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Summary 
Monte-Carlo GO is a computer GO program that is sufficiently 
competent without the knowledge expressions of IGO. Although 
it is computationally intensive, the computational complexity can 
be reduced by properly pruning the IGO game tree. In this study, 
we achieved this by using a potential model based on the 
knowledge expressions of IGO. The potential model treats GO 
stones as potentials. A specific potential distribution on the GO 
board results from a unique arrangement of stones on the board. 
Pruning with the potential model categorizes legal moves into 
effective and ineffective moves in accordance with the potential 
threshold. In this study, certain pruning strategies based on 
potentials and potential gradients were experimentally evaluated. 
In particular, for different-sized boards, the effects of pruning 
strategies were evaluated in terms of their robustness. We 
successfully demonstrated pruning with a potential model to 
reduce the computational complexity of the game of GO as well 
as the robustness of this effect across different-sized boards. 
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1. Introduction 

In this study, we tackled the reduction of computational 
complexity by pruning the IGO game tree with a potential 
model based on the knowledge expression of IGO. 
Monte-Carlo GO [1], which is sufficiently competent 
without the knowledge expressions of IGO, was used as 
the computer GO program for this experiment. 
Monte-Carlo GO employs a randomized and 
computationally intensive algorithm. However, this 
computational complexity can be reduced by properly 
pruning the IGO game tree. Monte-Carlo GO shows no 
deviation in the sequence of moves for IGO. Therefore, the 
effects of the heuristics generated by a potential model are 
demonstrated correctly. 
 This study is the additional research of potential 
model pruning in Monte-Carlo Go [2]. In the previous 
experiment, effects of four kinds of potential model on 
Monte-Carlo Go were demonstrated on the 9 × 9 board. In 
this experiment, nine kinds of potential model were 
demonstrated on the 9 × 9 and 13 × 13 boards. 
 

2. Proposed Method 

The method proposed in this study consists of 
Monte-Carlo GO and a potential model. 

2.1 Monte-Carlo GO 

Monte-Carlo GO evaluates legal moves in each phase to 
choose the next move by a simulation based on a 
Monte-Carlo search process consisting of many moves. 
This simulation, called “Play Out,” involves both sides 
constantly choosing the next move alternately and 
randomly from the current phase until the end of the game. 
Play Out calculates an estimate Xi  for each legal move 
i  by using Eq. (1). Here, Si  is the number of times of 
Play Out and Xi  is the total number of considerations. 
In Play Out, the consideration is +1 or 0 if an offensive 
move wins or loses, respectively. As a result, the move 
with the best estimate is selected as the next move. 
 

iii sXX /=                  (1) 

2.2 Potential Model 

Stones influence the possibility that surrounding 
intersections become their territory. The potential model 
proposed here quantifies these influences by assuming GO 
stones as potentials, as shown in previous studies [3, 4]. 

2.2.1 Definition of Potential 

The potential is defined in Eqs. (2–4) and Table 1. A 
calculation example is shown in Fig. 1. The sign of Eq. (3) 
is switched depending on the setting of the proposed 
method. The potential distribution on the GO board is 
calculated by these equations. If necessary, the potential 
gradient is subsequently calculated according to the 
gradient method by using geographical information 
systems [5] with the potential distribution. A schematic 
diagram of this process is shown in Fig. 2. 
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(X, Y) = (5, 4) 
m = 2 
r1 = √10 
r2 = √34 
 

P1(X, Y) = +1/2√10 

P2(X, Y) = –1/2√34 
 

Pall = +1/2√10 + (–1/2√34) 
     ≒ 0.12926 

Fig. 1. Example of Potential Calculation 
 

 

PG(e) = (dz/dx)2 + (dz/dy)2 
 
a–i: Potential Value 
dz/dx: Rate of Change of x-axis 
dz/dy: Rate of Change of y-axis 
 
dz/dx = (c + 2f + i) – (a + 2d +g) 
dz/dy = (g + 2h + i) – (a + 2b +c) 

Fig. 2. Schematic of Potential Gradient 
 

Table 1: Mathematical Expressions 
r : Euclidean distance 
m : Attenuation rate of potential, m > 1. 
xi, yi : Intersection of stonei 

Pk(X, Y) : 
Potential difference between  
intersection (X, Y) and stonek 

n : Total number of stones on the GO board 

Pall(X, Y) : 
Total potential difference between  
intersection (X, Y) and stone1–n 

PG(X, Y) : Potential gradient at an intersection (X, Y) 

2.2.2 Pruning by using Potential Model 

Potential Filters (PFs): 
Potential Filters (PFs) were used as the pruning 
instruments. In each phase of choosing the next move, 
these filters pruned legal moves according to the following 
procedures: 
(i) Calculate the potential distribution resulting from the 

arrangement of GO stones on the GO board.  
(ii) Rank legal moves by each magnitude of potential (or 

potential gradient). 

(iii) Categorize ranked legal moves into effective and 
ineffective moves in accordance with thresholds for 
the ranking. (Each PF has a unique threshold level.) 

(iv) Eliminate ineffective moves from candidates for the 
next move. (Run Monte-Carlo search only on 
effective moves.) 

 In accordance with the number of eliminated legal 
moves, the computational load of the Monte-Carlo search 
is reduced; that is, PFs reduce the range of search spaces 
on the GO board. 
 
Potential Filter Configurations: 
Table 2 lists the configurations of the five filters (the 
Random Filter and PFs 1–4). These configurations include 
the ranking, attenuation rate of the potential m, polar 
characteristic of black and white stones, and threshold 
conditions. Each PF ranked legal moves in descending 
order of potential values (except for the Random Filter) 
and categorized them in accordance with each threshold 
condition for the ranking. PFs 1–3 are the same as PFs 1–3 
in the previous experiment [2]. PF 4 is a new filter and 
both black and white stones have the same polarity.  
 Table 3 lists the configurations of five other filters 
(PFs 5–9). Each PF ranked legal moves in descending 
order of potential gradient values and categorized them in 
accordance with each threshold condition for the ranking. 
These fundamental configurations are the same as PF 4 in 
the previous experiment [2]. In PFs 5–9, m critically 
involved their filtering functions. According to the 
magnitude of m, potential gradient values of intersections 
surrounding each stone became higher. In contrast, the 
lower m became, there were higher potential gradients of 
intersections between black stones and white stones. For 
example in Table 3, PF 5, m is 4 and the intersection 
marked with an x, the midpoint between a black stone and 
a white stone, is ranked 41st in order of magnitude of 
potential gradient. In the case of PF 6, the intersection 
marked with an x is ranked 23rd. In the case of PF 7, the 
intersection marked with an x is ranked 9th. In the case of 
PF 8, the intersection marked with an x is ranked 3rd. And 
in the case of PF 9, the intersection marked with an x is 
ranked 1st. 
 All filters mutually reduced by half the number of 
legal moves. Thus, all filters reduced by half the 
computational load in each phase for choosing the next 
move. 
 
On and Off Switch of Potential Filter: 
Each PF had a point at which its state was switched on or 
off. This switching point took a number from among the 
number of all intersections on the GO board. Specifically, 
a switching point could be selected from numbers 2 to 169 
when the board size was 13 × 13 (=169), or from 2 to 81 
when the board size was 9 × 9 (=81). 
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 During the course of a game, the PFs were on when 
the number of legal moves remaining on the GO board 
was above a switching point and off when it was below the 
switching point. The borders where effective PFs became 
ineffective were measured by changing the switching point 
one step at a time. The borders were the points where 
winning percentages exceeded the average winning 
percentage between two normal Monte-Carlo GO 
programs (51% with a board size of 13 × 13 or 57% with a 
board size of 9 × 9). 
 The performance of the Monte-Carlo search is higher 
when the game tree is small; performance deteriorates as 
the game tree becomes larger. Thus, pruning is effective in 
the opening game. However, pruning gradually becomes 
ineffective thereafter as legal moves on the GO board 
decrease. 

3. Competence of Monte-Carlo GO with 
Potential Filters  

Monte-Carlo GO with PFs was adopted for the initiative 
move, whereas normal Monte-Carlo GO was adopted for 
the passive move. The number of times of Play Out at each 
intersection was set to 100. In a match-up between two 
normal Monte-Carlo GO programs, the winning 
percentage of the initiative move was 51% when the board 
size was 13 × 13, or 57% when board size was 9 × 9. (The 
winning percentage of the initiative move exceeded 50% 
because this move was advantageous.) Therefore, 51% or 
57% was considered the average level of normal 
competence. 

4. Results and Observation 

The winning percentages of Monte-Carlo GO with PFs are 
shown in Figs. 3 and 4 along the left-hand axis (upper 
graphs, board size of 9 × 9; lower graphs, board size of 13 
× 13). The level of competence varied with the filter and 
switching point. The normal winning percentage of 57% or 
51% and the calculated results of the Random Filter were 
important for comparing and evaluating the effects and 
tendencies of the PFs. The number of total Play Out times 
required for one game is shown in Figs. 3 and 4 for both 
board sizes along the right-hand scale. The number of total 
Play Out times varied with the filter and switching point. 

4.1 Effects of Potential Filters 

Random Filter prunes legal moves at random. Therefore, 
the winning percentage of the Random Filter decreased 
gradually with a reduction in the number of legal moves 
without exceeding the normal winning percentage. 

 PF 1 became the bias around which black stones 
gathered. These black stones effectively strengthened 
initiative territory. PF 2 became the bias where black 
stones were attracted around white stones. Black stones 
effectively suppressed white stones. PF 3 became the bias 
where black stones were scattered on the GO board. These 
black stones were removed easily by white stones. PF 4 
became the bias where stones were attracted around black 
and white stones. PFs 5–9 became the bias where black 
stones were attracted around black and white stones, and 
areas between black and white stones were closed. The 
lower the value of m, the stronger was the bias and effect 
of pruning. 
 The characteristics of each PF were unique. However, 
they all showed the ability to properly prune ineffective 
moves that the Monte-Carlo search could not when the 
winning percentage exceeded the average (57% or 51%). 
Thereafter, the competence of each PF decreased gradually 
as the number of legal moves decreased and the precision 
of the Monte-Carlo search increased. In fact, pruning by 
each PF reduced the precision of the Monte-Carlo search. 

4.2 Robustness of Potential Filter Effects 

Concerning both the upper and the lower graphs in Figs. 3 
and 4, if the x-axes are scaled to the same width, each of 
the winning percentage curves of PFs 1–9 in both graphs is 
similar and shares much in common with the others: the 
relative location, the proportion of the border where 
effective PFs became ineffective, the number of all 
intersections on the GO board, and the reduction rate of 
total Play Out numbers required for one game. This 
indicates that the PF effects are robust to the size of the 
GO board; they depend only on the ratio of the number of 
legal moves to the number of all intersections on the GO 
board. 

5. Summary 

In this study, we reduced computational complexity of 
Monte-Carlo GO by pruning the IGO game tree with a 
potential model based on the knowledge expression of 
IGO. In our experiments, the effects of 9 kinds of pruning 
strategies (PFs) were evaluated on different-sized boards. 
Each PF has a specific effect on IGO, which was 
maintained on the 9 × 9 and 13 × 13 boards. 
 We successfully demonstrated pruning by using the 
potential model to reduce the computational complexity of 
GO, as well as robustness of the PF effects to the size of 
the GO board. However, our experiments were limited as 
the Play Out number was set to 100 and the board size was 
set to 9 × 9 or 13 × 13. For future research, we intend to 
expand the proposed strategy to address more complex 
games with larger Play Out numbers and GO board sizes. 
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Table 2. Types of Potential Filters (Random Filter and PFs 1–4) 
Method Random Filter PF 1 PF 2 PF 3 PF 4 
Ranking - Potential Potential Potential Potential 

m - 2 2 2 2 
Black/White - +/– +/– +/– +/+ 

Filtering Random Low 50% Top 50% Above 25% and 
below 75% Low 50% 

Overhead - 

    

Landscape - 

    
 
 
 
 
 
 

Table 3. Types of Potential Filters (PFs 5–9) 
Method PF 5 PF 6 PF 7 PF 8 PF 9 
Ranking Potential Gradient Potential Gradient Potential Gradient Potential Gradient Potential Gradient 

m 4 2 1.5 1.25 1.15 
Black/White +/– +/– +/– +/– +/– 

Filtering Low 50% Low 50% Low 50% Low 50% Low 50% 

Overhead 

     

Landscape 
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Method 9 × 9 Board Size 13 × 13 Board Size 
Border Play Out Number Reduction Rate Border Play Out Number Reduction Rate 

Random  - 332000 0.0 - 722400 0.00 
PF 1  77 316300 4.7 157 673200 06.8 
PF 2  73 301400 9.2 152 649950 10.2 
PF 3  - 332000 0.0 - 722400 00.0 
PF 4  64 270800 18.4 135 592350 18.0 

Fig. 3. Winning Percentages of Monte-Carlo GO with Potential Filters 
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Method 9 × 9 Board Size 13 × 13 Board Size 
Border Play Out Number Reduction Rate Border Play Out Number Reduction Rate 

PF 5  76 312600 5.8 160 681150 5.7 
PF 6  64 270900 18.4 135 592350 18.0 
PF 7  62 264650 20.3 132 578950 19.9 
PF 8  61 261600 21.2 132 578950 19.9 
PF 9  60 258600 22.1 129 572400 20.1 

Fig. 4. Winning Percentages of Monte-Carlo GO with Potential Filters 
  

Switching Point Number 

Switching Point Number 
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