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Summary 
Mining Frequent itemsets from transactional data streams is a 
very challenging task as it has to handle continuous, unbounded, 
and ordered sequence of data elements generated at a rapid rate 
in a data stream. In order to enhance the analysis of stream data it 
is essential to extract frequent itemsets from more recent data. 
For this purpose a sliding window mechanism is used. Further 
the usage of memory resources should be taken care of regardless 
of the amount of data generated in the stream. The proposed 
algorithm RA-FIG (Resource Adaptive Frequent Item 
Generation) accounts for the computational resources like 
memory available and dynamically adapts the rate of processing 
based on the available memory. Extensive experimental analysis 
shows that proposed algorithm is efficient in terms of resource 
utilization and accuracy when finding recent frequent itemsets 
from a data stream. 
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1. Introduction 

A transactional data stream is an unbounded continuous 
stream of records that contains a set of items together with 
a unique identification number for every transaction. 
Extracting frequent itemsets from data streams [1][2] is a 
crucial step in association analysis. It is very beneficial to 
extract frequent itemsets from transactional data streams as 
it finds applications in many areas such as business 
decision support and direct marketing. For example, 
identifying groups of products that are frequently 
purchased together helps a company to formulate its 
marketing strategies. Traditional mining algorithms assume 
a finite dataset over which the algorithms are allowed to 
scan multiple times. Therefore it is necessary to modify 
these algorithms in order to apply these algorithms to 
transactional data streams. An important property that 
distinguishes data stream mining from traditional data 
mining is the unbounded nature of stream data, which 
precludes multiple-scan algorithms. Traditional frequent 
itemsets mining algorithms are thus not applicable to a data 
stream [3].  
According to the stream processing model, the research of 
mining frequent itemsets in data streams can be divided 
into three categories, snapshot windows, sliding windows 

and Landmark windows. In snapshot window model the 
frequent items are detected in a fixed range of time so that 
model is not used frequently. In landmark window model 
knowledge discovery is performed based on the values 
between the specific timestamp called landmark and the 
present. In the sliding window model knowledge discovery 
is performed over a fixed number of recently generated 
data elements which is the target of data mining. Sliding 
window model is a widely used model to perform frequent 
itemset mining since it considers only recent transactions 
and forgets obsolete ones. Due to this reason, a large 
number of sliding window based algorithms have been 
devised [4][5] [7][8][9][10]. However, only a few of these 
studies adaptively maintain and update the set of frequent 
itemsets [7][8][9] and others only store sliding window 
transactions in an efficient way and perform the mining 
task when the user requests.  
Resource adaptation refers to adjusting the processing 
speed in accordance with the available resources so that 
the algorithm will not run out of computational resources 
like memory. In this study, a novel approach based on 
resource adaptation for mining frequent itemsets over data 
streams is proposed which operate under sliding window 
model. The basic algorithm considered for this work is 
MFI_TRANSW [5] which uses an efficient bit sequence 
representation for representing the transactional data items. 
For each item X in the current transaction-sensitive sliding 
window a bit-sequence with W bits, denoted as Bit(X), is 
constructed. If an item X is in the  i-th transaction of 
current sliding window, the i-th bit of Bit(X) is set to be 1; 
otherwise, it is set to be 0. Once the bit sequence 
representation is available finding the frequent itemset 
becomes easy as the count of one’s indicate the number of 
transactions in which an itemset is present. Bitwise logical 
AND operation is performed to get an itemset of length 
greater than one. This algorithm doesn’t take into 
consideration any resource requirements while processing 
the stream for the generation of frequent itemset. The 
proposed algorithm enhances this basic algorithm by 
performing resource adaptive computation. 
The rest of the paper is organized as follows. The next 
section formally states the problem and introduces the 
basic terminologies. In section 3, some previous related 
works on frequent itemset mining are reviewed. Section 4 
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presents the proposed approach and section 5 empirically 
compares the approach to a related algorithm 
MFI_TRANSW. Finally, section 6 concludes the paper. 

2. Preliminaries 

It is necessary to give a formal definition for the 
transactional data stream before defining the frequent 
itemset mining problem. Let Y = {i1, i2, …, im} be a set of 
items. A transaction T = (tid, x1x2....xn), xi belongs to Y, 
for 1 <= i <= n, is a set of items, while n is called the size 
of the transaction, and tid is the unique identifier of the 
transaction. An itemset is a non-empty set of items. An 
itemset with size k is called a k-itemset.  
Definition 1: A transaction data stream TDS = T1, T2, 
…, TN is a continuous sequence of transactions, where N is 
the tid of latest incoming transaction TN.  
In order to process the elements of the transactional data 
stream by considering the recent transactions a sliding 
window mechanism has been implemented for data 
processing, that is, the incoming transactions are processed 
batch by batch. This means that a group of say  b 
transactions at a time. Sliding takes place on processing 
each batch to get the next batch to be processed. Such a 
batch is taken in a window called basic window, such ‘k’ 
number of basic windows are taken to form a main window 
called sliding window.  
A set of transactions which are processed at a time forms a 
basic window. A basic window will be composed of fixed 
number of transactions. A group of basic windows form a 
sliding window. In data streams, with the continually 
arriving of transactions, the new basic window is inserted 
into the sliding window, and at the same time the oldest 
basic window is deleted from the sliding window, so the 
sliding window is always formed by the latest k basic 
windows. 
 
Definition 2: The window at each slide has w number of 
transactions, and w is called the size of the basic window 
and w*number of basic windows will give the size of the 
sliding window. The support of an itemset X over 
TransactionSW, denoted as sup(X)TransactionSW, is the 
number of transactions in TransactionSW containing X as a 
subset.  
 
Definition 3: An itemset X is called a frequent itemset 
(FI) if sup(X)TransactionSW >= s×w, where s is a user-
defined minimum support threshold (MST) in the range of 
[0,1]. The value s×w is called the frequent threshold of 
TranactionSW (FTTransactionSW).  
 
Definition 4: A frequent itemset of length k is called k 
frequent itemset. 

In a variation of the same problem Error threshold will be 
considered, which decides by what amount the infrequent 
itemset having negligible variation from the threshold can 
be considered as frequent. With these preliminary 
definitions the problem under consideration can be 
formally stated as follows: 
Given a transactional data stream the problem is to find all 
the frequent itemsets with the user specified minimum 
support threshold. It is also necessary to track the run time 
resources consumed like amount of memory and CPU time 
so that at any instance of time if the computation cannot be 
carried further with the available resources the input rate 
will be adjusted by modifying the sliding window size. 
The computation of frequent itemsets can be done 
efficiently by representing all the items in the transactions 
of the data stream by bit sequence representation [5]. If 
there are three transactions in the given window then the 
length of the bit sequence will be three bits. First bit 
represents first transaction and it is set to one if the item is 
present in the transaction. The same is repeated for all the 
bits of the transaction. For instance if a sliding window is 
composed of three transactions T1, T2, T3 containing 
different itemsets as shown in Figure 2, the corresponding 
bit sequence representation is derived for every item by 
considering the transactions in which the items are present. 
This is illustrated in figure 1.  

 

 
Figure 1. Bit Sequence Representation of Items 

 
   Once the bit sequence representation is ready for all the 
distinct items in the given set of transactions it is easy to 
derive itemsets of length two by performing bitwise AND 
operation. The concept is illustrated in Figure 2, where the 
bit sequence representation for itemset ab is obtained by 
performing bitwise AND on the bit sequence 
representation of item a and the bit sequence 
representation for item b. The same procedure can be 
repeated for deriving bit sequence representation of other 
itemsets of length two. Once 2 itemsets are available they 
can be used to generate the bit sequence representation of 
3 itemsets and so on. The bit sequence representation 
enables the computation of frequent item sets easily 
because counting the number of 1’s in the bit sequence will 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 
 

 

89 

 

give us the exact count of number of transactions that 
contain the itemset. This count can be compared with the 
support threshold to find if the itemset is frequent or not. 

3. Related work 

There are a number of previous studies which addresses 
the problem of mining the frequent itemsets from the data 
streams. In [2], Manku and Motwani have developed two 
single-pass algorithms, Sticky-Sampling and Lossy 
Counting, to mine frequent items over the data streams. 
Jia-dong et.al have proposed an approximation 
algorithm[4] that stores the frequent itemsets in a compact 
data structure, further the outputs of the mined results are 
stored in a heap. The algorithm MFI_TRANSW proposed 
by Li et. al [5] uses the bit sequence representation for the 
items which enables finding the count of itemsets by 
simple logical and operation. In [7] Chang et. al have 
proposed a mining algorithm for finding frequent itemsets 
over sliding windows in a data stream based on the theory 
of Combinatorial Approximation to approximate the 
counts of itemsets from some summary information of the 
stream. The concept of resource awareness in data stream 
mining is first introduced by Gaber et. al [6]. They have 
proposed light weight techniques for classification and 
clustering. Their adaptation method is to adjust the 
processing rate depending on the amount of output 
produced which is called as Algorithm output granularity. 
The approach suggested however is not applicable to 
frequent itemset mining. In [8] algorithm called estDec is 
proposed to find significant item-set in a data stream that is 
represented by using a prefix tree. Consequently, the 
resulting set of frequent itemsets in a data stream can be 
found instantly at any moment. In [9] a CP-tree 
(Compressed-Prefix tree) to replace the role of a prefix 
tree in the estDec method. The algorithm also introduces 
the extended version of the estDec method, namely 
estDec+ for a CP-tree. This is another algorithm that 
performs resource adaptation by reducing the space 
requirements for the CP Tree by periodically merging the 
nodes of the tree. Caixia Meng has proposed an algorithm 
to find frequent itemsets based on first storing necessary 
information about every transaction and then calculating 
the frequency in the next step. Because of delay in 
calculation the algorithm is named as defer counting[10]. 
Mahmood Deypir et. al have developed an algorithm for 
frequent itemset mining which operates in both 
transactional and time sensitive sliding window model [11]. 
The algorithm proposed uses a prefix tree structure for 
maintaining the elements of the stream. Zhayong Qu et.al 
have proposed MFIBA[12], the algorithm that computes 
the frequent itemsets by using bitwise representation of 
transactions and by performing bitwise and operation. This 

algorithm uses an array structure to store the frequent 
itemsets. None of these algorithms performs resource 
adaptation under the sliding window model. 

4. Proposed Algorithm 

The algorithm RA-FIG is based on the idea of 
MFI_Transw[5] where a bit sequence representation is 
used for the transaction. Bitwise AND is performed to find 
the frequent itemsets. The algorithm is capable of 
generating four itemsets. The same can be extended to an 
itemset of any desired length. 
The proposed algorithm RA-FIG will function in three 
phases, the first phase is concerned with filling in the 
sliding window with k batches of recent transactions. This 
is done by first storing the incoming transactions inside a 
buffer in the main memory. The first w transactions are 
transferred to first basic window inside the sliding window. 
The next w transactions are filled into the next basic 
window of the sliding window. This way all the k basic 
windows in the sliding window will be filled in. The 
second phase generates the bit sequence representation for 
each basic window and forms 4-frequent itemsets using the 
bitwise AND operation. The results are saved in a hash 
table. The third phase is concerned with adaptation. The 
adaptation is performed based on the framework proposed 
by our earlier work [13]. According to this framework we 
need to make an assessment of current resource 
consumption in terms of memory allocated, execution 
speed and the rate of incoming transactions. The 
assessment is made periodically. At any instance if the 
assessment made indicates that the computational 
resources are stressed we need to adjust the parameters in 
the algorithm called the adaptation parameter in order to 
keep the computation going on. The overall intention is to 
keep the computation up with the currently available 
resources. The adaptation parameter in the algorithm that 
can be altered in order to conserve the computational 
resources is the sliding window size. As the sliding 
window size is increased more amount of computation will 
be performed and vice versa.. Based on the current 
resource consumption either the sliding window size is 
increased or decreased. The current resource usage is 
monitored by computing an adaptation factor (AF). The 
Adaptation factor is a scalar measure that indicates the 
current resources usage. It considers three important 
factors namely execution time, input rate and the memory 
allotted. Execution time is the average runtime of all the 
basic windows in a sliding window. The input rate is the 
rate at which the dynamic data arrive. The memory 
allocated is the average memory consumed by the 
transactions in the sliding window.  Mathematically the 
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computation of adaptation factor is according to equation 
(1). 
AF = (Execution time in seconds * input rate) +  sin (  

* memory allocated) …………………….  (1) 
Sine function used in equation 1 helps us in maintaining 
the value between 0 and 1. Altering the sliding window 
size is based on the adaptation factor. Depending on the 
incoming rate of the transaction and the CPU time sliding 
window size can be either increased or decreased. The 
initial sliding window is composed of ten basic windows 
each of which holds hundred transactions. As the algorithm 
continues the size of sliding window changes and 
proportionally the basic window size is varied. This 
variation in the window size leads to adjusting the number 
of transactions processed in accordance with the available 
memory. The detailed algorithm is outlined below: 
 
Input:   

• TDS(Transaction data stream) 
• s : minimum threshold support in the range[0-1] 

eg:0.45 
• w: the sliding window size 

Output:  
• Set of frequent itemsets.  

         TransactionSW=NULL; /*Transaction sliding   
                              window consists of ‘w’ transaction*/ 
           BW=w/k;    /*k basic windows form one sliding 
                               window.*/ 
 
Repeat 
            If TransactionSW is not FULL 
            Repeat    //window initialization phase 
 Read the incoming transactions from the     
               buffer into the basic window. 
           Until all k basic windows are filled. 
            Else //discard the older transactions by left shift     
            Do bit-wise shift to left on the bit sequence   
            Of each basic window  
            Accommodate the incoming transaction from the   
            buffer into the basic window.    
           For each k BW do 
               For each item ‘x’ in the transaction do 
               Generate the bit sequence transformation of ‘x’  
      End for 
For each bit-sequence Bit(x) in TransactionSW                                          
do 
         Record the count in hash table; /*Count of one- 
                                                             itemset*/ 
End for 
For each ’k’ BW do  /*Frequent itemset generation  
                                               phase*/ 
       For each  item x do 

               AND bit(x) with rest of other items that 
                appear in BW. 
                 Record the count in hash table /* count of  
                                                                   two-itemsets*/ 
       End for. 
        For each x1, x2 such that x1!=x2 do 
                 Bit(x1) AND Bit(x2) AND remaining items 
    Record the count in Three-Itemset table 
       End for 
       For each x1, x2,x3 such that x1!=x2!=x3 do 
                Bit(x1) AND Bit(x2) AND remaining items 
   Record the count in Four-Itemset table 
       End for 
 End for 
  Sup=s*Total no. of transactions processed; 
          // Printing the frequent itemsets. 
   For each x in hash table  
       If count(x)>Sup; 
  Print x as the frequent item. 
   End for. 
   /* Sliding Window size Adaptation phase */ 
  Adaptation factor AF is devised conserving   memory and 
execution time  
 If(AF are not in the desired limits)  
        Alter the SW size proportional to the estimated  
        threshold reading. 
 End if 
Until transactions arrive in the buffer. 
 
The main novel concept that makes our algorithm 
overshadow all other concepts and algorithms is resource 
adaptation. Resource adaptive module of the proposed 
algorithm will consider the execution time and memory to 
decide performance, thereby deciding efficiency. Initially 
after each basic window data processing execution time 
and memory consumption for that particular basic window 
is recorded. If the value of the adaptation factor exceeds 
the input threshold then sliding window is varied. 
According to the empirical evaluation it is observed that a 
value of 0.4 results in good performance. As such in our 
experiments the threshold value is set to 0.4. If the current 
value of adaptation factor falls below this sliding window 
size is increased. If it is greater than 0.4 sliding window 
size is reduced so as to conserve the resources. 
 
Varying the window size will balance the memory 
consumption with the maximum number of transactions 
processing each time. As the sliding window size is 
directly proportional to basic window size, on altering 
sliding window, size of the basic window is also altered 
and hence achieving the required execution time within the 
available memory. 
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5. Experimental Evaluation 

The proposed algorithm is applied to the retail data set 
available in Frequent itemset mining dataset repository 
[14]. The data set contains the retail market basket data 
from an anonymous Belgian retail store. Data collected is 
over approximately 5 months duration. The total amount of 
receipts being collected equals 88,163. Each record in the 
data set contains information about the date of purchase  
(variable ’date’), the receipt number (variable ’receipt nr’), 
the article number (variable ’article nr’), the number of 
items purchased (variable ’amount’), the article price in 
Belgian Francs (variable ’price’ with 1 Euro = 40.3399 
BEF) and the customer number (variable ’customer nr’).  
 
The elements of the retail data set are looked up in 
sequence to simulate the environment of a data stream. The 
algorithm is implemented in on a 1.80 GHz Pentium(R) PC 
machine with 512 MB memory running on Windows XP. 
The initial execution starts with sliding window size being 
set equal to 1000 with ten basic windows each 
accommodating one hundred transactions. The value for 
the minimum support threshold is set to 0.3. As the 
execution proceeds the size of the window will be varied to 
keep the computation going on. The following graph in 
figure 3 illustrates the variations made to the sliding 
window size based on the adaptation factor. A higher value 
for the adaptation factor indicates greater consumption of 
computational resources as such a reduction will be made 
to the sliding window size. Conversely the sliding window 
size is increased for a lower value of adaptation factor.  
The empirical studies indicate that the optimal value for 
the adaptation factor is 0.4. If there is a deviation from this 
threshold the sliding window size will be varied.  
 
The variation in the value of adaptation factor by the 
change made to the sliding window size is indicated by the 
graph in figure 3. It can be inferred from the graph that as 
the adaptation factor reduces sliding window size is 
increased; this will cause the adaptation factor to go up. On 
happening of such a situation the window size will be 
reduced. This will continue for the entire history of the 
data stream. The overall impact is that the computation of 
the frequent itemsets will continue with available memory 
resources at an acceptable response time. The system will 
never degrade drastically because of non availability of 
memory and CPU resources. Hence the overall scalability 
of the system improves. 
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Fig 2. Adaptation factor variation resulting from sliding window 

size adjustment 
 
The processing time of RA FIG is compared with MFI-
TRANSW, it is observed that the execution time of RA 
FIG is significantly lesser than that of MFI-TRANSW. The 
reduction in the execution time is the result of adaptation 
and the use of hash table for saving the potential frequent 
itemsets. Another factor that improves the running time of 
the proposed algorithm is that the window sliding takes 
place after a batch of transactions as opposed to MFI 
TRANSW algorithm.. The MFI TRANSW algorithm uses 
a transaction sensitive sliding window that slides forward 
for every new transaction that arrives in the input. This 
obviously consumes more time in the window sliding 
phase. The RA FIG algorithm will first fill in all the basic 
windows performs computation and will then slide the 
window forward by b transactions. Where’b’ indicates the 
basic window size. This will cause the transactions in 
oldest basic window of the sliding window to be deleted to 
make room for new set of dynamically arriving 
transactions. 
 

 Fig 3. Execution time based on the number of transactions 

 
The memory consumption of RA-FIG over MFI-TRANSW 
is indicated in the graph below. Even this shows a better 
resource utilization of RA FIG over MFI TRANSW.  
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 Fig 4. Memory consumption of the proposed algorithm 

6. Conclusion 

In this paper, we have proposed an algorithm for mining 
frequent itemsets over online data streams with a 
transaction-sensitive sliding window. The sliding window 
is composed of basic windows. Instead of sliding the 
window for every transaction, the window will move 
forward by b transactions where b indicates the size of the 
basic window. All the potential frequent itemsets retrieved 
until the given time will be saved in the hash table. Further 
the resource adaptive computation is made to decide the 
size of the sliding window. Due to these measures the time 
efficiency of the algorithm will improve. The Experiments 
show that the proposed algorithm not only attain highly 
accurate mining results, but also run significantly faster 
and consume less memory than the existing algorithms for 
mining frequent itemsets over online data streams. 
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