] <
vl

Definition 2.3 Lst (Lo /) he a lattics-ordersd
monoid and A = (Q. X. Y. ) & an L-FSM. The er-
tended transition-output function §* € LE* X7 =Y =@
15 defined as fallows:

Remark: The shove proposition indicates that the
length of input word must be the same as that of out-

put word in mathematical induction. Subsequently,
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we denote (X|Y)* as the set of all input-putput pairs
of words of the same length.

Proposition 2.3 Let (L. e &) be an ordered-monoid
without nilfactor and 4 = (Q, X, Y. §) be an L-FEM.
Then the following conditions are equivalent:
[flvge Qiable X« Y. 2peQ. 8lgabp =0
(if) vg e Q.(zly) € (XIY)*.3pe Q.8 (g z,y.p) > 0.
Proof:

{i)]===(ii): We prove it by induction on the length of
x and y.

If |zl =1yl =0, then z = y = A, take p = g,
we have S gz,yp) = e > 0 if |z) = y =1, it
i obvious that (ii) holds. Assume that (ii) holds for

=lyl=n—1in> 1), (ii) also holds for |z = |y =
n. Indeed:

Write =z = oy = b
(XY (e.b)e X xY and |z =1/ =n—- 1. Now
by Definition 2.3, (g z.y.p) = &g, 710,310 p) =

Woldg oz y.8) e dlsabop) = &g.zLyr) e

s
fir.e.b. p). By hypothesis, there exists ¢ € (Q such

where (zyly) £

that 6 (g.z1.41.7) > 0. Also by (i), firab.p) =
0. Since (L,w, ) is an ordered=monoid without nil-
factor. then (g zi.y.7) s d{rnab.p) = 0. ie
f g z.y.p) = 0.

{ii)==+(i): Btraightforward.

Theorem 2.1 The follpwing conditions ars squiva-
lent:

i) Let (L.w ) bz g lattics-ordered monoid, that
iz, aeibe) = (peb)fioec) and (Bclen =
(bea)y(cea).

fii) For any L-FSM A = (Q.X.Y.8.q.p ¢
Q.oziy) € (XY) and (mlyz) £ (XY=,
Vol g.z ) e
reQ

§*(z1zelpiye) =

them 8%(g.oiTe.ye.p) =

{ L\ To Yo pll. Le d(z1l) o
rm,.' For any L-FSM A = (Q.X.Y.8.q.p €
Q. (eras---apbbe---by) € (XY), of which
(ol e X xYi=1,2---.k Then

(g, a1ae - -ap, bbb p)

= W [8(g.ar.bi.g1) e d(gi.as. bags) e

§{gr—1.0k. be.p)l. ie 8"(mian---aplbby---by) =
Sl by )odlasbs)o

Proof:
(i)==(ii): We prove it by induction on the length of
Ty and ys.

If |zo) = W2 = 0, then s = =
M and 6%(g.ziTe.y1ye.p) = Flg.oAomtp)l =

f*(gq.z1.y.p) = 8(g.z1.y1.p) ee = 8*(g. 1.1 ®

If-l'xl::p. .'*'...'*-..pj = l".‘l'l Elj'."::g..ﬂ:l..ll.r:' L] E‘I::T.a*\.a*\.}?j: =
rEQ

Vo[ (g oy T e 8%(r e, e, p)l. that is, (ii) holds

rEl

for |z2) = lya] = 0. If lzs] = ly2| = 1, then from
Definition 2.3, we have (i) holds obviously. Assume
that (ii) holds for |z4) = ip| =n— lin = 1), (ii) also
holds for |z = |y2| = n. In fact:

Let (zilin) € (XY™ and (zalye) =
B, € (X Y)" then by Definition

2.3 and assumption. we have §*(q. 2122, 11y p)

{Elﬂg"'ﬂﬂ_ h‘lh‘z"'

Qps i bibe - - by p)
"'.‘l'l EE‘(I?.I]_E;EE"'En_l.yll‘};l‘i‘g"'l‘?n_l.rlj

= §*(g.zio188---

rEQ

'E{r~ﬂn~hn~pj: = "'y'll [ \'n,"l [4* {I?.Zl.lg.rjl *
reg FEQ

I:T"l::;l".ﬂlﬂ_a "En_]_.ll?lll?'z-- I'.'l‘n_ 1 J":I ™

(r . on ba. p) = Vot g oz . e

S(r . an. be.p) =
rel
VoO[F*(raias - @nor bbb ) .
rrEeQ
f(r . an. by.p) = VoE g zu.r) e
rel
El":.r 2183 - Gy, by by b P:' = .LEI":'? T4 J":l .
rel

§%(r, 2. yu.p).
By induction, (i) holds for any (zsy) € (XY™
(it)==(1):
A= X Y. §) as follows:
Q = {mg.gug.ubX = 1'“1 az.as}h.Y =
{by. be.bs b dlgo. ar b ) = a, 8q,, bz ol =e,
b(g:. az. by, gs) = €. 8(g2. a3, bs. qu) =

§(gs. as.bs.q4) = c and 8(q a. b, II— 0 in other case.

We can construct an L-FSM
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Take = = 01.72 = asos.1 = b
and e = babs. then #*(g.z130.y10.04)
LY TS0 O I T o .20 T T =
reR
\ [dlgo.ar bir) e 8%(r ozos. babsga)] =
rEQ :
5{@.‘_‘..&1.&.@1) L] ﬁg{gg.ﬂgﬂg.h‘gh‘g.gij = 7 =
Iixl::fj'g.ﬂgﬂg.b_ahg.gij.

Since d%(g:.as0s. babs. ) = V [0(gr. 00, bs.7) @
reld

d{r.as.bs, ga)] = [6(g1, 00, by, g2) » 8(gs, as. by, q4)]

V(g az.be, gs) e dlgs, a8, bs. qq) = (e=b)\{ewe) =

bY c then we have §* (g, 2120 13 qu) = e (b c).
On the other hand, {gy.z1Z2.y10.04) =

=

Hl::l?.;_'.. E;I’lgﬂg.l’}[l‘?gbg. I:i'_tj = l".‘I'I ;:I’.‘l‘uft.l?.j.ﬂzflg.llhll?g.rj Ll
.—E[;:I

I:Tl::i"'. Eg.l‘?g.fj';:l: = Eﬁ"{g.j.ﬂlﬂz.f};hg.ggj L]
E{fj‘z.ﬂg.l‘i‘s.gij: Vg:lj‘ulil?.j.ﬂlﬂg.blbg. I?g:l L]
If?l::g‘g. 5. I|33. Ij‘_-t:l =

:ﬂ?"(qﬂ. 2 rlg.ll:l‘g |I.-l'2.. rj'-zjl L] II.'I‘ I'l,‘l'lrﬁulirj'g. 212, Il?'lll?z. rj'gjl - L‘:.
Since §%(go. mias, bibs, ge) = V [fgo. a1 br.m) e
. S rew
E(T‘. ﬂg.h‘z. fj'zj = Ij(lj'.'_'.. 21. b‘i. Ij'1_:| L] Ijlllj‘;. A h‘z. Ij'zj =%
e = 2 and §(go. @122, bibsgs) = W [§go.ai.br.7) e
.—E[;:'
I:‘l‘{i"'. Ez.bg. g‘3:| = Ifl‘lilj‘g. Q1. Il}-l. Ij‘1_:| [ ] EI‘I:_IE‘;. Ry Il?g. Ij‘3:| = (1%
e=a, then & (gu. 2122, 13- qa) = (2 e b))V (nec).
So the above proof indicates that ae (bl c) =

(aeb)V(aec)
In addition. we construct another L-FSM
A =(0Q.X.Y.48). of which Q. X, Y are identical with
those in A, § (go.a1.b.q1) = 6.6 (@.a.br.ge) =
e, 8 (gs.az. bs. gs) =
e. 6 (gs.0s.bs.q) = o and d(ga.bp) = 0 in
other case. We also get (B/clea =(bea)/(cea)

Cs Ellilj'l.ﬂg.ll?z.lj'gj =

in a similar way.

These tell us that the distributive laws of multi-
plication on \/ = satisfied.

Likewise, we may show that (i)=={iii) and
(iii)===(1).
Corollary Let (L.e%) be a lattice-ordered
monoid and 4 = (Q. X, Y. 4§ be a single L-FSM,
where @@ = {g}.X = {a} and ¥ {t}. Then
#*(g.a*. b*. q) = 6% (gq.a. b, g
---od{alb).
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Proof: The result is straightforward from Theorem
2.1{iii), so the proof is omitted.

Remark: If « = /. then d%ga".tf.q) =
#(g.a. b, q) in Corollary.

3.BEHAVIOR MAPPING OF AN L-FSM

Let ImL® = {{u,us,---,un)The; € L =

1,2,---.n}, column matrix (uy, us.---.un)] corre-

sponds to @ with which elements u; stands for the
membership degree that the current state is g1 =

1,2,:-, 7.

We modify the definition in [1] as follows:

Definition 3.1 Let A = (Q. X Y. d) he an L-F5M
with [} = n, we define a bshavior mapping T4
(XY — L9 asralz y) = [t (2 0] nun

Enwy , if (zly) = (Al
- { 8*(z1y) © Enxt » if (/) # (AIN).
for any (zly) e (XY, whers Ene1 =
e e --- )T

axl®

Each element t;(zly) = \/ faizly) of Talzly)
g
determines the operation of A4 under the input word z.

beginning at state g; and producing the output word

y after \z| = |y consecutive steps.

Theorem 3.1 Let(L.e g} he a finits ordered-monoid
without nilfactor and A = (Q, X, Y. d) bz an L-F5M,
where L =k and } =n. Then thers exists at most
k™ different matrices in {d*(z)y) (zly) € (X ¥ )"}.
Proof: Let ) = Tgi e, ga b X =
{e;.08,---,2n} and Y = {by b, - B}
Let L = Jup,us.---,up} be the set of all
the elements which occur in  the matrices
{d{arby).--- . 8(ay by ) dlas b)) - 8lam )}, Hence,
the number of different matrices which can be

obtained in {§*(z/y)(zy) € (X|¥)*} & at most e

We construct the sequence Iy ¢ Iy © ---C T of
subsets of J = (X V)" as follows: [1
I{J = {.'*-. .'*-.}
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L =Ly :(zly) e (X¥)* and [z = Iy =1}

I,-=I,-_1U{{.r::| izhy) € (X|¥)* and |z = ly| =1}
Evidently, Ta(ly) C 74(l1) C --- C 74(I). Then

we have:

Theovem 3.2 L=t (L.e /) b= a finits lattice-ordersd
QX Y. 8) be an L-FSM with its
behavior mapping T4.

(i) If Tal(l;) = 7al{d;=1), then Tally) = Talfi=,), for

eachs=0.1.2,---

monoid and 4 =

() Tallpme_y) =7allp2) =---=7a(T).

Proof: (i) We only show that 74 (J;) = 7a(li=2).
Since T4 (1) C 7a(l;1) © Tallizs), we need to

prove Tallies) © 74(L). For any (zly) € (XY=,

ma(1) = {[ =)= =y <)

Taldie1) = {[tj(zarlyby)]|iz| = |y £ 7 and (a1.b1) €

X x Y}

Tallizs) = {[i{zoiae|ybib)]llzl = ly] € i and
Qg = h‘lh‘z =2}

Next, for any [f;(za;as|ybbs)] € 7a(lizs), we

have t;(zayas|ynbs) = V' Qp(zaiasiyb bs)

) gREQ
=\ (g, come. ybib g
TR EQ -
=V WV [*(g.zo0.yb.g) e 2. ba. gy )]
grEl grEl . i
= W [V §g.co.yb.0)e 8-, 2o, ba. gr ).
gl g€ - wER )
By 7alli) = 7allina), 7allin) =
Tald) [t zay lyb:) ]z = ¥ = 1 and

(g1.b1) € X ® Y] implies that [#;{za; yb )] € rall).
i.e. there exists (m ;) € (X|¥)* of which
o) = y| £ i such that [#5(za; |yb)] = [ {2 Iy

S0V fglzailyh) = Voflolw)d =
gx 0 geEQ
1,2,---,m.

Hence t;{zaia: |y b

= VIV &{gzram.9)e V blgr a2 b2 q4)
,KEQ ,rer;'_ ) £
=V V [g.z00m. @rll-ﬂfr;rrh ba. gk )]
g E0Q g-EQ
lII.‘l'I Euli%:.ﬂ:;ﬂg.lib_hl?k]
grELQ}
"'I‘III ﬂ_‘,‘k{zlﬂi Ll‘:l‘i‘gj = f_-lil::.ﬁ".plﬂz _l_,l'j_l‘?zj.j =1.2.---.m.
gREQ
for |zios| = |mbe] € 4+ 1, then [f{ziaslyibe)] €

T_Al::fi_';:l.

Thus Tl fies) C 7l = 7all
(i) If 7ai{ly) = 7ail;21), che result 5 obvious. If
Tally) © 7allioq), the result is also true. Indeed:

If 74 (1;~1) contains only one new vector different
from 74}, then we have 74(ly) C 7alfy) © --- C
Tallpa2_ ) = 1all2) = - = 7a(l); if Ta(li)
contains more than one new vector different from
Tally), then there exists §j < B — 1 such that
Tallo) CTalli) - Crally) =---=1allpa_,) =

Tallpmz) = ---=Ta(I).

Now we can compute T4(f) in the following
algorithm by Theorem 3.1 and Theorem 3.2, where

L is a finite lattice-ordered monoid.

Now we can compute 7a4() in the following
dgorithm by Theorem 3.1 and Theorem 3.3, where

L is a finite lattice-ordered monoid.

Algorithm 1

Stepl: We obtain 74(0;) by E,,q and

dlailh) o Epxi,---.0(arll) o Enpx,d(aslty) o
E w1 dlon b o E s

. 2
Step2: Fori=2to k"

Compute §*(ar @y - - ol s --- 8] by
§%(mras---olbibe---b) = Sl lb) o Hloslby) o
-+ o d{a; b

We obtain 74 (f2), - -.7a({fy.2) by the same way
as Stepl.

Stepd: Output T4(l) = 74l .2).
4 MINIMIZATION OF AN L-FSM

At first. two kinds of statewise equivalence rela-

tions can be introduced.

Definition 4.1 Let 4 = (Q.X.Y.4) and 4 =
(Q.X.¥.§) be two L-FSMs with behavier mapping
T4 and T,r, regpectively. Let g € @ and g €0,
then:

(i) g and g are squivalent (g=gq ) <= the rows cor-
responding to the state g in 74(1) and the state g in

T4 (1) are identieal
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(ii) for each positive integer k, g and g are
k—eguivalent (g =, g ) <= the rows corresponding
to the state g in Ta( Iy ) and the state g in 7 (1) are
identical,

(iii) 4 and A  are equivalent (A = A') &= g €
0.3 € @) such that g=gq and ¥ € Q.3 Q
such thatq =gq.

(iv) for each positive integer k, A and A are
k—equivalent (A =, A') <= vg € Q.3 € @ such
that = q and¥g € (.3q € Q such that g = q.

We denote the partition corresponding to = and
=; by @/ = and @}/ =; respectively. By Definition
3land 4.1 we have Ty =74y = A=A .

Theorem 4.1 L=t 4 = (Q.X. Y. §) b= an L-FSM.
Then there erists o minimal L-FSM A" equivalence
to A.

Definition 4.2 Lt 4 = (Q. X Y. §) b= an L-FSW
with behavior mapping 74. Then A is said to be min-

tmal <= any two rows in T4(f) ars not identical

Next, we shall prove the existence of the minimal
L-FSML
Proof: If any two rows in 74(]) are not identical,

the claim is true by Definition 4.2, of which A = A.

We can get a minimal L-FSM A equivalent to A

by the above constructed method.

Theorem 4.2 Let(L.e,g) bs a finits ordered-mongid
without nilfactor and 4 = (Q. X. Y. §) be an L-FSM
with Ty, where L =k and @ = n. Then thers sxists
at most k™ steps to distinguish all states in .

Proof: Since t4(f) iz a semi-infinite matrix
with n rows and numberable columns, and

L = Jupus,---.um} 5 the set of all the ele-
ments which appear in each column vector from

T4ld), thus the number of different columns which

can be obtained in 74(7) is at most k™.

Now we can obtain @/ = in the following mini-

mization algorithm for 4 by Theorem 4.1 and 4.2.
Algorithm 2
Stepl: The equivalence class =; can be obtained by
Taldih
Step2: Repeat fori=2.3.---

Compute 74(fs),7a(ls).--- and obtain equiva-

lence classes Q) =4, Q) =y.---

Until |/ = | =nori=§k"

Stepd: Owpur Qf == 0/ = e Q/ = is the
equivalence class of the L-FSM A.
Example. Let L = ({0.03.08 1} A V) with e =
l.e = nand A = (Q. X, ¥ 4§) be an L-FSM with
Q ={q.02.0s}, X = {0}L.Y = {0,1}. 4 & given by

1 0 0.3
glon = I 08 0

ni 0

hY s A" ’
We can obtain

1 1 1 1 1 1 1
TallzZ)=|1 1 1 1 1 08 08 | and
I 03 08 03 03 0.3 0.8
know @/ =={{gm}.{®:}. {g:}}. stop.
Stepd: Ouwrpur Q) == Q/ =s={{m}. {g2}. {1z}

0o 1 0.3
fol)=| 08 0 1
0 0o 0.8
1 1
Then T4(00) = 1 and T4(0/1) = 1
.3 n.s
1 1 1
soTalli)=1]1 1 1
1 0.3 0.8

Stepl: Wecan see Q) =1= {{q1. a2}, {gs}} by 7a{l1);
Step2: Compute T4(1s):
i b i b
1 1
40000} = 1 L Tal0001) = 1
0.3 0.3
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r4(0010) = | 0.8

1 1
L7400 = | 08
0.3 0.8

5. CONCLUSIONS

In this paper, we use a generalized truth values

algebraic structure—finite lattice-ordered monoid as

the basic structure of membership values and formu-

late the definition of behavior mapping to determine

the whole operation of an Levalued finite sequential
machine {L-FSM).

The concept of L-FSM in [1] has been modified,

next, we have discussed the related properties. Fur-

thermore., we have present.ed Algorithm 1 to obtain

the image of the behavior mapping for a given L-FSM.

In the sequel, the statewise equivalence relations have

been given, in order to obtain the minimal L-FSM,

we has got Algorithm 2 within finite steps.
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