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Summary 
The three-quarter crossbar switch (TQ-XBS) has been known to 
have about 3N2/4 crosspoints, where N is the switch size, and 
shows a property intermediate between the crossbar switch 
(XBS) and the triangular switch (TAS). Its original configuration 
has an extra pair of input and output ports to make the analysis of 
the switch control complexity difficult and some major properties 
of TQ-XBS have been left open. In this paper, we consider a 
diminished TQ-XBS that has not the extra ports as a first step to 
examine performance of TQ-XBSs. We made a comprehensive 
study of the switch control complexity and the worst case 
scenario for rearrangement in the diminished TQ-XBS. It is 
shown that the switch control complexity for setting up a new 
connection is O(N) at most. It is also shown that the identical 
permutation ensures truly a worst case scenario for 
rearrangement and the maximum number of rearrangements for 
the worst case remains two regardless of N. The complexity of 
the rearrangement process is also given by O(N). Additionally, it 
is pointed out for the first time that the diminished TQ-XBS 
shows a better performance than the TAS regarding a newly 
defined figure of merit.   
Key words: 
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1. Introduction 

The crossbar switch (XBS) consisting of 2x2 basic switch 
elements (BSEs) offers a most practical design option in 
the optical domain. It is wide-sense nonblocking and 
requires quite a simple switch control, while it has as many 
as N2 BSEs, where N is the switch size [1,2]. It has been a 
research focus to reduce the number of BSEs in XBSs, 
especially for the application to optical networks, because 
each individual optical BSE, typically implemented with 
an optical directional coupler, occupies space, consumes 
power, and costs a lot, among others [3]. In early stages of 
the research, a number of switches with less than N2 BSEs 
have been developed from the XBS [4,5]. The most basic 
family is the triangular switch (TAS) [6,7]. The TAS was 
created from the XBS by subtracting about a half of BSEs 
within a triangular area. This design principle corresponds 
to the characteristics of the XBS: All the BSEs in a column 
of the XBS are devoted to an output port for switching a 
call to it, and thereby the numbers of calls to be switched 

decreases one by one as the calls go through the columns. 
Although the design principle of TASs is well established, 
there remain several basic questions. For example, an NxN 
XBS has N2 BSEs and wide-sense nonblocking (i.e. no 
rearrangements are required under a certain switch control 
algorithm), while an NxN TAS has about a half of N2 BSEs 
and is rearrangeably nonblocking. In fact, the number of 
rerarrangements required for the TAS reaches the 
maximum possible value of N-2 for a worst case scenario. 
Such an observation led us directly to a question of how 
we can get an intermediate performance with respect to 
rearrangements between these two extremes. In our 
preliminary work [8], we have introduced the three-quarter 
crossbar switch (TQ-XBS) as an answer to the question. It 
is rearrangeably nonblocking and its performance was 
examined mainly from the number of rearrangements. 
However, its basic properties such as switch control 
complexity for setting up a connection and the validity of a 
worst case scenario assumed for rearrangement have been 
left open. The aim of this paper is to address these issues. 
The paper is organized as follows. We begin with an 
outline of TQ-XBSs in Section 2. In this paper we consider 
a diminished TQ-XBS as a first step toward 
comprehending the basic properties of TQ-XBSs. In 
Section 3 we analyze its switch control complexity for 
setting up a connection and discuss its rearrangement 
process in detail. The paper concludes in Section 4.  

2. Outline of TQ-XBSs 

2.1 Switch configuration 

Let us begin with a conventional XBS with a switch size of 
N as shown in Fig. 1(a). We assumed N=2n (n is an integer 
and n≥2) throughout the paper for convenience. Variables i 
and j represent input and output port numbers, where 
0≤i≤N-1 and 0≤j≤N-1. BSE(i, j) denotes the BSE on the 
cross point of the i-th row and the j-th column. A BSE has 
two connection states; bar and cross as shown in Figs. 1(b) 
and 1(c). Generally, all the BSEs are initially set to the 
cross state [9], which we assumed as the default state in 
this paper. When the i-th input corresponds to the j-th 
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output under the default state, only the BSE(i, j) will be set 
to the bar state. As a result, the connection from i to j takes 
a rectangular route with one turn as shown by a dashed line 
in Fig. 1(a). When releasing the connection, the same 
BSE(i, j) will be set back to the cross state. Therefore, the 
switch control for XBSs is fairly simple with complexity of 
O(1). In this paper we define R(i) and C(j) as the number 
of BSEs with the bar state in the i-th row and the j-th 
column, respectively. It is readily shown that both R(i)≤1 
and C(j)≤1 hold for any i and j in conventional XBSs. We 
refer to this property as property-1. 
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(a) Conventional XBS with N2 BSEs  

Fig. 1  Conventional crossbar switch composed of N2 BSEs. 
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Fig. 2  Scaling the switch size of an XBS to double. 

XBSs have idle links at the top row and at the rightmost 
column to scale the switch size. If we add an XBS denoted 
by SW0 with three other XBSs of the same size (i.e. SW1, 
SW2, SW3), we have an XBS of double size as shown in 
Fig. 2. We see that SW1 and SW2 are necessary to scale 
the number of input and output ports. However, is SW3 
absolutely essential for building up a nonblocking switch? 
Such a question led us to the three-quarter crossbar switch 
(TQ-XBS) from conventional XBSs [8]. Although the 
original TQ-XBS has an extra pair of input output ports at 
SW1 and SW2, we consider a diminished TQ-XBS (DTQ-
XBS) without them as shown in Fig. 3 for the sake of 

simplicity. Input and output ports of the DTQ-XBS are 
divided into two groups according to their port positions. 
The first group includes those from 0 to N/2-1, and the 
second from N/2 to N-1 as shown in Fig. 3. We label them 
with (I0, I1) and (O0, O1). We assign switch components 
with labels SWk (k=0, 1, 2). Each of SWk is an XBS of a 
half size. We also assign internal links between the switch 
components with labels Lk (k=0, 1). 
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Fig. 3  Switch components of a diminished TQ-XBS. 

2.2 Assigning routes to connections 

A connection between a pair of input and output ports of a 
switch will be established by assigning an appropriate 
route to it within the switch. There are three types of routes 
for TQ-XBSs [8], while two of them are enough for DTQ-
XBSs. The first is the rectangular route that has been used 
for conventional XBSs. For example, connections with I0 
to O0, I0 to O1, and I1 to O0 take rectangular routes like a, 
b, and c as shown in Fig. 4(a). It is obvious that 
connections with I0 to O0 take rectangular routes because 
SW0 itself is an XBS with a switch size of N/2. We see 
that the set of SW0 and SW1 constitutes an asymmetric 
XBS with N inputs and N/2 outputs and provides 
rectangular routes. So does the set of SW0 and SW2. The 
second is a concatenated rectangular route, which is 
composed of two consecutive rectangular routes. 
Connections with I1 to O1 like d, take concatenated 
rectangular routes. The former part of a concatenated route 
looks like a conventional rectangular route between I1 and 
L1 as shown in Fig. 4 (b), while the latter part of it also 
does between L0 and O1. A BSE with the bar state in SW0 
on the way of a concatenated route is the termination point 
of the former rectangular route and is also the originating 
point of the latter rectangular route. From another 
viewpoint, we can see that a portion of a conventional 
rectangular route between I1 and O1, which would be 
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provided over SW1, SW3, and SW2 in Fig. 2, is changed 
from SW3 to SW0 to make up a concatenated route. This 
observation facilitates the development of a switch control 
algorithm for DTQ-XBSs, which will be discussed in detail 
in Section 3.1. Note that the type of connections will be 
readily identified with the combination of source input and 
destination output numbers. 
It should be stressed that the property-1 holds within each 
of SW0, SW1, and SW2 in Fig. 3 and thus R(i)≤2 and C(j) 
≤2 hold as a whole. We refer to this property as property-2. 
In SW0, there are possible alternative routes for a 
concatenated route d, e.g. d’ and d” as shown in Figs. 5(a) 
and 5(b), where R(i)=3 or C(j)=3. Such routes, however, 
are prohibited in DTQ-XBSs because blocking can occur. 
Consequently, if all the inputs of I1 correspond to O1 in 
DTQ-XBSs for a worst case scenario (e.g. identical 
permutation [10], where input i corresponds to output j, 
j=i), each BSE with the bar state in SW0 can be shared by 
two connections from I0 and I1. This means that certain 
coordination for setting up concatenated connections is 
required and, eventually, makes the DTQ-XBS 
rearrangeably nonblocking. These aspects, which were not 
concerned in the previous work [8], will be discussed in 
detail in Section 3.2. 
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Fig. 4  Two kinds of routes for DTQ-XBSs. 
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Fig. 5  Possible alternative routes for concatenated routes. 

3. Basic properties of diminished TQ-XBSs 

3.1 Switch control for assigning routes to 
connections 

Consider rectangular routes in an XBS under the identical 
permutation shown in Fig. 6, where BSEs with the bar state 
align diagonally and the property-1 holds. The identical 
permutation constitutes a worst case scenario for assigning 
routes to connections in DTQ-XBSs, because it yields the 
maximal number of concatenated routes between I1 and 
O1: N/2 connections through the removed area must divert 
their rectangular routes to concatenated routes as shown in 
Fig. 6. The routes of the other N/2 rectangular routes 
remain unchanged like that from i=0 to j=0. This means 
that the rectangular routes with I0 to O0, I0 to O1, and I1 to 
O0 are given priority over concatenated routes. These 
rectangular routes are set up and released with O(1) 
complexity, just the same as conventional XBSs. In the 
worst case scenario, each column in the left-hand half of 
SW1 accepts only one connection at most in order to 
minimize the number of rearrangements. In other words, 
the diverted routes are distributed evenly over the columns 
in the left-hand half of SW1. We refer to this property as 
property-3.  
Next, we shall consider searching process of concatenated 
routes in detail. We exemplify the process with an input 
port is (N/2≤is≤N-1), which corresponds to jd (N/2≤ jd ≤N-
1). The first process by the switch controller is to inspect 
the number of BSEs with the bar state in the first column 
(i.e. j=0), C(0). Note that the controller keeps a record of 
R(i) and C(j) as well as the location of BSEs with the bar 
state for each row and column. If C(0)=0 (i.e. output port 0 
is left unconnected), the controller searches a row ir, where 
R(ir)=0 holds, between i=0 and i=N/2-1. Then, set BSE(is, 
0), BSE(ir, 0), and BSE(ir, jd) to the bar state. If C(0)=1 
(i.e. output port 0 is already connected), the controller 
inspect the location of the BSE with the bar state through 
the recorded table. If the BSE stands in SW1, the 
controller skips the process to the next j, because no 
concatenated route can be set up in this case. If not, 
assume the location of the BSE is given by it, 0≤ it ≤N/2-1. 
Then, set BSE(is, 0) and BSE(it, jd) to the bar state (n.b., 
BSE(it, 0) has been already set to the bar state). If C(0)=2 
(i.e. a concatenated route is already provided), the 
controller skips current j and continues the above process 
for succeeding j. The complexity of this switch control is 
given by O(N). When an existing call is released, the BSEs 
set to the bar state on the setup phase will be toggled to the 
cross state in O(1) time. Note that those BSEs can be 
specified instantaneously through the recorded table 
because each column and row of SWk (k=0, 1, 2) has only 
a single BSE with the bar state due to the property-2. As a 
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consequence, the switch control complexity for setting up 
and releasing a connection in DTQ-XBSs is given by O(N) 
at most.  
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Fig. 6  Diverting routes in a worst case scenario. 

3.2 Switch control for rearrangement 

The property-2 implies that the DTQ-XBS is rearrangeably 
nonblocking and the number of rearrangements becomes 
two at most. We can confirm these properties as follows. 
Assume the identical permutation again as shown in Fig. 
7(a), where solid and dashed lines denote busy and idle 
edges. In Fig. 7(a), suppose i2 and j2 are idle, an existing 
connection of i1 to j1 is released, and a new connection 
request of i1 to j2 is issued. Although both i1 and j2 are 
idle, blocking occurs due to the existing connections q. 
The switch controller detects the blocking through the 
symptoms that both C(j2) and R(i1) becomes three if 
BSE(i1, j2) is set to the bar state in order to provide the 
rectangular route with i1 to j2. The controller also knows 
that there are two existing connections (p and q) to be 
rearranged and begins the following rearrangement process. 
Firstly, p and q are released; BSEs associated with p and q 
in SW0, SW1, and SW2 are set back to the cross state, and 
it takes O(1) time for this process. Secondly, the BSE(i1, 
j2) is set to the bar state because the rectangular route has a 
top priority. It also takes O(1) time. Thirdly, p and q are 
re-established through the same process as the provisioning 
of connections described in Section 3.1, for which it takes 
O(N) time. The blocking disappears as shown in Fig. 7(b). 
The positions of BSEs with the bar state in SW1 remain 
the same in the example given in Fig. 6. However, they can 
be changed in general. As a consequence it takes O(N) 
time for the rearrangement process and the number of 
rearranged connections becomes two at most.  
 

p

q

i1

j1 j2

p

q

i2

i1

j1 j2

i2

(a) Before rearrangement (b) After rearrangement  

Fig. 7  Rearrangement of a concatenated route for a worst case scenario. 

3.3 Transformation of DTQ-XBSs 

It has been known that a part of a TQ-XBS can be replaced 
with a smaller TQ-XBS in a recursive manner [8]. A 
similar transformation can be applied to DTQ-XBSs. At 
the first replacement (or k=1), both SW1 and SW2 in Fig. 8 
can be replaced with a DTQ-XBS of switch size N/2 (or 
two N/4 x N/4 regions are removed). At the second 
replacement (i.e. k=2), four N/8 x N/8 regions will be 
removed, and so on. In this paper, we discuss the number 
of rearrangements in a simple and visible way different 
from the previous work. We shall employ a new worst case 
scenario that each half of I0 and I1 correspond to each half 
of O1 and O0 (i.e. partially identical permutation). In this 
worst case scenario, a full number of connections pass 
through the one-quarter area removed in SW1 and SW2. 
These connections have to divert their routes from the 
removed region to the left half of SW0 and SW1 as shown 
in Fig. 8. Each column in the left half of SW0 and SW1 
have to accept at least one diverted connection due to the 
property-3. Let us focus on the leftmost column (i.e. j=0) 
in the DTQ-XBS shown in Fig. 8. After the first 
replacement, C(0) increases from two to four and the 
number of rearrangements becomes three (or C(0)-1) at 
most. This result can be easily seen through an example, in 
which i=N-1 corresponds to j=0.  
The number of BSEs with the bar state at the leftmost 
column after the k-th replacement (0≤k≤n-2), Ck(0), is 
given by 
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Note that k=0 corresponds to the original DTQ-XBS. The 
number of rearrangements, Ak, is given by  
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Recall that we assumed N=2n. When k=n-1, a TAS with 
switch size of N will be obtained and its number of 
rearrangements is limited to N-2 because at least two idle 
ports are required for rearrangement.  
With the recursive replacement of DTQ-XBSs, the total 
number of BSEs after the k-th (0≤k≤n-1) replacement, Bk, 
is given by  

 

 .
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11
2 1

2







 += +kk

NB                                                 (3) 

 
In (3), B0=3N2/4 and Bn-1=N(N+1)/2 denote the number of 
BSEs in the original DTQ-XBS and that in the TAS, 
respectively. Figure 9 shows how Ak and Bk depend on the 
degree of recursion k for N=512 (or n=9). Note that k=0 
and k=8 correspond to the original DTQ-XBS and the TAS, 
respectively. Bk decreases quickly at small k to saturate at 
3N2/4, while Ak increases steeply at large k to be limited to 
N-2. In other words, smaller Ak results in more Bk and vice 
versa. Here we can see a clear trade-off relation in 
performance between the number of BSEs and 
rearrangements [11]. Now we define the ratio of the 
decreased number of BSEs (i.e. B0 - Bk ) to the number of 
rearrangements (i.e. Ak) as a new figure of merit fk in order 
to assess the overall performance of the transformed DTQ-
XBSs. Figure 10 shows how fk depends on k. We see that 
fk keeps a constant value of N2/8 for k=0 and 1, while it 
falls quickly around k=2 or 3. We see a substantial 
decrease in the number of BSEs can be achieved with a 
small number of rearrangements. As a consequence, it is 
interesting to note that the TQ-XBS is promising among 
the family of switches derived from XBSs (e.g. TAS) 
although it has more than the number of BSEs necessary 
for the TAS.  
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Fig. 8 Recursive replacement of DTQ-XBS. 
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Fig. 9  Trade-off relation in performance between Ak and Bk. 
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Fig. 10  Figure of merit fk vs. recursion depth k.   

4. Conclusions 

The basic properties of the diminished three-quarter 
crossbar switch (DTQ-XBS) were investigated in detail as 
a first step to comprehend the properties of three-quarter 
crossbar switches. It is shown that its switch control 
complexity for setting up a connection is given by O(N) if 
a set of switch control data, e.g. R(i) and C(j), is 
designated and utilized in a appropriate manner. The 
validity of a worst case scenario for rearrangement 
assumed in prior works was examined and the identical 
permutation should be adopted as a new worst case 
scenario for DTQ-XBSs. It is shown that a partially 
identical permutation facilitates the derivation of the 
number of rearrangements for a series of transformed 
DTQ-XBSs. A new figure of merit, i.e. fk, was introduced 
to quantify the performance of transformed DTQ-XBSs, 
and it is pointed out that transformed DTQ-XBSs with a 
small degree of replacement show a better performance 
than the triangular switch.  
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