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Abstract 
Wireless  broadcast  is  an  effective  approach  to  dis- seminate  data  
to  a number of users. To  provide  secure  access to data  in  wireless 
broadcast   services,   symmetric  key - based encryption  is  used to 
ensure  that  only users who  own  the  valid keys  can  decrypt  the data. 
Regarding  various  subscriptions, an efficient  key  management  to 
distribute and change  keys  is in great demand  for  access  control  in 
broadcast services. In this paper, we propose  an  efficient  key  
management scheme  (namely KTR)  to handle  key  distribution  with  
regarding to  complex  subscription options and user activities. KTR 
has the following advantages. First, it supports all subscription 
activities in wireless broadcast services. Second, in KTR, a user only 
needs to hold one set of keys for all subscribed programs, instead of 
separate sets of keys for each program. Third, KTR identifies the 
minimum set of keys that must be changed to ensure broadcast 
security and minimize the rekey cost. Our simulations show that KTR 
can save about 45% of communication overhead in the broadcast 
channel and about 50% of decryption cost for each user, compared 
with logical key hierarchy based approaches. 
Index  Terms 
Wireless  broadcast,  key  management,  access control, key hierarchy, 
secure group communication, key dis-tribution 

I. INTRODUCTION 

With the ever growing popularity of smart mobile devices 
along with the rapid advent of wireless technology, there has 
been an increasing interest in wireless data services among 
both industrial and academic communities in recent years. 
Among various approaches, broadcast allows a very efficient 
usage of the scarce wireless bandwidth, because it allows 
simultaneous access by an arbitrary number of mobile clients 
[1].  Wireless data broadcast services have been available as 
commercial products for many years. In particular, the 
announcement of the MSN Direct Service (direct.msn.com) 
has further highlighted the industrial interest in and feasibility 
of utilizing broadcast for wireless data services. 
A wireless data broadcast system consists of three 
compo-nents as depicted in Figure 1: (1) the broadcast server; 
(2) the mobile devices; and (3) the communication mechanism. 
The server broadcasts data on air. A user’s mobile device 
receives the broadcast information, and filters the subscribed 
data according to user’s queries and privileges. The specialty 
of the broadcast system is that (a) the server determines the 
schedule to broadcast all data on air, and (b) users’ mobile 
devices listen to the broadcast channel but only retrieve data 

(filter data out) based on users’ queries. The 
communication mechanism includes wireless broadcast 
channels and (optional) uplink channels. Broadcast 
channel is the main mechanism for data broadcast 
service providers need to ensure backward and forward 
secrecy [2], [3] with respect to membership dynamics. 
In the wireless broadcast environment, any user can 
monitor the broadcast channel and record the broadcast 
data. If the data is not encrypted, the content is open to 
the public and anyone can access the data. In addition, a 
user may only subscribe to a few programs. If data in 
other programs are not encrypted, the user can obtain 
data beyond his subscription privilege. Hence, access 
control should be enforced via encrypting data in a 
proper way so that only subscribing users can access the 
broadcast data, and subscribing users can only access 
the data to which they subscribe. 

Fig. 1.   A wireless data broadcast system 

Symmetric-key-based encryption is a natural choice for 
ensuring secure data dissemination and access. The 
broadcast data can be encrypted so that only those users 
who own valid keys can decrypt them. Thus, the 
decryption keys can be used as an effective means for 
access control in wireless  
data broadcast services. For example, each program has 
one unique key to encrypt the data items. The key is 
issued to the user who is authorized to receive and 
decrypt the data items. If a user subscribes to multiple 
programs, it needs an encryption key for each program. 
Since a user only has keys for his subscription, he 
cannot decrypt broadcast data and rekey messages 
designated to other users. At the same time, a data item 
can be decrypted by an arbitrary number of users who 
subscribe to it. This allows many users to receive the 
data at the same time and addresses the scalability 
problem, or request lost or missed keys. 
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Nevertheless, when a user subscribes/unsubscribes to a 
program, the encryption key needs to be changed to ensure that 
the user can only access the data in his subscription period. 
Consequently, a critical issue remains, i.e. how can we 
efficiently manage keys when a user joins/leaves/changes the 
service without compromising security and interrupting the 
operations of other users? Regarding unique features of 
broadcast services, we are interested in new key management 
schemes that can simultaneously provide security, efficiency 
and flexibility. A broadcast service generally provides many 
programs; at the same time, users may like to subscribe to an 
arbitrary set of programs. We envision that a user should be  
able  to  flexibly  subscribe/unsubscribe  to  any  program of  
interests  and  make  changes  to  his  subscription  at  any time. 
Hence, in addition to security and efficiency, flexibility that a 
user can customize his subscription at anytime is an 
indispensable feature of key management in broadcast services 
to support user subscriptions. 
Two categories of key management schemes in the literature 
may be applied in broadcast services: (1) logic key hierarchy 
(LKH) based techniques [2]-[9] proposed for multicast 
ser-vices ; and (2) broadcast encryption techniques [10]-[16] in 
current broadcast services (such as satellite TV). We notice 
that current broadcast encryption techniques, including BISS 
[17], Digicipher [18], Irdeto [19], Nagravision [20], Viaccess 
[21], and VideoGuard [22], cannot in fact support flexibility. 
They normally require users to possess decryption boxes to 
receive the subscribed programs, and the broadcast services 
can only provide to users a few packages, each of which 
includes a fixed set of programs (TV channels). Users cannot 
select individual programs within a package. If a user wants to 
change his subscription, the user needs to request another 
decryption  box  that  can  decrypt  the  subscribed  programs. 
Hence, in this paper, we will focus on adapting more flexible 
LKH-based techniques. 
Nevertheless, directly applying LKH in broadcast services is 
not the most efficient approach. In broadcast services, a 
program is equivalent to a multicast group, and users who 
subscribe to one program form a group. Intuitively, we could 
manage a separate set of keys for each program, and ask a user 
to hold m sets of keys for his subscribed m programs. This 
straightforward approach is inefficient for users subscribing to 
many programs. If users could use the same set of keys for 
multiple programs, there would be fewer requirements for 
users to handle keys. Furthermore, when a user changes 
subscription, we argue that it is unnecessary to change keys for 
the programs to which the user is still subscribing, as long as 
security can be ensured. In this way, rekey cost can be reduced 
and fewer users will be affected. Therefore, we propose a new 
key management scheme, namely key tree reuse (KTR), based 
on two important observations: (1) users who subscribe to 
multiple programs can be captured by a shared key tree, and (2) 
old keys can be reused to save rekey cost without 
compromising security. KTR has two components: shared key 

tree and shared key management, and its contribution 
includes the following aspects. 
Contributions. First, the proposed scheme takes 
advantage of a  fact  in  broadcast  services:  many  users  
subscribe  to multiple programs simultaneously. In 
other words, programs overlap with each other in terms 
of users. Because existing approaches manage keys by 
separating programs, they turn to be demanding for the 
users who subscribe to many programs. Hence, this 
study contributes to the literature a new scheme 
(namely KTR)  to  better  support  subscriptions  of  
multiple programs by exploiting the overlapping among 
programs. KTR let multiple programs share the same 
set of keys for the users who subscribe to these 
programs. KTR thus inherently enables users to handle 
fewer keys and reduces the demands of storage and 
processing power on resource-limited mobile devices. 
Second, since multiple programs are allowed to share 
the same set of keys, a critical issue is how to manage 
shared keys efficiently and securely. We find that when 
keys need to be distributed to a user, it is unnecessary to 
change all of them. In many circumstances, when a user 
subscribes to new programs or unsubscribes to some 
programs, a large portion of keys that the user will hold 
in his new subscription can be reused without 
compromising security. KTR is a novel approach for 
determining which keys need to be changed and for 
finding the minimum number of keys that must be 
changed. Hence, KTR efficiently handles the rekey of 
the shared keys and minimizes the rekey costs 
associated with possible subscriptions. Our simulations 
show that critical keys can be employed in logical key 
hierarchy schemes [2], [5] to improve their 
performance. 
The rest of the paper is organized as follows. In Section 
II, we present related works on group key management. 
In Section III, the first component of KTR is described 
that fully utilizes the service structure to reduce the 
number of keys. In Section IV, the second component 
of KTR is presented to reduce rekey cost when updating 
and distributing shared keys. In Section V, we present 
the results of simulations to illustrate the performance 
improvements in KTR. Finally, we conclude in Section 
VI. 

II. RELATED WORKS ON KEY 
MANAGEMENT 

A. Logical Key Hierarchy 

Secure key management for wireless broadcast is 
closely related to secure group key management in 
networking [4]. Logical key hierarchy (LKH) is 
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proposed in [2], [5] that uses a key tree (depicted in Figure 2) 
for each group of users who subscribe the same program. The 
root (top node) of the tree is the data encryption key (DEK) of 
the program. Each leaf (bottom node) in the tree represents an 
individual key (IDK) of a user that is only shared between the 
system and the user. Other keys in the tree, namely key 
distribution keys (KDKs), 

Fig. 2.   Logical key hierarchy 

are used to encrypt new DEKs and KDKs. A user only knows 
the keys along the path from the leaf of the user to the root of 
the key tree. 
When a user joins or leaves the group, the server needs to 
change and broadcast the corresponding new keys, and this 
operation is called rekey, and the broadcast message of new 
keys is called rekey message. In our system, data and rekey 
messages are broadcast in the same broadcast channel to the 
users. Assume user u1 leaves the group (in Figure 2). The 
server needs to change k4, k2 and k1 so that u1 will no longer 
decrypt any data for this group, which is encrypted by k1. The 
rekey message is 
{k4}k , {k2}k ′  , {k2}k  , {k1}k ′  , {k1}k 

u2 4 5 2 3 
where ki is the new key of k i and {ki}kj means ki is encrypted 

by  k j . When u2 receives this message, u2 first decrypts {k4}k 

u 2 based on his individual key ku 2 to obtain k4, then uses 

k4  to decrypt {k2}k ′   and so on to obtain k2  and k1.4 

Similarly, other users can obtain the new keys in their own 
paths. It is obvious u1  cannot obtain any new keys from this 
message, and thus the broadcast data in the future will not be 
decrypted by u1.Now assume u1   joins the group, and the 

server needs to change k4, k2   and k1   so that u1   cannot use 

the old keys to decrypt old broadcast data. Note that u1  may 
have already eavesdropped on some broadcast data before 

he joined the group. If the server gives u1 the old keys, 

u1 can decrypt the eavesdropped broadcast data. The 
rekey message is 
keys need be changed in stead of how keys are 
generated. [6] proposes a combination of key tree and 
Diffie-Hellman key  exchange  to  provide  a  simple  
and  fault-tolerant  key agre agreement for 
collaborative groups. [23] reduces the number of rekey 
messages, while [9], [25] improve the reliability of 
rekey management. Balanced and unbalanced key 
trees are discussed in [5] and [26]. Periodic group 
re-keying is studied in [7], [8] to reduce the rekey cost 
for groups with frequent joins and leaves. Issues on 
how to maintain a key tree and how to efficiently place 
encrypted keys in multicast rekey packets are studied in 
[8], [26]. Moreover, the performance of LKH is 
thoroughly studied [3], [8]. 

B. Broadcast Encryption 

There  are  some  other key  management  schemes  in 
the literature  for  multicast  and  broadcast  services. 
[10]  used arbitrarily revealed key sequences to do 
scalable multicast key management without any 
overhead on joins/leaves. [11] proposed two schemes 
that insert an index head into packets for decryption. 
However, both of them require pre-planned 
subscription, which contradicts the fact that in 
pervasive com-puting and air data access a user may 
change subscriptions at any moment. In addition, [11] 
only supports a limited combi-nation of programs. [13] 
proposed a scheme to yield maximal resilience against 
arbitrary coalitions of non-privileged users. However, 
the size (entropy) of its broadcast key message is large, 
at least O(n) [12]. Zero-message scheme [14], [15] does 
not require the broadcast server to disseminate any 
message in order to generate a common key. But it is 
only resilient against coalitions of k non-privileged 
users, and requires every user to store 
O(klog2(k)log2(n)) keys. Naor et al. [16] proposed a 
stateless scheme to facilitate group members to obtain 
up-to-date session keys even if they miss some 
previous key distribution messages. Although this 
scheme is more efficient than LKH in rekey operations, 
it mainly handles revocation when a user stops 
subscription. It does not efficiently support joins, which 
are crucial in our system. Finally, [24], [27] pro-posed 
self-healing approaches for group members to recover 
the session keys by combining information from 
previous key distribution information. 
{k4}ku , {k2}ku , {k1}ku , {k4}k4, {k2}k2, {k1}k1 

 1 1 
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The first three components are for u1 to use his individual key 
to decrypt the new keys, and the last three are for all existing 
users to use their old keys to decrypt the new keys. In this 
way, u1  will not obtain any old key. 
LKH is an efficient and secure key management for multi-cast 
services in that each user only needs to hold O(log2(n)) keys 
for the user’s group, and the size of a rekey message is also 
O(log2(n)), where n is the number of group users. It is also 
a flexible key management approach that allows a user to join 
and leave the multicast group at any time. Many variations of 
LKH have been proposed. Because LKH simply uses 
independent keys, researchers developed several other 
approaches [23], [24] that generate new keys by exploiting 
the relation between child and parent keys or the relation 
between old and new keys. Our scheme is complementary to 
these schemes, since our scheme mainly examines whether 
Compared with LKH-based approaches, key management 
schemes in broadcast encryption are less flexible regarding 
possible  subscriptions.  Conforming  to  the  current  practice 
described in RFC2627 [2], we select binary trees to present our 
scheme. Note that our scheme does not require binary trees and 
can be applied in trees of other degrees. 

III. SHARED KEY STRUCTURE 

Directly applying LKH is not efficient in broadcast services. We 
use a shared key structure to address the key management. In the 
following, we describe how a shared key structure is applied 
and then raise the security and efficiency problems of this 
scheme. We then present a novel shared key management in  
Section  IV  that  ensures  security  and  minimizes  rekey cost, 
and also address major issues when applying KTR in a 
broadcast server. 

 

Fig. 3.   Shared key tree 

A. Key Forest 

To address scalability and flexibility in key management, LKH 
is used as the basis of our scheme. An intuitive solution is to use 

a key tree for each program as shown in Figure 3(a). 
However, when user u1 subscribes to two programs 
simultaneously, he needs to manage two sets of keys in 
both trees which is not very efficient (see Figure 3(a)). 
Hence, shared key tree (SKT) is proposed to reduce this 
cost in key management. As shown in Figure 3(b), we let 
the two programs share the same sub key tree as 
represented by the gray triangle. We regroup users so 
that users subscribing to both programs only need to 
manage keys in the gray triangle. The advantage of 
shared key tree is clear: any user subscribing to both g1 
and g2 only needs to manage one set of keys for both 
programs. Moreover, when a user joins or leaves a tree 
shared by multiple programs, the encryption and 
communication cost for rekey operations can be 
significantly less than conventional LKH approaches. 
In order to ensure that a user will not pay for subscribed 
programs multiple times, the key forest obviously should 
have the following properties, which are guaranteed in 
any directed and acyclic graph. 
 
Property 3.1: Only one path exists by following the 
upward links from the root of a tree trs to the DEKs of the 
programs that share trs; 
Property 3.2: Only one path exists by following the 
upward links from any leaf node in a tree to the root; 
                 
Property 3.3: Each user belongs only to one tree in the 
key forest, and his individual key is the leaf node of the 
tree. 

B. Root Graph 

 The root graph in Figure 4 depicts how programs share   
keys. Since m programs could generate 2m −  1 
different subscriptions, such a two-layer structure in fact 
brings two  major problems in terms of rekey overheads 
when the number of  programs is large. 
First, a program may be included in many subscriptions, 
which means the DEK of the program is connected with 
many trees. Assume the DEK is connected with n trees. 
When a user stops subscribing the program, the DEK 
needs to be updated and distributed to users in n trees. 
Because the new DEK is encrypted with the roots of the 
n trees in rekey, O(n) rekey items are generated. 
Obviously, if n is large, a leave event results in a huge 
rekey message. For example, in Figure 5(a),3 programs 
are included in 5 different subscriptions. Program g1’s 

DEK kg1 is connected with 4 roots kr1, kr2, kr3. 

Hence, when kg1 is updated due to a leave event, 4 rekey 
items are needed. To solve this problem, we use a 
multi-layer structure to connect the DEK with the 
roots of the shared trees. Second, a subscription is 
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not a conventional plan that a broadcast service provides, 
because the subscribed programs of a plan normally cannot be 
changed by a user. In this paper, users are able to customize the 
selection of programs in their subscriptions. Thereby, a 
broadcast service could easily have a large number of different 
subscriptions. For example, even if a service provides only 30 
programs that is a small number in many broadcast services, 
there could be 230  = 1 billion different subscriptions, which 
is much larger than the number of users. Hence, managing keys 
for all possible subscriptions would overload the server. Now, 
assume the service has n users and 2m  ≫ n. Although 2m −  
1 different subscriptions exist, at most n subscriptions are 
valid, since the number of valid subscriptions cannot be more 
than the number of users. Hence, this problem can be easily 
solved by letting the server only manage the valid subscriptions 
that have at least one user. 

 

Fig. 4.   Key forest 

 

 

Fig. 5.   Multi-layer root graph 

C. Rekey Operations 

In this study, we consider user activities of 
Joining/leaving/shiftingamong  trees, instead of 
joining/quitting/changing  among  programs.  Table  I  lists 
the  mapping  between  tree-oriented  operations  and  the 
corresponding  program-oriented  user  events.  Consider  the 
example in Figure 4, where a user us  shifts from tr4   to tr6. 

When us was in tr4 , us subscribed g1  and g2. After he shifts 

to tr6 , he subscribes g1 , g2   and g3 . Hence, the shift in fact 

means the user adds g3  into his current subscription. 
Note that the discussion of rekey operations in this 
study only considers individual user events. 
To issue new keys upon a user event, the main task is 
to identify the keys that need to be changed. We use 
two types of paths in the key forest to represent the 
to-be-changed keys. When a user leaves a tree, we say, 
a leave path is formed, which consists of keys that the 
user will no longer use. When a user joins a tree, we 
say, an enroll path is formed, which consists of keys 
that the user will use in the future. Similarly, when a 
user shifts from one tree to another, a leave path and an 
enroll path are formed. In KTR, a complete path starts 
from the leaf node and ends at the multiple DEKs of the 
subscribed programs that share the tree. For example, 
in Figure 4, when us   shifts from tr4   to tr6, the leave 

path consists of kn L and kr , and the enroll path 

consists of knj   kr6  , kg1  , kg2 and kg3. To broadcast  
new keys, the server should first compose rekey 
Packets. In this study, we take the standard LKH 
approach to  Encrypt a new key ki in a rekey item 

 {ki}kj . If  ki is in an enroll path, kj is the old kj , 

i.e.{ki}k  ≡ {ki}k  If  ki is in a leave path,  kj   is a child 

key of  ki. Readers can refer to [2], [5]  for examples 
of rekey packets. 

TABLE I  REKEY OPERATIONS 

KTR to efficiently address the security issue in reusing 
keys. Since rekey cost is determined by the number 
of must-be-changed keys, the cost can be minimized 
if we can find the minimum number of 
must-be-changed keys when the user joins or shifts to 
the tree. We name the must-be-changed keys in an 
enroll path as critical keys. KTR changes all keys in a 
leave path and only the critical keys in an enroll path, 
while leaving all the other keys unchanged. In this 
way, the rekey cost can be minimized. 

Tree Program oriented events. 
Join a 
tree 

Assume a user has not subscribed to any program.    
He subscribes to one or multiple programs. 

Leave  a 
tree 

Assume a user has subscribed to several 
programs. He Unsubscribes to all current 

programs. 

Shift 
among 
trees 

Assume a user has subscribed several programs. 
He subscribes to one or a few more programs. 

He unsubscribes to a part of the current programs 
He changes a part of the current programs. 
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IV. SHARED KEY MANAGEMENT 

In this section, we first present some important concepts in 
Section IV-A and IV-B, which are used for identifying critical 
keys . Then, we present the condition under which a key is 
critical in Section IV-C and IV-D and the corresponding key  
management algorithms. 

A:Rekey Spots 

KTR basically logs how a key was used in rekey messages. We 
can always find two operations  in any  rekey  message:  
1) a key’s value is changed or 2) a key is used to encrypt its 
parent key when the parent key’s value is changed. 
Accordingly, we define two types of spots to log the time 
points when either operation is committed. 
 
Algorithm 1 Update of refresh and renew spots  Assume ki  is 
used in the rekey messages upon a user event. 

1: if ki  is in a leave path then 
2:renew spots must be added to all ki’s spot 
series;  
3: end if 
4: if ki  is critical in an enroll path then 
5:renew spots must be added to all ki’s spot 
series;  
6: end if 
7: if ki’s parent key kj  is in a leave path then 
8:refresh spots must be added to ki’s spot series that are 

associated with the programs 
sharing kj ; 9: end if 

Definition 4.1: Renew spot of a key ki: the time point t 

when ki’s value is changed. ki’s new value starting from t is 

denoted as ki(t). 

Definition 4.2: Refresh spot of a key ki: the time point t 

when ki is used to encrypt its parent key kj ’s new value in a 

refreshment δ (kj , t; ki, t). 

Definition 4.3: Refreshment, δ (kj , t; ki, t ′ ): a rekey 

message broadcast at t in the form of {kj (t)} ki(t’)  t’≤ t. 
 
Algorithm3 Algorithm of KTR in Broadcast Server  
1: if a join or shift event happens then 
2:according to TCK, find all critical keys in the tree the user 
wants to join or shift to; 
3:select  the  best  enroll  path  that  has  the  minimum number 
of critical keys; 
4:change all critical keys in the best enroll path, and broadcast 
corresponding rekey messages; 
5: end if 

6: if a leave or shift event happens then 
7:change  all  keys  in  the  leave  path,  and  broadcast 
corresponding rekey messages;  
8: end if 
9:update renew, refresh and revive spots according to 
the latest rekey messages; 
Theorem 4.1 indicates that changing only critical keys 
can ensure past confidentiality. Hence, given a key 
forest, Algorithm 3 is applied to find the best enroll path 
and minimize the rekey cost. When a join or shift event 
happens to a tree, the algorithm uses the depth-first tree 
traversal approach to find all critical keys in the tree. If 
a path is found to have fewer critical keys than 
previously visited paths, the algorithm records it as the 
best enroll path. 
Corollary 4.1: When a user joins a tree, a key in the 
enroll path is a critical key if and only if one of the 
key’s ages is greater than 0. 
Before a user joins the tree, his subscription ages for all 
of the programs sharing this tree are 0. Hence, if the age 
of a key in the enroll path for this program is greater 
than 0, the key is older than the user’s subscription. 
According to Theorem 4.1, the key needs to be 
changed before being distributed to the user. 
Corollary 4.2: After a user enrolls in a tree, all keys in 
the enroll path are not older than the user. 
According to Theorem 4.1, if a key is older than the 
user’s subscription regarding a program, the key needs to 
be changed. Hence, at the time when the user enrolls in 
a tree, the keys, whose ages are older than the user, 
are renewed and their ages turns to be 0. If the key 
is not older than the user’s subscription regarding 
any program, the key does not need to be changed. 
Hence, the key continues to be not older than the user. 
Therefore, after a user enrolls in a tree, all keys in the 
enroll path are not older than the user. 
Corollary 4.3: When a user shifts from a tree to 
another tree, the keys overlap both trees do not need to 
be changed. 
Assume the user shifts from tree trα  to tree trβ  . 

According to Corollary 4.2, after the user enrolls in tr

α , all keys in the enroll path cannot not be older than 

the user. Hence, when the user shifts to trβ  , the 
overlapped keys, which were in the enroll path 
when user enrolled in trα , do not need to be changed 
according to Theorem 4.1. 

E. Security Analysis 

To ensure multicast or broadcast security, group key 
man- agement should satisfy four security properties [2], 
[3]: non- group confidentiality, collusion freedom, 
future confidentiality  (forward secrecy), and past 
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confidentiality (backward secrecy).  In the following, we 
discuss how KTR satisfies these proper- ties. 
Property 4.1: Non-group confidentiality:  passive 
adver-saries should not have access to any group key. 
Because keys are encrypted when being broadcast, passive 
adversaries can not decrypt any key without knowing decryp  
-tion key. Hence, KTR obviously satisfies Property 4.1. 
Property 4.2: collision freedom: by sharing group keys,  
 Multiple present users cannot derive any group key that the 
they are not holding. 
When multiple users collude, they  may  try  to share their 
keys to derived unknown group keys. the sharing can be 
rep-presented by a sub graph of the paths belonging to the 
colluding users. However, in KTR,  user does not know any 
key  not in this path. Hence colluding users do not know any 
key outside the sub graph that represents the collusion. KTR  
thus satisfies property 4.2 Property 4.3: Future  confidentiality  
(forward  secrecy):  a Leaving user  not have access to any 
group key after  leaving   his present group. According to 
Algorithm 3, KTR changes all keys in the leave path, 
because the leaving user holds these keys. Hence, the leaving 
user will not have the new keys after the user leaves his 
group. KTR thus satisfies Property 4.3. 
Property 4.4: Past confidentiality (backward  secrecy):  a  
Joining user added at time t should not have access to any 
keys used to encrypt data before t.According to Algorithm 3, 
KTR changes all critical keys in the enroll path when a user 
joins. Theorem 4.1 basically proves that the joining user can 
only derive past group keys from critical keys. Hence, 
changing critical keys and reusing non-critical keys prevent 
the joining user from obtaining past group keys. KTR thus 
satisfies Property 4.4. 

V. CONCLUSION 

In this work, we investigated the issues of key management in 
support of secure wireless broadcast services. We proposed 
KTR  as  a  scalable,  efficient  and  secure  key  management 
approach in the broadcast system. We used the key forest to 
exploit the overlapping nature between users and programs 
in broadcast services. KTR let multiple programs share a 
single tree so that the users subscribing these programs can 
hold fewer keys. In addition,we proposed an ovel shared 
key management approach to further reduce rekey cost by 
identifying the minimum set of keys that must be changed to 
ensure broadcast security. This approach is also applicable to 
other LKH-based approaches to reduce the rekey cost as in 
KTR. Our simulation showed that KTR can save about 
45% of communication overhead in the broadcast channel and 
about 50% of decryption cost for each user, compared with the 
traditional LKH approach. 
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