
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

25

Manuscript received November 5, 2012
Manuscript revised November 20, 2012

Performance versus Cost of a Parallel Conjugate Gradient
Method in Cloud and Commodity Clusters

Leila Ismail

Computer Science and Engineering, College of Information Technology, UAE University

Summary
Cloud computing is an emerging technology to run HPC
applications using computing resources on a pay per use basis.
The CG method is a linear solver which is used in many
engineering and scientific applications, and is computationally
demanding. We implement different approaches of a parallel
CG method and compare their performance on different types of
platforms: an HPC-optimized cluster, a built heterogeneous
cluster, and Amazon cloud. We evaluate the performance of
two approaches: broadcast and a ring-based communication-
computation overlap, and compare to that of National Aeronau-
tics and Space Administration Advanced Supercomputing CG
parallel benchmark. We present an evaluation of the performance
vis-a-vis cost tradeoff. The results show that, cloud instances
suffer from network performance issues, which is revealed by the
low performance of the CG method for small problem sizes. An
HPC cloud instance type performs the best with relatively less
cost than HPC-optimized commodity cluster and other more
virtualized cluster instance types, for big problem sizes, while
scaling well with increasing problem size. It gives better
performance for overlap-based CG method; the performance
increases and the cost decreases. Given the emergence of Cloud
Computing, the results in this paper analyze performance and
cost issues when Clouds are used for CG-based scientific and
engineering applications.
Keywords
Distributed Systems, High Performance Computing, Cloud
Computing, Conjugate Gradient (CG) Method, Perfor- mance,
Cost.

I. INTRODUCTION

The capacity of today’s infrastructures and data centers,
the ubiquity of network resources, and the low storage cost
have led to the emergence of Cloud Computing [1] [2] [3].
The main objective is to draw benefits from the underlying
infrastructure services to satisfy a Service Level
Agreement [4] and a required performance to users.
There is a great interest in porting high performance
applications on a Cloud ([5], [6], [7]) mainly to
reduce the cost of running the applications on commodity
clusters, and the dynamic elasticity of resources. However,
running distributed applications in a Cloud of distributed
resources face performance challenges. Though the
computing resources are presented to users as a unified set,
they bear overhead which is induced by virtualization and
the sharing of physical resources [8]. The Conjugate

Gradient (CG) method is one of the most popular
mathematical tool which is used by many scientific and
engineering applications, such as oil simulation [9],
aerospace engineering [10], and finite methods [11] to
solve a linear system of equations generated in those
applications. The CG presents a high complexity; i.e., the
number of operations generated is very high. Consequently,
enhancing the performance of the CG contributes largely
to the efficiency of those applications. An important
speedup can be obtained by distributing CG [14]. In this
work, we evaluate and compare, in cloud computing and
other com- modity clusters, mainly 2 versions of parallel
CG method that we implemented: one using the
broadcast approach which is simple to design and
implement, and another one using an overlap approach in
which communication is overlapped with computation to
decrease communication cost, the latter approach being
difficult to design and implement, but showing an
important speedup. We also analyze the performance of
the National Aeronautics and Space Administration
Advanced Supercomputing CG parallel benchmark which
is widely used by scientific community.
We implement the parallel CG method by using the
producer-consumer pattern [15], also called master-
worker. A master is a core in the Cloud, which is
responsible to divide the CG load to computing workers.
The master collects partial results from the computing
workers and combines them to constitute the final
application’s result. Every computing worker processes the
load received and transmits the results back to the master
worker, which in turn, in a next iteration, performs some
data preparations and sends new loads until the application
is completed. At every iteration of the parallel CG method,
computing workers communicate to exchange data which
is needed to continue further steps within the iteration.
In this study, we present a performance vis-a-vis cost
tradeoff of the parallel CG using different strategies of
commu- nication on a variety of platforms, such as an
HPC-optimized cluster, a built heterogeneous cluster and
different instances types of Amazon Elastic Cloud
Computing (EC2). Our HPC- optimized cluster consists of
a total of 16 Intel Xeon cores connected by InfiniBand
switch. The heterogeneous cluster is made of
heterogeneous machines and heterogeneous Ethernet
connectivity. We used three types of Amazon Elastic

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012 26

Compute Cloud instances which are representative of
infrastructures that can be used for HPC applications:
Standard Large In- stance, High CPU Extra Large Instance,
and Cluster Compute Quadruple Extra Large Instance.
Several applications were evaluated using a cloud
computing infrastructure ([8], [16], [17], [18], [19]),
however, to our knowledge our work is the first attempt to
evaluate the CG method in a cloud computing environment
and to analyze and compare its performance and cost on
different commodity clusters. Our study reveals that the
cloud computing could be a better choice for high
performance applications than commodity clusters when
virtual instances specifications are chosen carefully
according to the application characteristics; i.e., depending
on whether the application to be deployed is
communication-intensive and/or computing intensive and
considering the ratio of communication to computation.
The rest of the paper is structured as follows. Section II
describes the CG method parallelization approach that we
consider for the experiments. Section III overviews related
works.
The computing platforms under experiments are described
in section IV. In section V, we evaluate the performance of
the CG parallel application running on different platforms
and discuss the obtained results. Section VI analyzes the
tradeoff between the performance and the price cost of
running a parallel CG. Section VII concludes the work.

II. PARALLEL COMPUTATION

APPROACH Figure 1 shows a sequential execution of the
CG method.

We use data parallelism to distribute the load generated by
the following operations: matrix-vector multiplication
(step
8), vector-dot product (step 9 and step 13), scalar-vector
multiplication and vector addition (step 10 and step 14),
and scalar-vector multiplication and vector subtraction
(step 11). The number of non-zeros in the matrix A is
distributed equally over the available number of computing
workers for load balancing purpose. Vectors are distributed
based on the number of rows of the local matrix on each
computing worker. we use the master-worker model for
the CG distribution. When the distributed CG runs, one of
the cores of the Cloud instances is selected at random as
the master and other computing cores are selected as
associate workers to perform in parallel the CG’s partitions,
which are assigned by the master core. A core here is
defined as the smallest processing unit that is allocated to
an application. A core could be a context, a core or a
processor of a Cloud instance which consists of multiple
cores. Cloud cores are connected via a network link whose
speed and load dictate the speed of the communication
processing when
data is transmitted between nodes. Upon starting the
parallel CG execution, the master divides the matrix into
among the computing workers which perform local
operations on local parts. The conditions of the
communication link between the master and each
computing worker, and among the computing workers and
the existing computing power of each computing worker,
all participate to the performance of the parallel CG. A
communication channel depicts the time needed for data to
travel over the connection connecting the master worker to
a computing worker and the computing workers to each
others. A computing power depicts the time needed by the
computing worker to process the task assigned by the
master. Each computing worker in the system has a
computing capacity.
In order for each local computing worker to achieve its
local computation of step 8, the whole vector p is needed
by all the computing workers. However, each computing
worker has only a local part of the vector p. Therefore a
communication of the local vector p from each computing
worker to all other computing workers is necessary in
every iteration of the CG algorithm. We implemented 2
communications approaches, widely used by the parallel
computing community:
• Broadcast-based strategy. In this approach, every
computing
worker communicates a vector p of size li (1 ≤ i ≤ N) to the
N computing workers participating in the parallel
computation of the CG method. li is the size of the vector p
whose number of elements is equal to the number of rows
of the local matrix associated to the computing worker i,
following a load-balanced distribution of the matrix A. The
broadcast-approach is simple to design and implement for

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

27

the CG method. However, communication cost will
increase drastically with the size of vector p and the
number of computing workers, posing scalability issues.
The total communication cost from a computing worker i
to broadcast the vector p during the execution of the
parallel CG method is as follows:

Where TBcast(li) is the time needed to broadcast the
vector p of size li from a computing worker to N – 1
computing workers, and kmax is the maximum number of
iterations needed at the completion of the parallel
execution of the CG.
• Overlap-based strategy. In this approach, the parallel CG
method is designed in a way that the communication of
the vector p is overlapped with the local matrix- vector
multiplication of the step 8. We chose the ring- based
approach to design and implement the overlap- based CG
method. A complete description of the overlap- based
approach and analysis of its performance vis-a-vis the
broadcast-based approach can be found in [14]. The
overlap-based approach aims to hide the communication
by communicating asynchronously with other computing
workers while the local computation is taking place.
However, in case that the local computation of the matrix-
vector multiplication takes less time than communicating
the vector p, then a waiting time is generated on the
computing worker whose local computation has com-
pleted before receiving the chunk of p to work with. The
communication cost of the parallel CG method is as
follows:

The best scenario is when T (W ait) = 0

III. RELATED WORKS

Reference [5] deployed two parallel applications on Ama-
zon EC2: the classification of gene expression data and the
functional magnetic resonance imaging (MRI) workflows
used in brain analysis. Both applications involve
computation and communication. Two types of Amazon
instances were uses: the standard small instance type and
the standard medium instance type. The first application
performs better in a small type than in a medium type,
in particular because the application is designed as single-
threaded processes and consequently did not get benefit
from the multi-core feature of the medium type. The paper
concludes that the cost of running the MRI application
when increasing the number of Cloud nodes is subdued
by the significant reduction in application makespan.
Reference [8] looks at the perfor- mance and the cost of

applications in the areas of climate, material-science,
fusion, accelerator modeling, astrophysics, and quantum
chromodynamics. Amazon EC2 shows a lower
performance than other two commodity clusters under
study. Reference [16] examines the performance of
running coupled atmosphere-ocean climate models on
Amazon EC2, using small, medium and large standard and
high-cpu instance types. Reference [18] compares the
performance and the cost of the bioinformatics
application (WCD) between Amazon EC2, using the large
instance type, and two commodity clusters. WCD is
characterized by generating more computation than
communication as the data size grows. The performance
and the cost of running the Montage workflow are
examined by reference [19]. Other applications, such as
NAMD, a molecular dynamics application, and NQueens,
a backtracking search problem, were evaluated by
reference [17].

IV. EXPERIMENTAL TESTBED

In this section, we describe the different platforms we use
for our experiments. These platforms are representative of
different categories of platforms available to High
Performance Computing community. From each platform,
we use 16 cores to deploy and run our applications: the
broadcast-based par- allel CG method, the overlap-based
parallel CG method and the NPB3.2.1 version of the NAS
parallel benchmark.

A. Amazon Cloud Computing
Amazon Elastic Cloud Computing (EC2) [20] is probably
one of the most well known cloud computing
infrastructures which implement Infrastructure As A
Service (IAAS) cloud [21]. EC2 exposes to users an
Application Programming

EX P E R I M E N TA L TE S T B E D : AM A Z O N EL A S T I C CL
O U D CO M P U T I N G (EC2)

Instance Type Memory

Number

Number of
EC2

Number

Standard Large 7.5 GB 2 2 8
High-CPU Extra

Large
7 GB 8 2.5 2

Cluster Compute
Quadruple Extra

Large

23 GB 2 x Intel
Xeon X5570,

quad- core
Ne- halem

architec- ture

4.19 2

Interface which allows the deployment of cluster and Grid
environments and the deployment of parallel applications.
Amazon provides an amount of CPU per hour, no
matter what the underlying hardware is. It is based on the
utility computing model [22]. One EC2 Compute Unit

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012 28

provides the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or
2007 Xeon processor [23]. This is also the equivalent to an
early-2006 1.7 GHz Xeon processor. We chose 3 different
types of instances of the EC2 that are representative to run
distributed applications. In amazon, a core is a virtual core.
Table I shows the different types of instances which are
used in our experiments. We use US East (Virginia)
Amazon AWS region.
We use the Sun N1 Grid Engine as an engine to dispatch
jobs to the virtual cores of the Amazon EC2. Our parallel
CG method as well as NAS use Message Passing Interface
(MPI) [24]. We use the StarCluster cluster-computing
toolkit [25] which is developed by the Massachusetts
Institute of Technology (MIT) group. StarCluster uses the
API of the Amazon EC2 to build, configure and manage
clusters of virtual cores. We use version 0.93.1 of the
toolkit.
B. Heterogeneous Cluster
To analyze the performance and the cost of the parallel CG
method on a heterogeneous cluster, we conduct the
experiments on a set of heterogeneous machines made of 2
AMD Opteron processors and 7 Intel Xeon processors.
The AMD Opteron Processor model is 252 with 2.59 GHz
dual CPU single core. Each core has 1MB of cache, and 2
GB of memory. 5 out of the 7 Intel machines have Intel
Xeon CPU of
3.06 GHz, dual CPU, dual core. Each core has 512KB of
cache and 4GB of memory. Let us denote those Intel
machines by Intel Type1. 1 out of 7 Intel machines has
Intel Xeon CPU of
3.06 GHz with dual CPU, single core. Each core has 512
KB of cache and 4 GB of memory. Let us denote this Intel
machine by Intel Type2. The AMD Opteron machines
along with those
6 Intel machines described earlier are connected to each
others via one hop 1Gb/second switch, those are connected
to another Intel machine located in the shared LAN
network via two-hop connectivity of 1 Gb/s. That Intel
machine has Xeon CPU of
3.0 GHz and it has a single CPU, dual core. Let us denote
that

TABLE II HE T E RO G E N E O U S CL U S T E R TE S T B E D

Computing Worker Machine

 CPU Type Memory
Size Cache Size

CW0 and CW1
AMD

Opteron
Processor

2GB 1MB

CW2 and CW3
AMD

Opteron
Processor

2GB 1MB

CW4 and CW5 Intel Type 1 4GB 512KB

CW6 and CW7 Intel Type 1 4GB 512KB

CW8 and CW9 Intel Type 1 4GB 512KB

CW10 Intel Type 3 4GB 512KB

CW11 and
CW12

Intel Type 1 4GB 512KB

CW13 and
CW14

Intel Type 1 4GB 512KB

CW15 Intel Type 2 4GB 512KB

Intel machine by Intel Type3. Each core has 4MB of cache
and 2GB of memory. The Linux Suse 3.1.0. was used. 16
computing workers (cores) from the heterogeneous
platform were used to run the experiments. The workers
are mapped to their corresponding machines as shown in
Table II. Figure 2 shows the performance of the machines
in terms of MFlops, measured by running the class C of the
NAS benchmark on the platform.

Fig. 2. Computing performance of our experimental heterogeneous
platform.

C. HPC-Optimized Cluster
Our HPC-Optimized cluster consists of 2 Xeon Intel Quad
Core 5355 machines with 2.66GHz CPUs. Each machine
has a dual CPU. Each core has 4MB of cache, 1GB of
memory,
2.66 x 4GFLOPS of peak performance. The machines are
connected using Qlogic 9120 InfiniBand (IB) switch. The
operating system used on the machines is Red Hat
Enterprise Linux Server release 5.2. The experiments are
done using the parallel capabilities of a single multicore
machine, and using a Cloud of machines. Message Passing
Interface (Open MPI version 1.3.2) library is used for
implementing the parallel CG.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

29

V. PERFORMANCE EVALUATION

In this section, we evaluate efficiency of the parallel CG
method for broadcast-based implementation and overlap-
based implementation when running on the different
platforms under experiments. We also evaluate the
performance of the NAS

A. Experimental Runs
The experiments use a set of 16 cores running 16
computing workers. The total execution time of the
parallel CG is measured on each platform under
experiments. The relative runtime of the parallel CG on the
Amazon EC2 platforms and the heterogeneous platform
compared to an HPC-optimized cluster is measured. In
our experiments, one core acts as a master which
distributes the tasks to the other cores that we call
computing workers. The total execution time for the
parallel CG is the elapsed time when master starts
distributing the matrix till the final results are received
by the master from the computing workers. The
gettimeofday function is used to compute the elapsed time
on the master. The average communication time involved
in the parallel CG method is computed by computing the
total communication time on each computing worker
divided by the number of computing workers involved in
the computation. In all our experiments, each experiment
was run 100 times and the average was computed. The
experiments use different matrix sizes of the matrix A.
There is a total of 5 experiments or runs as shown in Table
III to assess the impact of increasing matrix size to the
performance of the parallel CG on the platforms under
experiments. The matrix sizes are the same used by the
NAS parallel CG benchmark. We also use the same
sparsity patterns as implemented by NAS. In each run on a
platform, the total execution time of the parallel CG is
measured by vertically scaling the matrix size. On the
heterogeneous platform, each run has executed using a
load-balanced approach. The load- balanced approach
takes into consideration the heterogeneity of the machines
in the heterogeneous cluster. It computes dynamically the
corresponding load; i.e., the number of non- zero elements
of the matrix A to be allocated to each machine of the
cluster based on its available computing power.
In order to know the relative speed of the CG method on
each platform compared to the HPC-optimized cluster, we
calculate the ratio of the total execution time of the CG
method on the platform over its total execution time on the
HPC- optimize cluster; with increasing problem size.

B. Experimental Results Analysis

When running our MPI-based implementation of the
parallel CG method to Amazon cloud computing, we had
the following requirements. These requirements have an
impact on the usability of a cloud infrastructure to deploy

and run distributed applications based on MPI.
a) Building a virtual cluster within the Cloud. To run a
parallel CG on the allocated instances, it is needed to build
a cluster out of the number of instances used to run the
parallel CG. A cluster should be configured and
consequently managed. Some instances can be configured
as administration nodes while others are configured as
computing nodes. Amazon provides API tools which
serve as a client interface to launch and destroy instances,
to read and write files within the instances, etc. We
use the StarCluster [25] software which automatically
configures a cluster out of Cloud instances. To configure
and manage the cluster, Star Cluster uses an endpoint of
communication defined by Amazon [27] depending on the
region in which instances are running. In our
experiments the endpoint of communication is ec2.us −
east − 1.amazonaws.com for US East (Northern Vir-
ginia) Region.
b) Installation of the development tools in the Cloud. To
run a CG in the cloud, it is needed to install development
tools, such as MPI and gcc libraries for compiling and
running CG. The StarCluster tools deploys an image which
includes all the necessary tools to compile, dis- patch an
run an MPI-based program.
c) Computing workers and user access to the virtual
cluster file system. The cluster should have a shared file
sys- tem between the cluster nodes to run our parallel CG
implemented by using MPI [24] an to access files as a
result of the parallel CG execution. We use commands of
StarCluster tools to copy files, resultant from the CG
parallel execution, from the virtual cluster to our local
machines and analyze the results.
At the platform level, although it is obvious that the
Amazon EC2 cluster compute quadruple extra large
instance type will perform better than the Amazon standard,
and the Amazon high-cpu extra large instance type, due to
a higher network bandwidth assigned to the cluster
compute [20] and more dedicated CPU cycles [28], as
shown in Figures 3, 4, and
5. However, our experiments show the performance
gain that can be obtained by the CG method when
considering the performance of the platforms under
experiments for the broadcast-based approach and the
overlap-based approach. For the broadcast-based approach,
the HPC-optimized cluster has the best performance,
followed by the Amazon cluster com- pute for small
problem sizes (Class S, Class W and Class A). This is due
to the small percentage of computation compared to the
communication that should be done for small problem
sizes. For instance, Figure 6, for the class S, shows that
more than 70% of the total execution time is spent in
communication by the Amazon cluster compute. However,
the Amazon cluster compute performs better than HPC-
optimized cluster for big problem sizes (Class B and Class
C), where the percentage of computation to

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012 30

communication increases and thus the cluster compute
computing capabilities are used, as shown in Figure
7 for the Class C problem size for example. Consequently
a more computing power in the Amazon cluster compute
does not give a boost to performance for small problem
sizes, this is due to the Amazon cluster compute network
being shared with other applications and users by
virtualization. Except for the Amazon cluster compute,
commodity clusters are performing better than the Amazon
cloud instances under study for the broadcast and overlap
as shown in Figures 3, 4, and 5. However, for NAS, the
high-cpu extra large is performing better than the
heterogeneous for large problem sizes, as the percentage of
computation increases and thus NAS benefits from a larger
computing power provided by the high-cpu extra large
compared to our heterogeneous commodity cluster. For the
overlap approach, the Amazon cluster compute shows the
best performance as shown in Figures 4 and 8.
Figure 8 shows that the performance gap is bigger for
small matrix sizes than larger matrix sizes, showing that
platform types other than HPC-optimized clusters starts to
perform for bigger matrix sizes than smaller matrix sizes.
For instance, the HPC-optimized cluster is 195.3 times
faster than the standard large instance type for NAS
benchmark for class S matrix size. It is 131.4 times faster
for the broadcast-based approach, and it is 55.7 times
faster for the overlap-based approach. Our HPC-Optimized
cluster performs 82.2 faster than the high-CPU extra large
for the NAS parallel benchmark,
78.7 faster for the broadcast-based approach, and 62.7
faster for the overlap-based approach. Our HPC-optimized
cluster performs 2 times better than the cluster
compute quadru- ple extra large performs for the
broadcast-based approach. However, the cluster compute
quadruple extra large performs better for the overlap-based
approach (2.5 faster) and for the NAS parallel benchmark
(1.67 faster). The performance gap between our HPC-
optimized cluster and the other Amazon instance types
decrease with increasing matrix sizes, showing that the
Amazon cloud computing becomes more interesting for
running a parallel CG, when more computation is involved
with larger matrix sizes. This is because for small
matrix sizes, more communication is involved than
computation when running a parallel CG, making cloud
computing less effective as shown in Figures 9, 10, and 11,
in particular for the broadcast-based approach.

VI. COST EVALUATION

Table IV shows the price that is charged per hour of execu-
tion. For our HPC-optimized cluster, we make an
assumption of a charging rate of US$2.5 per core per
hour [29]. For our built heterogeneous cluster, we make an
assumption of US$0.6 per core per hour. The objective

here is not to make a comparison of prices but to evaluate
the tradeoff between the execution of running a parallel
CG method and NAS benchmark and their corresponding
costs on the platforms under study. This is with increasing
matrix size. To compute the total runtime cost, TC ost , we
use the following formula:
TC ost = TRun ∗ N ∗ (price/(60 ∗ 60)) (3)
where, TRun is the total runtime of the parallel application,
N is the number of cores used in the parallel computation,
and price is the price of use per core per hour.

Fig. 3. Total makespan of the broadcast-based approach with
increasing problem size running on different platforms.

Fig. 4. Total makespan of the overlap-based approach with
increasing problem size.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

31

Fig. 5. Total makespan of the NAS parallel benchmark with increasing
problem size running on different platforms.

Fig. 6. Distribution of communication and computation for the Class S
problem size running on different platforms.

Figures 13, 14, and 15 show that the total runtime cost as a
function of total execution time and increasing problem
size. For all cases, the cost increases as the problem size
increases, due to the linear relationship between problem
size and total execution time within the same platform. For
all cases, the Amazon cluster compute instance shows the
best cost to performance relationship for all problem sizes,
except for the Class S problem size and for the broadcast-
based approach, where the use of an HPC-optimized
cluster is less costly than Amazon cluster compute. These
results show it is more cost- effective to run a parallel
CG on an HPC-Cloud instance type. The performance
of a parallel CG method increases and the cost

decreases by using a communication-computation overlap
strategy. For instance, the total execution time of the
overlap-based parallel CG is 1,52 versus 2.33 seconds of
the broadcast-based approach for the Class C matrix size,
while the corresponding cost is 0.017 versus 0.011.

Fig. 7. Distribution of communication and computation for the Class
C problem size running on different platforms.

Fig. 8. Relative Runtime of the parallel CG method and NAS on
different platforms to the runtime on HPC-optimized cluster

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012 32

Fig. 9. Percentage of Communication and computation time with
increasing matrix size for the broadcast-based approach and the overlap-

based approach

Fig. 10. Percentage of communication and computation time with
increasing matrix size for the broadcast-based approach and the overlap-

based approach.

Fig. 11. Percentage of communication and computation time with
increasing matrix size for the broadcast-based approach and the overlap-

based approach

Fig. 12. Percentage of communication and computation time with
increasing matrix size for the broadcast-based approach and the overlap-

based approach.

TABLE IV CO S T P E R US E

Platform Type Price
per Hour (US$)

Number
of Cores or In-
stances Used

HPC-Optimized
cluster

2.5 per
core

2

Built
heterogeneous cluster

0.6 per
core 8

Amazon EC2
Standard Large instance

type

0.34 per
instance 8

Amazon EC2
High-CPU Extra Large

instance type

0.68 per
instance 2

Amazon EC2
Cluster Compute Quadruple

Extra Large instance type

1.3 per
instance 2

Fig. 13. Total execution cost of the broadcast-based approach for the
parallel CG on different platforms with increasing matrix size.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

33

Fig. 14. Total execution cost of the overlap-based approach for the
parallel CG on different platforms with increasing matrix size.

Fig. 15. Total execution cost of NAS parallel benchmark on
different platforms with increasing matrix size

VII. CONCLUSION

In this work, we study the tradeoffs between the perfor-
mance and the cost of a parallel CG application on
different cluster types, ranging from a commodity
heterogeneous clus- ter, to an HPC-optimized cluster to
different cloud instance types including HPC-cloud
instance type. We used the Ama- zon Cloud as a Cloud
reference platform. We experimented with two versions of
a parallel CG, one based on a broadcast approach strategy
for the inter-processors communications and one based on
a communication-computation overlap strategy using the
ring approach. We also experimented with the NAS CG

benchmark as it is widely used as a reference by the
scientific community. Our results show that the HPC-
Cloud instance type performs the best results with
increasing matrix size. In addition, the performance of the
parallel CG increases as the cost decreases compared to the
other platforms under study. Other cloud instance types
result in a bigger execution time and a bigger cost
compared to the HPC-Cloud instance type. Our results
show that, on those cloud types, a big percentage of the
CG method total execution time was spent in
communication. This is due to the virtualization
mechanisms and the cloud network being shared by
different applications.

ACKNOWLEDGEMENTS

This work is supported by the UAE University research
grant. The research is part of a project that is ranked
Highly Competitive by international peer reviewers
following a UAE national competition organized by the
UAE National Research Foundation and won by the author.

RE F E RE N CE S

[1] R. Buyya, C.S. Yeo, and S. Venugopal, Market-Oriented
Cloud Comput- ing: Vision, Hype, and Reality for
Delivering IT Services as Computing Utilities, Keynote
Paper, in Proc. 10th IEEE International Conference on High
Performance Computing and Communications (HPCC 2008),
IEEE CS Press, Sept. 2527, 2008, Dalian, China

[2] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,
James Broberg, Ivona Brandic. Cloud computing and
emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation
Computer Systems. Volume 25, Issue 6, June 2009

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G.Lee, D. Patterson, A. Rabkin, I. Stoica, M.
Zaharia. Above the Clouds: A Berkeley View of Cloud
computing. Technical Report No. UCB/EECS-2009-28,
University of California at Berkley, USA, February 10, 2009

[4] Service Level Agreement Zone, “The Service Level
Agreement”, @Copy- right 2007, http://www.sla-
zone.co.uk/index.htm

[5] Christian Vecchiola1, Suraj Pandey1, and Rajkumar
Buyya, ”High- Performance Cloud Computing: A View of
Scientific Applications”, Proceedings of the 10th
International Symposium on Pervasive Systems, Algorithms
and Networks (I-SPAN 2009, IEEE CS Press, USA), Kaoh-
siung, Taiwan, December 14-16, 2009

[6] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, M.
Tsugawa, ”Science Clouds: Early Experiences in Cloud
Computing for Scientific Applica- tions”, in the Proceedings
of the Cloud Computing and its Applications 2008 (CCA-
08), October 2008

[7] K. Keahey, ”Cloud Computing for Science”, 21st
International Confer- ence on Scientific and Statistical
Database Management, Springer-Verlag, p. 478, 2009

http://www.sla-zone.co.uk/index.htm
http://www.sla-zone.co.uk/index.htm

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012 34

[8] Keith R. Jackson, Krishna Muriki, Shane Canon, Shreyas
Cholia, and Jon Shalf, ”Performance Analysis of High
Performance Computing Applications on the Amazon Web
Services Cloud”, 2010 IEEE Second International
Conference on Cloud Computing Technology and Science
(CloudCom), pp. 159-168, November 30 2010-December 3
2010,

[9] Dogru, Ali h., From Mega-Cell to Giga-Cell Reservoir
Simulation, Saudi Aramco Journal of Technology, Spring
2008

[10] J. W. Manke, ”Parallel Computing in Aerospace”, Parallel
Computing, Vol. 27, Issue 4, March 2001, pp. 329-336

[11] Haee-Dae Kwon, ”Efficient Parallel Implementations of
Finite Element Methods Based on the Conjugate Gradient
Method”, Applied Mathemat- ics and Computation, Vol. 145,
Issue 2-3, 25 December 2003, pp. 869 -880

[12] Leila Ismail, Khaled Shuaib, ”Empirical Study for
Communication Cost of Parallel Conjugate Gradient on a
Star-Based Network,” ams, pp.498-503, 2010 Fourth Asia
International Conference on Mathemati- cal/Analytical
Modeling and Computer Simulation, 2010

[13] Leila Ismail, ”Communication Issues in Parallel Conjugate
Gradient Method using a Star-Based Network”. 2010
International Conference on Computer Applications and
Industrial Electronics (ICCAIE 2010), 05-07December 2010,
Kuala Lampur, Malaysia

[14] Leila Ismail, Rajeev Baru, ”Implementation and
Performance Evaluation of a Distributed Conjugate Gradient
in a Cloud Computing Environment”, Software: Practice and
Experience journal, 2012, Wiley InterScience.
DOI:10.1002/spe.2112

[15] Ian Foster, ”Designing and Building Parallel Programs”,
Addison-Wesley (ISBN 9780201575941), 1995

[16] Constantinos Evangelinos and Chris N. Hill, ”Cloud
Computing for Parallel Scientific HPC Applications:
Feasibility of Running Cou- pled Atmosphere-Ocean
Climate Models on Amazon’s EC2”, CCA-08, Chicago,
2008

[17] Abhishek Gupta an Dejan Milojicic, ”Evaluation of HPC
Applications on Cloud”, Hewlett-Packard Development
Company, L.P., 2011.

[18] Scott Hazelhurst, ”Scientific computing using virtual high-
performance computing: a case study using the Amazon
Elastic Computing Cloud”, the Proceedings of the South
African Institute of Computer Scientists and Information
Technologists (SAICSIT) Conference, 978-1-60558- 286-3,
2008

[19] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce
Berriman, and John Good, ”The cost of doing science on the
cloud: the Montage Example”, In Proc. of the ACM/IEEE
conference on Supercomputing (SC’08), 2008

[20] http://aws.amazon.com/ec2/
[21] Mell P, Grance T. A NIST Definiton of Cloud

Computing. Na- tional Institute of Standards and
Technology, Special Q12 Publication 800145, September
2011. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf

[22] Amazon, ”What is a EC2 Compute Unit and why did you
introduce it?”, http://aws.amazon.com/ec2/faqs/#What is an
EC2 Compute Unit and why did

[23] LegitReviews.com, ”Intel’s Mighty Dual Xeon Beast - V8,
Platform Preview”,
http://www.legitreviews.com/article/527/1/, Copyright
2002-2012, last retreived on 15 April 2012

[24] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir and
Marc Snir, ”MPI: The Complete Reference”, Vol. 2, ISBN-
10:0-262-57123-4, ISBN-13:978-0-262-57123-4, September
1998

[25] StarCluster by MIT,
http://web.mit.edu/star/cluster/docs/latest/overview.html

[26] Bailey D, Barszcz E, Barton J, Browning D, Carter R,
Dagum L, Fatoohi R, Fineberg S, Frederickson P, Lasinski
T, Schreiber R, Simon H, Venkatakrishnan V,Weeratunga S.
The NAS Parallel Benchmarks. RNR Technical Report
RNR-94-007, March 1994

[27] Amazon Web Services Glossary (Ver- sion 1.0),
AmazonElastic Cloud (EC2),
http://docs.amazonwebservices.com/general/latest/gr/rande.h
tml#ec2 region

[28] Amazon EC2 Instance Types,
http://aws.amazon.com/ec2/instance-types/, last retrieved on
12 April 2012

[29] insidehpc.com, ”ISC launches hosted HPC service”,
2008, http://insidehpc.com/2008/04/01/isc-launches-hosted-
hpc-service/

Leila Ismail is currently an Assistant
Professor of Computer Science and
Engineering at the College of Information
Technology, UAE University. She served as
an Assistant Professor at the American
University of Beirut during 2004-2005.
Before that, she worked for Sun
Microsystems Research and Development
Center in Grenoble, France, where she

participated to the deposit of a patent in the domain of high
available network. Dr. Ismail received her PhD in Computer
Science and Engineering from the National Polytechnic Institute
of Grenoble (INPG), France, in September 2000 with very
honorable degree. She conducted her research work in
Distributed Systems at the French National Institute for Research
in Computer Science and Control (INRIA, Grenoble). She
completed her higher studies of DEA at the Joseph Fourier
University/ENSIMAG Engineering School in France. Dr. Ismail
has an active commitment to research in High Performance
Computing, Distributed Systems, Cluster, Grid and Cloud
computing, Autonomous Computing, Parallel Processing
Programming Models and Middleware for Mobile Agents. She
is the founder and the director of the High Performance and
Grid and Cloud Computing Research Laboratory at the UAE
University. Dr. Ismail is the winner of several research awards
including the IBM Shared University Research Award (SURA) in
2007 and the IBM Faculty Award in 2008, very competitive
awards world-wide. She is also the winner of a UAE national
competition condducted by the National Research Foundation
and her project is ranked Highly Competitive by anonymous peer
international external reviewers. She is an active referee for
several international journals and actively participating in
conferences programs committees and organizations. She was
General Chair for the IEEE- DEST 2010.

http://aws.amazon.com/ec2/
http://csrc.nist.gov/publications/nistpubs/800-
http://csrc.nist.gov/publications/nistpubs/800-
http://aws.amazon.com/ec2/faqs/#What
http://www.legitreviews.com/article/527/1/
http://web.mit.edu/star/cluster/docs/latest/overview.html
http://docs.amazonwebservices.com/general/latest/gr/rande.html#ec2
http://docs.amazonwebservices.com/general/latest/gr/rande.html#ec2
http://docs.amazonwebservices.com/general/latest/gr/rande.html#ec2
http://aws.amazon.com/ec2/instance-
http://insidehpc.com/2008/04/01/isc-launches-hosted-hpc-service/
http://insidehpc.com/2008/04/01/isc-launches-hosted-hpc-service/

	of In- stances Used
	Compute Units per Core
	Size
	of Cores
	Number
	Number of EC2
	Number
	Memory
	Instance Type
	CW6 and CW7
	CW8 and CW9
	CW10
	CW11 and CW12
	CW13 and CW14
	Computing Worker
	Machine

	CW0 and CW1
	CW2 and CW3
	CW4 and CW5

