
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 123

An Efficient Key Management Scheme for Secure Data Access
Control in Wireless Broadcast Services

K.V.Rajesh, and P.Harini,

St.ann’s College of Engg. & Tech., Chirala

Abstract
Wireless broadcast is an effective approach to dis- seminate data
to a number of users. To provide secure access to data in wireless
broadcast services, symmetric key - based encryption is used to
ensure that only users who own the valid keys can decrypt the data.
Regarding various subscriptions, an efficient key management to
distribute and change keys is in great demand for access control in
broadcast services. In this paper, we propose an efficient key
management scheme (namely KTR) to handle key distribution with
regarding to complex subscription options and user activities. KTR
has the following advantages. First, it supports all subscription
activities in wireless broadcast services. Second, in KTR, a user only
needs to hold one set of keys for all subscribed programs, instead of
separate sets of keys for each program. Third, KTR identifies the
minimum set of keys that must be changed to ensure broadcast
security and minimize the rekey cost. Our simulations show that KTR
can save about 45% of communication overhead in the broadcast
channel and about 50% of decryption cost for each user, compared
with logical key hierarchy based approaches.
Index Terms
Wireless broadcast, key management, access control, key hierarchy,
secure group communication, key dis-tribution

I. INTRODUCTION

With the ever growing popularity of smart mobile devices
along with the rapid advent of wireless technology, there has
been an increasing interest in wireless data services among
both industrial and academic communities in recent years.
Among various approaches, broadcast allows a very efficient
usage of the scarce wireless bandwidth, because it allows
simultaneous access by an arbitrary number of mobile clients
[1]. Wireless data broadcast services have been available as
commercial products for many years. In particular, the
announcement of the MSN Direct Service (direct.msn.com)
has further highlighted the industrial interest in and feasibility
of utilizing broadcast for wireless data services.
A wireless data broadcast system consists of three
compo-nents as depicted in Figure 1: (1) the broadcast server;
(2) the mobile devices; and (3) the communication mechanism.
The server broadcasts data on air. A user’s mobile device
receives the broadcast information, and filters the subscribed
data according to user’s queries and privileges. The specialty
of the broadcast system is that (a) the server determines the
schedule to broadcast all data on air, and (b) users’ mobile
devices listen to the broadcast channel but only retrieve data

(filter data out) based on users’ queries. The
communication mechanism includes wireless broadcast
channels and (optional) uplink channels. Broadcast
channel is the main mechanism for data broadcast
service providers need to ensure backward and forward
secrecy [2], [3] with respect to membership dynamics.
In the wireless broadcast environment, any user can
monitor the broadcast channel and record the broadcast
data. If the data is not encrypted, the content is open to
the public and anyone can access the data. In addition, a
user may only subscribe to a few programs. If data in
other programs are not encrypted, the user can obtain
data beyond his subscription privilege. Hence, access
control should be enforced via encrypting data in a
proper way so that only subscribing users can access the
broadcast data, and subscribing users can only access
the data to which they subscribe.

Fig. 1. A wireless data broadcast system

Symmetric-key-based encryption is a natural choice for
ensuring secure data dissemination and access. The
broadcast data can be encrypted so that only those users
who own valid keys can decrypt them. Thus, the
decryption keys can be used as an effective means for
access control in wireless
data broadcast services. For example, each program has
one unique key to encrypt the data items. The key is
issued to the user who is authorized to receive and
decrypt the data items. If a user subscribes to multiple
programs, it needs an encryption key for each program.
Since a user only has keys for his subscription, he
cannot decrypt broadcast data and rekey messages
designated to other users. At the same time, a data item
can be decrypted by an arbitrary number of users who
subscribe to it. This allows many users to receive the
data at the same time and addresses the scalability
problem, or request lost or missed keys.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 124

Nevertheless, when a user subscribes/unsubscribes to a
program, the encryption key needs to be changed to ensure that
the user can only access the data in his subscription period.
Consequently, a critical issue remains, i.e. how can we
efficiently manage keys when a user joins/leaves/changes the
service without compromising security and interrupting the
operations of other users? Regarding unique features of
broadcast services, we are interested in new key management
schemes that can simultaneously provide security, efficiency
and flexibility. A broadcast service generally provides many
programs; at the same time, users may like to subscribe to an
arbitrary set of programs. We envision that a user should be
able to flexibly subscribe/unsubscribe to any program of
interests and make changes to his subscription at any time.
Hence, in addition to security and efficiency, flexibility that a
user can customize his subscription at anytime is an
indispensable feature of key management in broadcast services
to support user subscriptions.
Two categories of key management schemes in the literature
may be applied in broadcast services: (1) logic key hierarchy
(LKH) based techniques [2]-[9] proposed for multicast
ser-vices ; and (2) broadcast encryption techniques [10]-[16] in
current broadcast services (such as satellite TV). We notice
that current broadcast encryption techniques, including BISS
[17], Digicipher [18], Irdeto [19], Nagravision [20], Viaccess
[21], and VideoGuard [22], cannot in fact support flexibility.
They normally require users to possess decryption boxes to
receive the subscribed programs, and the broadcast services
can only provide to users a few packages, each of which
includes a fixed set of programs (TV channels). Users cannot
select individual programs within a package. If a user wants to
change his subscription, the user needs to request another
decryption box that can decrypt the subscribed programs.
Hence, in this paper, we will focus on adapting more flexible
LKH-based techniques.
Nevertheless, directly applying LKH in broadcast services is
not the most efficient approach. In broadcast services, a
program is equivalent to a multicast group, and users who
subscribe to one program form a group. Intuitively, we could
manage a separate set of keys for each program, and ask a user
to hold m sets of keys for his subscribed m programs. This
straightforward approach is inefficient for users subscribing to
many programs. If users could use the same set of keys for
multiple programs, there would be fewer requirements for
users to handle keys. Furthermore, when a user changes
subscription, we argue that it is unnecessary to change keys for
the programs to which the user is still subscribing, as long as
security can be ensured. In this way, rekey cost can be reduced
and fewer users will be affected. Therefore, we propose a new
key management scheme, namely key tree reuse (KTR), based
on two important observations: (1) users who subscribe to
multiple programs can be captured by a shared key tree, and (2)
old keys can be reused to save rekey cost without
compromising security. KTR has two components: shared key

tree and shared key management, and its contribution
includes the following aspects.
Contributions. First, the proposed scheme takes
advantage of a fact in broadcast services: many users
subscribe to multiple programs simultaneously. In
other words, programs overlap with each other in terms
of users. Because existing approaches manage keys by
separating programs, they turn to be demanding for the
users who subscribe to many programs. Hence, this
study contributes to the literature a new scheme
(namely KTR) to better support subscriptions of
multiple programs by exploiting the overlapping among
programs. KTR let multiple programs share the same
set of keys for the users who subscribe to these
programs. KTR thus inherently enables users to handle
fewer keys and reduces the demands of storage and
processing power on resource-limited mobile devices.
Second, since multiple programs are allowed to share
the same set of keys, a critical issue is how to manage
shared keys efficiently and securely. We find that when
keys need to be distributed to a user, it is unnecessary to
change all of them. In many circumstances, when a user
subscribes to new programs or unsubscribes to some
programs, a large portion of keys that the user will hold
in his new subscription can be reused without
compromising security. KTR is a novel approach for
determining which keys need to be changed and for
finding the minimum number of keys that must be
changed. Hence, KTR efficiently handles the rekey of
the shared keys and minimizes the rekey costs
associated with possible subscriptions. Our simulations
show that critical keys can be employed in logical key
hierarchy schemes [2], [5] to improve their
performance.
The rest of the paper is organized as follows. In Section
II, we present related works on group key management.
In Section III, the first component of KTR is described
that fully utilizes the service structure to reduce the
number of keys. In Section IV, the second component
of KTR is presented to reduce rekey cost when updating
and distributing shared keys. In Section V, we present
the results of simulations to illustrate the performance
improvements in KTR. Finally, we conclude in Section
VI.

II. RELATED WORKS ON KEY
MANAGEMENT

A. Logical Key Hierarchy

Secure key management for wireless broadcast is
closely related to secure group key management in
networking [4]. Logical key hierarchy (LKH) is

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 125

proposed in [2], [5] that uses a key tree (depicted in Figure 2)
for each group of users who subscribe the same program. The
root (top node) of the tree is the data encryption key (DEK) of
the program. Each leaf (bottom node) in the tree represents an
individual key (IDK) of a user that is only shared between the
system and the user. Other keys in the tree, namely key
distribution keys (KDKs),

Fig. 2. Logical key hierarchy

are used to encrypt new DEKs and KDKs. A user only knows
the keys along the path from the leaf of the user to the root of
the key tree.
When a user joins or leaves the group, the server needs to
change and broadcast the corresponding new keys, and this
operation is called rekey, and the broadcast message of new
keys is called rekey message. In our system, data and rekey
messages are broadcast in the same broadcast channel to the
users. Assume user u1 leaves the group (in Figure 2). The
server needs to change k4, k2 and k1 so that u1 will no longer
decrypt any data for this group, which is encrypted by k1. The
rekey message is
{k4}k , {k2}k ′ , {k2}k , {k1}k ′ , {k1}k

u2 4 5 2 3
where ki is the new key of k i and {ki}kj means ki is encrypted

by k j . When u2 receives this message, u2 first decrypts {k4}k

u 2 based on his individual key ku 2 to obtain k4, then uses

k4 to decrypt {k2}k ′ and so on to obtain k2 and k1.4

Similarly, other users can obtain the new keys in their own
paths. It is obvious u1 cannot obtain any new keys from this
message, and thus the broadcast data in the future will not be
decrypted by u1.Now assume u1 joins the group, and the

server needs to change k4, k2 and k1 so that u1 cannot use

the old keys to decrypt old broadcast data. Note that u1 may
have already eavesdropped on some broadcast data before

he joined the group. If the server gives u1 the old keys,

u1 can decrypt the eavesdropped broadcast data. The
rekey message is
keys need be changed in stead of how keys are
generated. [6] proposes a combination of key tree and
Diffie-Hellman key exchange to provide a simple
and fault-tolerant key agre agreement for
collaborative groups. [23] reduces the number of rekey
messages, while [9], [25] improve the reliability of
rekey management. Balanced and unbalanced key
trees are discussed in [5] and [26]. Periodic group
re-keying is studied in [7], [8] to reduce the rekey cost
for groups with frequent joins and leaves. Issues on
how to maintain a key tree and how to efficiently place
encrypted keys in multicast rekey packets are studied in
[8], [26]. Moreover, the performance of LKH is
thoroughly studied [3], [8].

B. Broadcast Encryption

There are some other key management schemes in
the literature for multicast and broadcast services.
[10] used arbitrarily revealed key sequences to do
scalable multicast key management without any
overhead on joins/leaves. [11] proposed two schemes
that insert an index head into packets for decryption.
However, both of them require pre-planned
subscription, which contradicts the fact that in
pervasive com-puting and air data access a user may
change subscriptions at any moment. In addition, [11]
only supports a limited combi-nation of programs. [13]
proposed a scheme to yield maximal resilience against
arbitrary coalitions of non-privileged users. However,
the size (entropy) of its broadcast key message is large,
at least O(n) [12]. Zero-message scheme [14], [15] does
not require the broadcast server to disseminate any
message in order to generate a common key. But it is
only resilient against coalitions of k non-privileged
users, and requires every user to store
O(klog2(k)log2(n)) keys. Naor et al. [16] proposed a
stateless scheme to facilitate group members to obtain
up-to-date session keys even if they miss some
previous key distribution messages. Although this
scheme is more efficient than LKH in rekey operations,
it mainly handles revocation when a user stops
subscription. It does not efficiently support joins, which
are crucial in our system. Finally, [24], [27] pro-posed
self-healing approaches for group members to recover
the session keys by combining information from
previous key distribution information.
{k4}ku , {k2}ku , {k1}ku , {k4}k4, {k2}k2, {k1}k1

 1 1

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 126

The first three components are for u1 to use his individual key
to decrypt the new keys, and the last three are for all existing
users to use their old keys to decrypt the new keys. In this
way, u1 will not obtain any old key.
LKH is an efficient and secure key management for multi-cast
services in that each user only needs to hold O(log2(n)) keys
for the user’s group, and the size of a rekey message is also
O(log2(n)), where n is the number of group users. It is also
a flexible key management approach that allows a user to join
and leave the multicast group at any time. Many variations of
LKH have been proposed. Because LKH simply uses
independent keys, researchers developed several other
approaches [23], [24] that generate new keys by exploiting
the relation between child and parent keys or the relation
between old and new keys. Our scheme is complementary to
these schemes, since our scheme mainly examines whether
Compared with LKH-based approaches, key management
schemes in broadcast encryption are less flexible regarding
possible subscriptions. Conforming to the current practice
described in RFC2627 [2], we select binary trees to present our
scheme. Note that our scheme does not require binary trees and
can be applied in trees of other degrees.

III. SHARED KEY STRUCTURE

Directly applying LKH is not efficient in broadcast services. We
use a shared key structure to address the key management. In the
following, we describe how a shared key structure is applied
and then raise the security and efficiency problems of this
scheme. We then present a novel shared key management in
Section IV that ensures security and minimizes rekey cost,
and also address major issues when applying KTR in a
broadcast server.

Fig. 3. Shared key tree

A. Key Forest

To address scalability and flexibility in key management, LKH
is used as the basis of our scheme. An intuitive solution is to use

a key tree for each program as shown in Figure 3(a).
However, when user u1 subscribes to two programs
simultaneously, he needs to manage two sets of keys in
both trees which is not very efficient (see Figure 3(a)).
Hence, shared key tree (SKT) is proposed to reduce this
cost in key management. As shown in Figure 3(b), we let
the two programs share the same sub key tree as
represented by the gray triangle. We regroup users so
that users subscribing to both programs only need to
manage keys in the gray triangle. The advantage of
shared key tree is clear: any user subscribing to both g1
and g2 only needs to manage one set of keys for both
programs. Moreover, when a user joins or leaves a tree
shared by multiple programs, the encryption and
communication cost for rekey operations can be
significantly less than conventional LKH approaches.
In order to ensure that a user will not pay for subscribed
programs multiple times, the key forest obviously should
have the following properties, which are guaranteed in
any directed and acyclic graph.

Property 3.1: Only one path exists by following the
upward links from the root of a tree trs to the DEKs of the
programs that share trs;
Property 3.2: Only one path exists by following the
upward links from any leaf node in a tree to the root;

Property 3.3: Each user belongs only to one tree in the
key forest, and his individual key is the leaf node of the
tree.

B. Root Graph

 The root graph in Figure 4 depicts how programs share
keys. Since m programs could generate 2m − 1
different subscriptions, such a two-layer structure in fact
brings two major problems in terms of rekey overheads
when the number of programs is large.
First, a program may be included in many subscriptions,
which means the DEK of the program is connected with
many trees. Assume the DEK is connected with n trees.
When a user stops subscribing the program, the DEK
needs to be updated and distributed to users in n trees.
Because the new DEK is encrypted with the roots of the
n trees in rekey, O(n) rekey items are generated.
Obviously, if n is large, a leave event results in a huge
rekey message. For example, in Figure 5(a),3 programs
are included in 5 different subscriptions. Program g1’s

DEK kg1 is connected with 4 roots kr1, kr2, kr3.

Hence, when kg1 is updated due to a leave event, 4 rekey
items are needed. To solve this problem, we use a
multi-layer structure to connect the DEK with the
roots of the shared trees. Second, a subscription is

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 127

not a conventional plan that a broadcast service provides,
because the subscribed programs of a plan normally cannot be
changed by a user. In this paper, users are able to customize the
selection of programs in their subscriptions. Thereby, a
broadcast service could easily have a large number of different
subscriptions. For example, even if a service provides only 30
programs that is a small number in many broadcast services,
there could be 230 = 1 billion different subscriptions, which
is much larger than the number of users. Hence, managing keys
for all possible subscriptions would overload the server. Now,
assume the service has n users and 2m ≫ n. Although 2m −
1 different subscriptions exist, at most n subscriptions are
valid, since the number of valid subscriptions cannot be more
than the number of users. Hence, this problem can be easily
solved by letting the server only manage the valid subscriptions
that have at least one user.

Fig. 4. Key forest

Fig. 5. Multi-layer root graph

C. Rekey Operations

In this study, we consider user activities of
Joining/leaving/shiftingamong trees, instead of
joining/quitting/changing among programs. Table I lists
the mapping between tree-oriented operations and the
corresponding program-oriented user events. Consider the
example in Figure 4, where a user us shifts from tr4 to tr6.

When us was in tr4 , us subscribed g1 and g2. After he shifts

to tr6 , he subscribes g1 , g2 and g3 . Hence, the shift in fact

means the user adds g3 into his current subscription.
Note that the discussion of rekey operations in this
study only considers individual user events.
To issue new keys upon a user event, the main task is
to identify the keys that need to be changed. We use
two types of paths in the key forest to represent the
to-be-changed keys. When a user leaves a tree, we say,
a leave path is formed, which consists of keys that the
user will no longer use. When a user joins a tree, we
say, an enroll path is formed, which consists of keys
that the user will use in the future. Similarly, when a
user shifts from one tree to another, a leave path and an
enroll path are formed. In KTR, a complete path starts
from the leaf node and ends at the multiple DEKs of the
subscribed programs that share the tree. For example,
in Figure 4, when us shifts from tr4 to tr6, the leave

path consists of kn L and kr , and the enroll path

consists of knj kr6 , kg1 , kg2 and kg3. To broadcast
new keys, the server should first compose rekey
Packets. In this study, we take the standard LKH
approach to Encrypt a new key ki in a rekey item

 {ki}kj . If ki is in an enroll path, kj is the old kj ,

i.e.{ki}k ≡ {ki}k If ki is in a leave path, kj is a child

key of ki. Readers can refer to [2], [5] for examples
of rekey packets.

TABLE I REKEY OPERATIONS

KTR to efficiently address the security issue in reusing
keys. Since rekey cost is determined by the number
of must-be-changed keys, the cost can be minimized
if we can find the minimum number of
must-be-changed keys when the user joins or shifts to
the tree. We name the must-be-changed keys in an
enroll path as critical keys. KTR changes all keys in a
leave path and only the critical keys in an enroll path,
while leaving all the other keys unchanged. In this
way, the rekey cost can be minimized.

Tree Program oriented events.
Join a
tree

Assume a user has not subscribed to any program.
He subscribes to one or multiple programs.

Leave a
tree

Assume a user has subscribed to several
programs. He Unsubscribes to all current

programs.

Shift
among
trees

Assume a user has subscribed several programs.
He subscribes to one or a few more programs.

He unsubscribes to a part of the current programs
He changes a part of the current programs.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 128

IV. SHARED KEY MANAGEMENT

In this section, we first present some important concepts in
Section IV-A and IV-B, which are used for identifying critical
keys . Then, we present the condition under which a key is
critical in Section IV-C and IV-D and the corresponding key
management algorithms.

A:Rekey Spots

KTR basically logs how a key was used in rekey messages. We
can always find two operations in any rekey message:
1) a key’s value is changed or 2) a key is used to encrypt its
parent key when the parent key’s value is changed.
Accordingly, we define two types of spots to log the time
points when either operation is committed.

Algorithm 1 Update of refresh and renew spots Assume ki is
used in the rekey messages upon a user event.

1: if ki is in a leave path then
2:renew spots must be added to all ki’s spot
series;
3: end if
4: if ki is critical in an enroll path then
5:renew spots must be added to all ki’s spot
series;
6: end if
7: if ki’s parent key kj is in a leave path then
8:refresh spots must be added to ki’s spot series that are

associated with the programs
sharing kj ; 9: end if

Definition 4.1: Renew spot of a key ki: the time point t

when ki’s value is changed. ki’s new value starting from t is

denoted as ki(t).

Definition 4.2: Refresh spot of a key ki: the time point t

when ki is used to encrypt its parent key kj ’s new value in a

refreshment δ (kj , t; ki, t).

Definition 4.3: Refreshment, δ (kj , t; ki, t ′): a rekey

message broadcast at t in the form of {kj (t)} ki(t’) t’≤ t.

Algorithm3 Algorithm of KTR in Broadcast Server
1: if a join or shift event happens then
2:according to TCK, find all critical keys in the tree the user
wants to join or shift to;
3:select the best enroll path that has the minimum number
of critical keys;
4:change all critical keys in the best enroll path, and broadcast
corresponding rekey messages;
5: end if

6: if a leave or shift event happens then
7:change all keys in the leave path, and broadcast
corresponding rekey messages;
8: end if
9:update renew, refresh and revive spots according to
the latest rekey messages;
Theorem 4.1 indicates that changing only critical keys
can ensure past confidentiality. Hence, given a key
forest, Algorithm 3 is applied to find the best enroll path
and minimize the rekey cost. When a join or shift event
happens to a tree, the algorithm uses the depth-first tree
traversal approach to find all critical keys in the tree. If
a path is found to have fewer critical keys than
previously visited paths, the algorithm records it as the
best enroll path.
Corollary 4.1: When a user joins a tree, a key in the
enroll path is a critical key if and only if one of the
key’s ages is greater than 0.
Before a user joins the tree, his subscription ages for all
of the programs sharing this tree are 0. Hence, if the age
of a key in the enroll path for this program is greater
than 0, the key is older than the user’s subscription.
According to Theorem 4.1, the key needs to be
changed before being distributed to the user.
Corollary 4.2: After a user enrolls in a tree, all keys in
the enroll path are not older than the user.
According to Theorem 4.1, if a key is older than the
user’s subscription regarding a program, the key needs to
be changed. Hence, at the time when the user enrolls in
a tree, the keys, whose ages are older than the user,
are renewed and their ages turns to be 0. If the key
is not older than the user’s subscription regarding
any program, the key does not need to be changed.
Hence, the key continues to be not older than the user.
Therefore, after a user enrolls in a tree, all keys in the
enroll path are not older than the user.
Corollary 4.3: When a user shifts from a tree to
another tree, the keys overlap both trees do not need to
be changed.
Assume the user shifts from tree trα to tree trβ .

According to Corollary 4.2, after the user enrolls in tr

α , all keys in the enroll path cannot not be older than

the user. Hence, when the user shifts to trβ , the
overlapped keys, which were in the enroll path
when user enrolled in trα , do not need to be changed
according to Theorem 4.1.

E. Security Analysis

To ensure multicast or broadcast security, group key
man- agement should satisfy four security properties [2],
[3]: non- group confidentiality, collusion freedom,
future confidentiality (forward secrecy), and past

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.10, October 2012 129

confidentiality (backward secrecy). In the following, we
discuss how KTR satisfies these proper- ties.
Property 4.1: Non-group confidentiality: passive
adver-saries should not have access to any group key.
Because keys are encrypted when being broadcast, passive
adversaries can not decrypt any key without knowing decryp
-tion key. Hence, KTR obviously satisfies Property 4.1.
Property 4.2: collision freedom: by sharing group keys,
 Multiple present users cannot derive any group key that the
they are not holding.
When multiple users collude, they may try to share their
keys to derived unknown group keys. the sharing can be
rep-presented by a sub graph of the paths belonging to the
colluding users. However, in KTR, user does not know any
key not in this path. Hence colluding users do not know any
key outside the sub graph that represents the collusion. KTR
thus satisfies property 4.2 Property 4.3: Future confidentiality
(forward secrecy): a Leaving user not have access to any
group key after leaving his present group. According to
Algorithm 3, KTR changes all keys in the leave path,
because the leaving user holds these keys. Hence, the leaving
user will not have the new keys after the user leaves his
group. KTR thus satisfies Property 4.3.
Property 4.4: Past confidentiality (backward secrecy): a
Joining user added at time t should not have access to any
keys used to encrypt data before t.According to Algorithm 3,
KTR changes all critical keys in the enroll path when a user
joins. Theorem 4.1 basically proves that the joining user can
only derive past group keys from critical keys. Hence,
changing critical keys and reusing non-critical keys prevent
the joining user from obtaining past group keys. KTR thus
satisfies Property 4.4.

V. CONCLUSION

In this work, we investigated the issues of key management in
support of secure wireless broadcast services. We proposed
KTR as a scalable, efficient and secure key management
approach in the broadcast system. We used the key forest to
exploit the overlapping nature between users and programs
in broadcast services. KTR let multiple programs share a
single tree so that the users subscribing these programs can
hold fewer keys. In addition,we proposed an ovel shared
key management approach to further reduce rekey cost by
identifying the minimum set of keys that must be changed to
ensure broadcast security. This approach is also applicable to
other LKH-based approaches to reduce the rekey cost as in
KTR. Our simulation showed that KTR can save about
45% of communication overhead in the broadcast channel and
about 50% of decryption cost for each user, compared with the
traditional LKH approach.

REFERENCES
[1] J. Xu, D. Lee, Q. Hu, and W.-C. Lee, “Data broadcast,”

in Handbook of wireless Networks and Mobile
Computing, I. Stojmenovic, Ed. NewYork: John Wiley
and Sons, 2002, pp. 243-265.

[2] D. Wallner, E. Harder, and R. Agee, “Key management
for multicast:issues and architectures,” IETF RFC 2627,
1999.

[3] J. Snoeyink, S. Suri, and G. Varghese, “A lower bound
for multicast
keydistribution,”inIEEEInfocom,vol.1,2001,pp.422-431

[4] S. Mittra, “Iolus: a framework for scalable secure
multicasting,” in ACMSIGCOMM, vol. 277-288, 1997.

[5] C.K.Wong,M.Gouda,and S.S.Lam,“Secure group
communicationsusing
keygraphs,”inACMSIGCOMM,1998,pp.68-79.

[6] Y. Kim, A. Perrig, and G. Tsudik, “Simple and
fault-tolerant key agreement for dynamic collaborative
groups,” in ACM CCS, 2000, pp. 235-244.

[7] S. Setia, S. Koussih, S. Jajodia, and E. Harder, “Kronos:
a scalablegroup re-keying approach for secure
multicast,” in IEEE Symposium onSecurity and Privacy,
2000, pp. 215-228.

