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Summary 
In this paper we observed some algebraic structures on the 
collection of dominating sets and independent sets of an 
undirected non weighted graph. We prove that the collection of 
all dominating sets and in-dependent sets forms a group under 
some specific binary operators. Finally we conclude with some 
fundamental algebraic properties over these sets. 
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1. Introduction 

Let G = (V, E) be an undirected non weighted graph 
where V (G) is the set of vertices and E(G) ⊆ {{u, v}|u, v 
∈ V (G), u = v}. Order of G and size of G are |V (G)| and 
|E(G)| respectively. A set of vertices D is a dominating set  
for a graph G if every vertex is either in D or adjacent to a 
vertex which is in D. A set of vertices I is an independent 
set  for a graph if no two vertices in I are adjacent to each 
other in G. In this section we formally define some of the 
basic algebraic structures and its properties.  

Definition 1.1. A nonempty set of elements G is said 
to form a group if in G there is defined a binary operation, 
called the product and denoted by ‘·’ such  
that  

(1) a, b ∈ G implies that a · b ∈ G(closed).  
(2) a, b, c ∈ G implies that a · (b · c) = (a · b) · c 

(associative law).  
(3) There exists an element e ∈ G such that a·e = e·a 

= a for all a ∈ G (the existence of identity element in G).  
(4) For every a ∈ G there exists an element a− 1  ∈ G 

such that a · a− 1 = a− 1 · a = e (the existence of inverse in 
G)  

Definition 1.2. A nonempty set of elements G is said 
to form a semigroup if in G there is defined a binary 
operation, called the product and denoted by ‘·’  
such that  

(1) a, b, c ∈ G implies that a · (b · c) = (a · b) · c 
(associative  law).                                                         
Definition 1.3. A group G is called a cyclic group if there 
is an element a∈G, such that every element in G can be 
expressed as a power of a. In that case a is called the 
generator of G. We express this by writing G = (a).  

Definition 1.4. A nonempty subset H of a group G is said 
to be a subgroup of G if,  H itself forms a group under 
the same binary operation of G.  

Fact 1.5. If G is a group, then  (i) The identity element of 
G is unique. (ii) For every a ∈ G has a unique inverse in 
G.  

Fact 1.6. A group G of prime order must be cyclic and 
every element of G other than identity can be taken as a 
generator.  

Here all the operations are assumed to carry the same 
meaning as the set theoretic operations.  

2. Structure of Dominating Sets  

Let G be a graph.  Let D and I be the set of all dominating 
sets and independent sets of the graph G respectively.  
Lemma 2.1. D is a semi group under the binary operation 
set union ∪.  
Proof. Let ‘·’ be the binary operation over D. If A, B be 
any two dominating sets in D, then A · B is defined as A · 
B=A∪B. Clearly D is nonempty, as V (G) in D. Let A, B, 
C be any three dominating sets ∈  D. Now consider  
(A · B) · C = (A ∪ B) · C = (A ∪ B) ∪ C = A ∪ B ∪ C 
= A ∪  (B ∪  C) = A∪(B·C)=A·(B·C). Associatively 
holds good for union over D. Hence D is a semi group. 
Remark 2.2. D can not be a semigroup under the binary 
operations set difference − , set intersection ∩, symmetric 
difference △.  
Lemma 2.3. I is a semigroup under the binary operation 
set intersection ∩. 
Proof. Let ‘·’ be the binary operation over I. If A, B be 
any two independent sets in I, then A · B is defined as A · 
B = A ∩ B. Clearly I is nonempty, as every single vertex 
alone is in I. Let A, B, C be any three dominating sets in I. 
Now consider (A·B)·C = (A∩B)·C = (A∩B)∩C = A∩B
∩C = A∩ (B∩C)=A∩ (B·C)=A·(B·C). Associatively 
holds good for intersection over I. Hence I is a semi group. 
Remark 2.4. I can not be a semi group under the binary 
operations set union ∪ and set symmetric difference △.  
Corollary 2.5. ID does not follow any algebraic structure 
under the binary operations set intersection ∩, set union 
∪, set difference −  and set symmetric difference △.  
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3. The numbering scheme 

Let us arrange the elements of D and I in the following 
manner.  Let the first element of D and I be the sets V (G) 
and ∅ respectively. Let us arrange the rest elements of D 
and I in a lexicographic ordering. Let  and  be the  
sets after this rearrangement of elements. Let |  | = m and 
| | = n. Let Di denotes the index of i in the set D′. We 
assume the index of first element in the set D′ is 0, second 
element in  is 1 and so on. Let  [i] denotes the ith 
element of .  
 
Theorem 3.1.  is a group under the operation ‘·’ and 
identity V (G), where ‘·’ is defined as follows. If A, B ∈

 then . If  = a < m and   = a < 
m and  =c < m, then  , where a + 
b ≡ c( mod m).  
Proof. Let A, B, C ∈ . Now consider 

. If  = a < m and   = a < m and 
 =c < m, then  , where a + b ≡ 

c( mod m). Since  ∈ ,  is closed under . 
Consider A · B · C = (A · B) · C =( )·C =  · 
C= = ∈ , where  and a + b ≡p( mod m)  
and  p+c=q (mod m), since we know that   is associative. 
Hence  is associative.  
Let A ∈ .  Consider V (G) · A = = . 

Since = 0 and let  = a then 0 + a ≡ a (mod  m). 
A·V(G)= A .So existence of identity holds. Consider A · 

= [0] = V(G). This gives the existence of 
inverse. Hence the theorem holds. □ 
 
Theorem 3.2.  is a group under the operation ‘·’ and 
identity∅ , where ‘·’ is defined as follows. If A, B ∈ I′  
then A · B = . 
.Proof. The proof is similar to the proof of 3.1. □ 
Remark 3.3. The collection of all independent dominating 
sets does not follow any algebraic structure under the 
operation   (m is the cardinality of the set), where as D 
and I forms a cyclic group under the same operation.  
Lemma 3.4. If O(D) = p, where p is a prime number then 
every element of D excluding the identity element is a 
generator for D.  
Proof. We know that D is a finite abelian group. Given 
that O(D) = p and p is a prime number. So number of 
elements of order p = φ(p) = p −  1, whereφ(p) denote 
the Euler’s phi function. Hence it has p -1 generators. 
Hence the claim. 
                                                                                          □ 
Remark 3.5. If O(D) = k, then we can write k as a product 
of prime factors (say) . In fact we can onstruct 

normal subgroups  such that each element 
in will act as a generator in their 
irrespective groups. 

4. Homomprphism of dominating sets 

Definition 4.1 Let D1 and D2  be two groups formed by 
the dominating sets of a graph G(V, E). A homomorphism 
ϕ from D1 to D2 is a mapping from D1 to D2  that 
preserves the group operation i.e. (A · B) = ϕ(A) ⋄  ϕ(B), 
where ‘⋄ ′ is the binary group operation on D2. 
Theorem 4.2. Let ϕ be a homomorphism from a group D1 
to a group D2 and let H be a subgroup of D1. Then  
(1) ϕ(H) = {ϕ(A)|A ∈ H} is a subgroup of D2.  
(2) If H is cyclic ϕ(H) is cyclic.  
(3) If H is abelian ϕ(H) is abelian.  
(4) If H is normal in D1  then ϕ(H) is normal in ϕ(D1) .  
 
Theorem 4.3. Let ϕ be a homomorphism from a group D1 
to a group D2 and let A be an element of D1 . Then  
(1) ϕ carries the identity element D1  to the identity of D2.  
(2) ϕ(An) = (ϕ(A))n  

 
Remark 4.4. If there exists a homomorphism between two 
groups of dominating sets then we can say both the 
dominating sets dominate the same graph. 

5. Conclusion 

In this paper we observe the collection of all dominating 
sets and independent sets form a group under the index 
integer modulo operation. In fact they form a cyclic group. 
Moreover given any two groups of dominating sets we can 
determine whether they dominate the same graph or not.  
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