
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012

87

Manuscript received October 5, 2012
Manuscript revised October 20, 2012

Resource Adaptive Technique for Frequent Itemset Mining in
Transactional Data Streams

Chandrika.J† and K.R.Ananda Kumar††,

MCE Hassan SJBIT Bangalore
Summary
Mining Frequent itemsets from transactional data streams is a
very challenging task as it has to handle continuous, unbounded,
and ordered sequence of data elements generated at a rapid rate
in a data stream. In order to enhance the analysis of stream data it
is essential to extract frequent itemsets from more recent data.
For this purpose a sliding window mechanism is used. Further
the usage of memory resources should be taken care of regardless
of the amount of data generated in the stream. The proposed
algorithm RA-FIG (Resource Adaptive Frequent Item
Generation) accounts for the computational resources like
memory available and dynamically adapts the rate of processing
based on the available memory. Extensive experimental analysis
shows that proposed algorithm is efficient in terms of resource
utilization and accuracy when finding recent frequent itemsets
from a data stream.
Key words:
Transactional data stream, sliding window, frequent itemset,
Resource adaptation, Bit sequence representation.

1. Introduction

A transactional data stream is an unbounded continuous
stream of records that contains a set of items together with
a unique identification number for every transaction.
Extracting frequent itemsets from data streams [1][2] is a
crucial step in association analysis. It is very beneficial to
extract frequent itemsets from transactional data streams as
it finds applications in many areas such as business
decision support and direct marketing. For example,
identifying groups of products that are frequently
purchased together helps a company to formulate its
marketing strategies. Traditional mining algorithms assume
a finite dataset over which the algorithms are allowed to
scan multiple times. Therefore it is necessary to modify
these algorithms in order to apply these algorithms to
transactional data streams. An important property that
distinguishes data stream mining from traditional data
mining is the unbounded nature of stream data, which
precludes multiple-scan algorithms. Traditional frequent
itemsets mining algorithms are thus not applicable to a data
stream [3].
According to the stream processing model, the research of
mining frequent itemsets in data streams can be divided
into three categories, snapshot windows, sliding windows

and Landmark windows. In snapshot window model the
frequent items are detected in a fixed range of time so that
model is not used frequently. In landmark window model
knowledge discovery is performed based on the values
between the specific timestamp called landmark and the
present. In the sliding window model knowledge discovery
is performed over a fixed number of recently generated
data elements which is the target of data mining. Sliding
window model is a widely used model to perform frequent
itemset mining since it considers only recent transactions
and forgets obsolete ones. Due to this reason, a large
number of sliding window based algorithms have been
devised [4][5] [7][8][9][10]. However, only a few of these
studies adaptively maintain and update the set of frequent
itemsets [7][8][9] and others only store sliding window
transactions in an efficient way and perform the mining
task when the user requests.
Resource adaptation refers to adjusting the processing
speed in accordance with the available resources so that
the algorithm will not run out of computational resources
like memory. In this study, a novel approach based on
resource adaptation for mining frequent itemsets over data
streams is proposed which operate under sliding window
model. The basic algorithm considered for this work is
MFI_TRANSW [5] which uses an efficient bit sequence
representation for representing the transactional data items.
For each item X in the current transaction-sensitive sliding
window a bit-sequence with W bits, denoted as Bit(X), is
constructed. If an item X is in the i-th transaction of
current sliding window, the i-th bit of Bit(X) is set to be 1;
otherwise, it is set to be 0. Once the bit sequence
representation is available finding the frequent itemset
becomes easy as the count of one’s indicate the number of
transactions in which an itemset is present. Bitwise logical
AND operation is performed to get an itemset of length
greater than one. This algorithm doesn’t take into
consideration any resource requirements while processing
the stream for the generation of frequent itemset. The
proposed algorithm enhances this basic algorithm by
performing resource adaptive computation.
The rest of the paper is organized as follows. The next
section formally states the problem and introduces the
basic terminologies. In section 3, some previous related
works on frequent itemset mining are reviewed. Section 4

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 88

presents the proposed approach and section 5 empirically
compares the approach to a related algorithm
MFI_TRANSW. Finally, section 6 concludes the paper.

2. Preliminaries

It is necessary to give a formal definition for the
transactional data stream before defining the frequent
itemset mining problem. Let Y = {i1, i2, …, im} be a set of
items. A transaction T = (tid, x1x2....xn), xi belongs to Y,
for 1 <= i <= n, is a set of items, while n is called the size
of the transaction, and tid is the unique identifier of the
transaction. An itemset is a non-empty set of items. An
itemset with size k is called a k-itemset.
Definition 1: A transaction data stream TDS = T1, T2,
…, TN is a continuous sequence of transactions, where N is
the tid of latest incoming transaction TN.
In order to process the elements of the transactional data
stream by considering the recent transactions a sliding
window mechanism has been implemented for data
processing, that is, the incoming transactions are processed
batch by batch. This means that a group of say b
transactions at a time. Sliding takes place on processing
each batch to get the next batch to be processed. Such a
batch is taken in a window called basic window, such ‘k’
number of basic windows are taken to form a main window
called sliding window.
A set of transactions which are processed at a time forms a
basic window. A basic window will be composed of fixed
number of transactions. A group of basic windows form a
sliding window. In data streams, with the continually
arriving of transactions, the new basic window is inserted
into the sliding window, and at the same time the oldest
basic window is deleted from the sliding window, so the
sliding window is always formed by the latest k basic
windows.

Definition 2: The window at each slide has w number of
transactions, and w is called the size of the basic window
and w*number of basic windows will give the size of the
sliding window. The support of an itemset X over
TransactionSW, denoted as sup(X)TransactionSW, is the
number of transactions in TransactionSW containing X as a
subset.

Definition 3: An itemset X is called a frequent itemset
(FI) if sup(X)TransactionSW >= s×w, where s is a user-
defined minimum support threshold (MST) in the range of
[0,1]. The value s×w is called the frequent threshold of
TranactionSW (FTTransactionSW).

Definition 4: A frequent itemset of length k is called k
frequent itemset.

In a variation of the same problem Error threshold will be
considered, which decides by what amount the infrequent
itemset having negligible variation from the threshold can
be considered as frequent. With these preliminary
definitions the problem under consideration can be
formally stated as follows:
Given a transactional data stream the problem is to find all
the frequent itemsets with the user specified minimum
support threshold. It is also necessary to track the run time
resources consumed like amount of memory and CPU time
so that at any instance of time if the computation cannot be
carried further with the available resources the input rate
will be adjusted by modifying the sliding window size.
The computation of frequent itemsets can be done
efficiently by representing all the items in the transactions
of the data stream by bit sequence representation [5]. If
there are three transactions in the given window then the
length of the bit sequence will be three bits. First bit
represents first transaction and it is set to one if the item is
present in the transaction. The same is repeated for all the
bits of the transaction. For instance if a sliding window is
composed of three transactions T1, T2, T3 containing
different itemsets as shown in Figure 2, the corresponding
bit sequence representation is derived for every item by
considering the transactions in which the items are present.
This is illustrated in figure 1.

Figure 1. Bit Sequence Representation of Items

 Once the bit sequence representation is ready for all the
distinct items in the given set of transactions it is easy to
derive itemsets of length two by performing bitwise AND
operation. The concept is illustrated in Figure 2, where the
bit sequence representation for itemset ab is obtained by
performing bitwise AND on the bit sequence
representation of item a and the bit sequence
representation for item b. The same procedure can be
repeated for deriving bit sequence representation of other
itemsets of length two. Once 2 itemsets are available they
can be used to generate the bit sequence representation of
3 itemsets and so on. The bit sequence representation
enables the computation of frequent item sets easily
because counting the number of 1’s in the bit sequence will

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012

89

give us the exact count of number of transactions that
contain the itemset. This count can be compared with the
support threshold to find if the itemset is frequent or not.

3. Related work

There are a number of previous studies which addresses
the problem of mining the frequent itemsets from the data
streams. In [2], Manku and Motwani have developed two
single-pass algorithms, Sticky-Sampling and Lossy
Counting, to mine frequent items over the data streams.
Jia-dong et.al have proposed an approximation
algorithm[4] that stores the frequent itemsets in a compact
data structure, further the outputs of the mined results are
stored in a heap. The algorithm MFI_TRANSW proposed
by Li et. al [5] uses the bit sequence representation for the
items which enables finding the count of itemsets by
simple logical and operation. In [7] Chang et. al have
proposed a mining algorithm for finding frequent itemsets
over sliding windows in a data stream based on the theory
of Combinatorial Approximation to approximate the
counts of itemsets from some summary information of the
stream. The concept of resource awareness in data stream
mining is first introduced by Gaber et. al [6]. They have
proposed light weight techniques for classification and
clustering. Their adaptation method is to adjust the
processing rate depending on the amount of output
produced which is called as Algorithm output granularity.
The approach suggested however is not applicable to
frequent itemset mining. In [8] algorithm called estDec is
proposed to find significant item-set in a data stream that is
represented by using a prefix tree. Consequently, the
resulting set of frequent itemsets in a data stream can be
found instantly at any moment. In [9] a CP-tree
(Compressed-Prefix tree) to replace the role of a prefix
tree in the estDec method. The algorithm also introduces
the extended version of the estDec method, namely
estDec+ for a CP-tree. This is another algorithm that
performs resource adaptation by reducing the space
requirements for the CP Tree by periodically merging the
nodes of the tree. Caixia Meng has proposed an algorithm
to find frequent itemsets based on first storing necessary
information about every transaction and then calculating
the frequency in the next step. Because of delay in
calculation the algorithm is named as defer counting[10].
Mahmood Deypir et. al have developed an algorithm for
frequent itemset mining which operates in both
transactional and time sensitive sliding window model [11].
The algorithm proposed uses a prefix tree structure for
maintaining the elements of the stream. Zhayong Qu et.al
have proposed MFIBA[12], the algorithm that computes
the frequent itemsets by using bitwise representation of
transactions and by performing bitwise and operation. This

algorithm uses an array structure to store the frequent
itemsets. None of these algorithms performs resource
adaptation under the sliding window model.

4. Proposed Algorithm

The algorithm RA-FIG is based on the idea of
MFI_Transw[5] where a bit sequence representation is
used for the transaction. Bitwise AND is performed to find
the frequent itemsets. The algorithm is capable of
generating four itemsets. The same can be extended to an
itemset of any desired length.
The proposed algorithm RA-FIG will function in three
phases, the first phase is concerned with filling in the
sliding window with k batches of recent transactions. This
is done by first storing the incoming transactions inside a
buffer in the main memory. The first w transactions are
transferred to first basic window inside the sliding window.
The next w transactions are filled into the next basic
window of the sliding window. This way all the k basic
windows in the sliding window will be filled in. The
second phase generates the bit sequence representation for
each basic window and forms 4-frequent itemsets using the
bitwise AND operation. The results are saved in a hash
table. The third phase is concerned with adaptation. The
adaptation is performed based on the framework proposed
by our earlier work [13]. According to this framework we
need to make an assessment of current resource
consumption in terms of memory allocated, execution
speed and the rate of incoming transactions. The
assessment is made periodically. At any instance if the
assessment made indicates that the computational
resources are stressed we need to adjust the parameters in
the algorithm called the adaptation parameter in order to
keep the computation going on. The overall intention is to
keep the computation up with the currently available
resources. The adaptation parameter in the algorithm that
can be altered in order to conserve the computational
resources is the sliding window size. As the sliding
window size is increased more amount of computation will
be performed and vice versa.. Based on the current
resource consumption either the sliding window size is
increased or decreased. The current resource usage is
monitored by computing an adaptation factor (AF). The
Adaptation factor is a scalar measure that indicates the
current resources usage. It considers three important
factors namely execution time, input rate and the memory
allotted. Execution time is the average runtime of all the
basic windows in a sliding window. The input rate is the
rate at which the dynamic data arrive. The memory
allocated is the average memory consumed by the
transactions in the sliding window. Mathematically the

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 90

computation of adaptation factor is according to equation
(1).
AF = (Execution time in seconds * input rate) + sin (

* memory allocated) ……………………. (1)
Sine function used in equation 1 helps us in maintaining
the value between 0 and 1. Altering the sliding window
size is based on the adaptation factor. Depending on the
incoming rate of the transaction and the CPU time sliding
window size can be either increased or decreased. The
initial sliding window is composed of ten basic windows
each of which holds hundred transactions. As the algorithm
continues the size of sliding window changes and
proportionally the basic window size is varied. This
variation in the window size leads to adjusting the number
of transactions processed in accordance with the available
memory. The detailed algorithm is outlined below:

Input:

• TDS(Transaction data stream)
• s : minimum threshold support in the range[0-1]

eg:0.45
• w: the sliding window size

Output:
• Set of frequent itemsets.

 TransactionSW=NULL; /*Transaction sliding
 window consists of ‘w’ transaction*/
 BW=w/k; /*k basic windows form one sliding
 window.*/

Repeat
 If TransactionSW is not FULL
 Repeat //window initialization phase
 Read the incoming transactions from the
 buffer into the basic window.
 Until all k basic windows are filled.
 Else //discard the older transactions by left shift
 Do bit-wise shift to left on the bit sequence
 Of each basic window
 Accommodate the incoming transaction from the
 buffer into the basic window.
 For each k BW do
 For each item ‘x’ in the transaction do
 Generate the bit sequence transformation of ‘x’
 End for
For each bit-sequence Bit(x) in TransactionSW
do
 Record the count in hash table; /*Count of one-
 itemset*/
End for
For each ’k’ BW do /*Frequent itemset generation
 phase*/
 For each item x do

 AND bit(x) with rest of other items that
 appear in BW.
 Record the count in hash table /* count of
 two-itemsets*/
 End for.
 For each x1, x2 such that x1!=x2 do
 Bit(x1) AND Bit(x2) AND remaining items
 Record the count in Three-Itemset table
 End for
 For each x1, x2,x3 such that x1!=x2!=x3 do
 Bit(x1) AND Bit(x2) AND remaining items
 Record the count in Four-Itemset table
 End for
 End for
 Sup=s*Total no. of transactions processed;
 // Printing the frequent itemsets.
 For each x in hash table
 If count(x)>Sup;
 Print x as the frequent item.
 End for.
 /* Sliding Window size Adaptation phase */
 Adaptation factor AF is devised conserving memory and
execution time
 If(AF are not in the desired limits)
 Alter the SW size proportional to the estimated
 threshold reading.
 End if
Until transactions arrive in the buffer.

The main novel concept that makes our algorithm
overshadow all other concepts and algorithms is resource
adaptation. Resource adaptive module of the proposed
algorithm will consider the execution time and memory to
decide performance, thereby deciding efficiency. Initially
after each basic window data processing execution time
and memory consumption for that particular basic window
is recorded. If the value of the adaptation factor exceeds
the input threshold then sliding window is varied.
According to the empirical evaluation it is observed that a
value of 0.4 results in good performance. As such in our
experiments the threshold value is set to 0.4. If the current
value of adaptation factor falls below this sliding window
size is increased. If it is greater than 0.4 sliding window
size is reduced so as to conserve the resources.

Varying the window size will balance the memory
consumption with the maximum number of transactions
processing each time. As the sliding window size is
directly proportional to basic window size, on altering
sliding window, size of the basic window is also altered
and hence achieving the required execution time within the
available memory.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012

91

5. Experimental Evaluation

The proposed algorithm is applied to the retail data set
available in Frequent itemset mining dataset repository
[14]. The data set contains the retail market basket data
from an anonymous Belgian retail store. Data collected is
over approximately 5 months duration. The total amount of
receipts being collected equals 88,163. Each record in the
data set contains information about the date of purchase
(variable ’date’), the receipt number (variable ’receipt nr’),
the article number (variable ’article nr’), the number of
items purchased (variable ’amount’), the article price in
Belgian Francs (variable ’price’ with 1 Euro = 40.3399
BEF) and the customer number (variable ’customer nr’).

The elements of the retail data set are looked up in
sequence to simulate the environment of a data stream. The
algorithm is implemented in on a 1.80 GHz Pentium(R) PC
machine with 512 MB memory running on Windows XP.
The initial execution starts with sliding window size being
set equal to 1000 with ten basic windows each
accommodating one hundred transactions. The value for
the minimum support threshold is set to 0.3. As the
execution proceeds the size of the window will be varied to
keep the computation going on. The following graph in
figure 3 illustrates the variations made to the sliding
window size based on the adaptation factor. A higher value
for the adaptation factor indicates greater consumption of
computational resources as such a reduction will be made
to the sliding window size. Conversely the sliding window
size is increased for a lower value of adaptation factor.
The empirical studies indicate that the optimal value for
the adaptation factor is 0.4. If there is a deviation from this
threshold the sliding window size will be varied.

The variation in the value of adaptation factor by the
change made to the sliding window size is indicated by the
graph in figure 3. It can be inferred from the graph that as
the adaptation factor reduces sliding window size is
increased; this will cause the adaptation factor to go up. On
happening of such a situation the window size will be
reduced. This will continue for the entire history of the
data stream. The overall impact is that the computation of
the frequent itemsets will continue with available memory
resources at an acceptable response time. The system will
never degrade drastically because of non availability of
memory and CPU resources. Hence the overall scalability
of the system improves.

1.3
1.35
1.4

1.45
1.5

1.55
1.6

1.65

50 100 150 200 250 300 350

Ad
ap

ta
tio

n
fa

ct
or

Time in seconds as program progresses

Variation in adaptation factor

Fig 2. Adaptation factor variation resulting from sliding window

size adjustment

The processing time of RA FIG is compared with MFI-
TRANSW, it is observed that the execution time of RA
FIG is significantly lesser than that of MFI-TRANSW. The
reduction in the execution time is the result of adaptation
and the use of hash table for saving the potential frequent
itemsets. Another factor that improves the running time of
the proposed algorithm is that the window sliding takes
place after a batch of transactions as opposed to MFI
TRANSW algorithm.. The MFI TRANSW algorithm uses
a transaction sensitive sliding window that slides forward
for every new transaction that arrives in the input. This
obviously consumes more time in the window sliding
phase. The RA FIG algorithm will first fill in all the basic
windows performs computation and will then slide the
window forward by b transactions. Where’b’ indicates the
basic window size. This will cause the transactions in
oldest basic window of the sliding window to be deleted to
make room for new set of dynamically arriving
transactions.

 Fig 3. Execution time based on the number of transactions

The memory consumption of RA-FIG over MFI-TRANSW
is indicated in the graph below. Even this shows a better
resource utilization of RA FIG over MFI TRANSW.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 92

 Fig 4. Memory consumption of the proposed algorithm

6. Conclusion

In this paper, we have proposed an algorithm for mining
frequent itemsets over online data streams with a
transaction-sensitive sliding window. The sliding window
is composed of basic windows. Instead of sliding the
window for every transaction, the window will move
forward by b transactions where b indicates the size of the
basic window. All the potential frequent itemsets retrieved
until the given time will be saved in the hash table. Further
the resource adaptive computation is made to decide the
size of the sliding window. Due to these measures the time
efficiency of the algorithm will improve. The Experiments
show that the proposed algorithm not only attain highly
accurate mining results, but also run significantly faster
and consume less memory than the existing algorithms for
mining frequent itemsets over online data streams.

References
[1] G.Dong, J. Han, L.V.S. Lakshmanan, J. Pei, H. Wang,and

P.S. Yu. Online Mining of Changes from Data Streams:
Research Problems and Preliminary Results. In Proc. of the
Workshop on Management and Processing of Data
Streams,((2003).

[2] G. Manku and R. Motwani, “Approximate frequency counts
over data streams,” In: Proceedings of the 28th International
Conference on Very Large Data Bases. Hong Kong, China:
Morgan Kanfman, pp. 346-357. (2002)

[3] J. Han, H. Cheng, D. Xin, & X. Yan. “Frequent pattern
mining: current status and future directions”, Data Mining
and Knowledge Discovery, vol. 15(1), pp. 55–86, (2007).

[4] Jia Ren, Ke LI ,” Online Data Stream Mining Of Recent
Frequent Itemsets Based On Slidig Window Model
“,Proceedings of the Seventh International Conference on
Machine Learning and Cybernetics, Kunming, (July 2008)

[5] Hua-Fu Li, Chin-Chuan Ho, Man-Kwan Shan, and Suh-Yin
Lee,” Efficient Maintenance and Mining of Frequent
Itemsets over Online Data Streams with a Sliding Window”,
IEEE international Conference on Systems, Man, and
Cybernetics , Taipei, Taiwan (October 8-11, 2006)

[6] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy,
"Resource aware Mining of data streams”, Journal of
universal computer science,vol II ,pp 1440-1453,(2005)

[7] K.FJea,C ,W Li,T P Chang, ”An efficient approximate
approach to mining frequent itemsets over high speed
transactional data streams “,Eighth International conference
on intelligent system design and applications, DOI
10.1109/ISDA2008.74

[8] J.H. Chang and W.S. Lee, Finding recent frequent itemsets
adaptively over online data streams. In Proc. of the 9th
ACM SIGKDD, pp. 487-492, (2003).

[9] D Lee ,W Lee. “Finding Maximal Frequent Itemsets over
Online Data Streams Adaptively”, Fifth Intl. Conference on
Data Mining (2005).

[10] Caixia Meng, ”An efficient algorithm for mining frequent
patterns over high speed data streams”, World congress on
software engineering, IEEE (2009)

[11] Mahmood Deypir & Mohammad Hadi Sadreddini,” An
Efficient Algorithm for Mining Frequent Itemsets Within
Large Windows Over Data Streams “,International Journal
of Data Engineering (IJDE), Volume (2) : Issue (3) (2011)

[12] Zhayang Qu, Peng Li and Yaying Li,“A High efficiency
algorithm for mining frequent itemsets over transactional
data streams”, International Conference on intelligent
control and information processing, IEEE, Dalian , China
(2010).

[13] J. Chandrika, Dr. K. R. Ananda Kumar,” A Novel
Conceptual Framework for Mining High Speed Data
Streams”, International Conference on Business,
Engineering and Industrial Applications ICBEIA2011,
Kuala Lumpur, Malaysia 5 - 8 (June 2011).

[14] Frequent Itemset Mining Dataset
Repository http://fimi.ua.ac.be/data/

http://fimi.ua.ac.be/data/

