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Summary 
Cloud computing is an emerging technology to run HPC 
applications using computing resources on a pay per use basis. 
The CG method is a linear solver which is used in many 
engineering and scientific applications, and is computationally 
demanding. We  implement  different  approaches  of  a  parallel 
CG method and compare their performance on different types of 
platforms: an HPC-optimized cluster, a built heterogeneous 
cluster,  and  Amazon  cloud.  We  evaluate  the  performance  of 
two approaches: broadcast and a ring-based communication- 
computation overlap, and compare to that of National Aeronau- 
tics and Space Administration Advanced Supercomputing CG 
parallel benchmark. We present an evaluation of the performance 
vis-a-vis cost tradeoff. The results show that, cloud instances 
suffer from network performance issues, which is revealed by the 
low performance of the CG method for small problem sizes. An 
HPC cloud instance type performs the best with relatively less  
cost  than  HPC-optimized  commodity  cluster  and  other more 
virtualized cluster instance types, for big problem sizes, while 
scaling well with increasing problem size. It gives better 
performance for overlap-based CG method; the performance 
increases and the cost decreases. Given the emergence of Cloud 
Computing, the results in this paper analyze performance and 
cost issues when Clouds are used for CG-based scientific and 
engineering applications. 
Keywords 
Distributed Systems, High Performance Computing, Cloud 
Computing, Conjugate Gradient (CG) Method, Perfor- mance, 
Cost. 

I.  INTRODUCTION 

The capacity of  today’s infrastructures and  data centers, 
the ubiquity of network resources, and the low storage cost 
have led to the emergence of Cloud Computing [1] [2] [3]. 
The main objective is to draw benefits from the underlying 
infrastructure services to satisfy a Service Level 
Agreement [4] and a required performance to users. 
There is a great interest in porting high performance 
applications  on  a  Cloud  (  [5],  [6],  [7])  mainly  to  
reduce the cost of running the applications on commodity 
clusters, and the dynamic elasticity of resources. However, 
running distributed applications in  a  Cloud of  distributed 
resources face performance challenges. Though the 
computing resources are presented to users as a unified set, 
they bear overhead which is induced by virtualization and 
the sharing of physical resources [8]. The Conjugate 

Gradient (CG) method is one of  the  most  popular  
mathematical  tool  which  is  used  by many scientific and 
engineering applications, such as oil simulation [9], 
aerospace engineering [10], and finite methods [11] to 
solve a linear system of equations generated in those 
applications. The CG presents a high complexity; i.e., the 
number of operations generated is very high. Consequently, 
enhancing the performance of the CG contributes largely 
to the  efficiency of  those applications. An  important 
speedup can be obtained by distributing CG [14]. In this 
work, we evaluate and compare, in cloud computing and 
other com- modity clusters, mainly 2 versions of parallel 
CG method that we  implemented: one  using  the  
broadcast approach  which is simple to design and 
implement, and another one using an overlap approach in 
which communication is overlapped with computation to 
decrease communication cost, the latter approach being 
difficult to design and implement, but showing an 
important speedup. We also analyze the performance of 
the National Aeronautics and Space Administration 
Advanced Supercomputing CG parallel benchmark which 
is widely used by scientific community. 
We implement the parallel CG method by using the 
producer-consumer pattern  [15],  also  called  master-
worker. A  master  is  a  core  in  the  Cloud,  which  is  
responsible to divide the CG load to computing workers. 
The master collects partial results from the computing 
workers and combines them to constitute the final 
application’s result. Every computing worker processes the 
load received and transmits the results back to the master 
worker, which in turn, in a next iteration, performs some 
data preparations and sends new loads until the application 
is completed. At every iteration of the parallel CG method, 
computing workers communicate to exchange data which 
is needed to continue further steps within the iteration. 
In this study, we present a performance vis-a-vis cost 
tradeoff of the parallel CG using different strategies of 
commu- nication on a variety of platforms, such as an 
HPC-optimized cluster, a built heterogeneous cluster and 
different instances types of Amazon Elastic Cloud 
Computing (EC2). Our HPC- optimized cluster consists of 
a total of 16 Intel Xeon cores connected by InfiniBand 
switch. The heterogeneous cluster is made of 
heterogeneous machines and heterogeneous Ethernet 
connectivity. We used three types of Amazon Elastic 
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Compute Cloud  instances  which  are  representative of  
infrastructures that can be used for HPC applications: 
Standard Large In- stance, High CPU Extra Large Instance, 
and Cluster Compute Quadruple Extra Large Instance. 
Several applications were evaluated using a cloud 
computing infrastructure ( [8], [16], [17], [18], [19]), 
however, to our knowledge our work is the first attempt to 
evaluate the CG method in a cloud computing environment 
and to analyze and compare its performance and cost on 
different commodity clusters. Our study reveals that the 
cloud computing could be a better choice for high 
performance applications than commodity clusters when 
virtual instances specifications are chosen carefully 
according to the application characteristics; i.e., depending 
on whether the application to be deployed is 
communication-intensive and/or computing intensive and 
considering the ratio of communication to computation. 
The rest of the paper is structured as follows. Section II 
describes the CG method parallelization approach that we 
consider for the experiments. Section III overviews related 
works. 
The computing platforms under experiments are described 
in section IV. In section V, we evaluate the performance of 
the CG parallel application running on different platforms 
and discuss the obtained results. Section VI analyzes the 
tradeoff between the performance and the price cost of 
running a parallel CG. Section VII concludes the work. 

 

II.  PARALLEL COMPUTATION  

APPROACH Figure 1 shows a sequential execution of the 
CG method. 

We use data parallelism to distribute the load generated by 
the  following operations: matrix-vector multiplication 
(step 
8), vector-dot product (step 9 and step 13), scalar-vector 
multiplication and vector addition (step 10 and step 14), 
and scalar-vector multiplication and vector subtraction 
(step 11). The number of non-zeros in the matrix A is 
distributed equally over the available number of computing 
workers for load balancing purpose. Vectors are distributed 
based on the number of rows of the local matrix on each 
computing worker. we use the master-worker model for 
the CG distribution. When the distributed CG runs, one of 
the cores of the Cloud instances is selected at random as 
the master and other computing cores are selected as 
associate workers to perform in parallel the CG’s partitions, 
which are assigned by the master core. A core here is 
defined as the smallest processing unit that is allocated to 
an application. A core could be a context, a core or a 
processor of a Cloud instance which consists of multiple 
cores. Cloud cores are connected via a network link whose 
speed and load dictate the speed of the communication 
processing when 
data is transmitted between nodes. Upon starting the 
parallel CG execution, the master divides the matrix into 
among the computing workers which perform local 
operations on local parts. The conditions of the 
communication link between the master and each 
computing worker, and among the computing workers and 
the existing computing power of each computing worker, 
all participate to the performance of the parallel CG. A 
communication channel depicts the time needed for data to 
travel over the connection connecting the master worker to 
a computing worker and the computing workers to each 
others. A computing power depicts the time needed by the 
computing worker to process the task assigned by the 
master. Each computing worker in the system has a 
computing capacity. 
In order for each local computing worker to achieve its 
local computation of step 8, the whole vector p is needed 
by all the computing workers. However, each computing 
worker has only a local part of the vector p. Therefore a 
communication of the local vector p from each computing 
worker to all other computing workers is necessary in 
every iteration of the CG algorithm. We implemented 2 
communications approaches, widely used by the parallel 
computing community: 
• Broadcast-based strategy. In this approach, every 
computing 
worker communicates a vector p of size li (1 ≤ i ≤ N) to the 
N computing workers participating in the parallel 
computation of the CG method. li is the size of the vector p 
whose number of elements is equal to the number of rows 
of the local matrix associated to the computing worker i, 
following a load-balanced distribution of the matrix A. The 
broadcast-approach is simple to design and implement for 
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the CG method. However, communication cost will 
increase drastically with the size of vector p and the 
number of computing workers, posing scalability issues. 
The total communication cost from a computing worker i 
to broadcast the vector p during the execution of the 
parallel CG method is as follows: 
 

 
Where TBcast(li) is the time needed to broadcast the 
vector p of size li from a computing worker to N – 1 
computing workers, and kmax is the maximum number of 
iterations needed at the completion of the parallel 
execution of the CG. 
• Overlap-based strategy. In this approach, the parallel CG 
method is  designed in  a  way that the  communication of  
the  vector  p is  overlapped  with  the  local  matrix- vector 
multiplication of the step 8. We chose the ring- based 
approach to design and implement the overlap- based CG 
method. A complete description of the overlap- based 
approach and analysis of its performance vis-a-vis the 
broadcast-based approach can be found in [14]. The 
overlap-based approach aims to hide the communication 
by communicating asynchronously with other computing 
workers while the local computation is taking place. 
However, in case that the local computation of the matrix- 
vector multiplication takes less time than communicating 
the vector p, then a waiting time is generated on the 
computing worker whose local computation has com- 
pleted before receiving the  chunk of  p to  work with. The 
communication cost of the parallel CG method is as 
follows: 
 

 
The best scenario is when T (W ait) = 0 

III.  RELATED WORKS 

Reference [5] deployed two parallel applications on Ama- 
zon EC2: the classification of gene expression data and the 
functional magnetic resonance imaging (MRI) workflows 
used in brain analysis. Both applications involve 
computation and communication. Two types of Amazon 
instances were uses: the standard small instance type and 
the standard medium instance  type.  The  first  application  
performs  better  in  a small  type  than  in  a  medium  type,  
in  particular  because the application is designed as single-
threaded processes and consequently did not get benefit 
from the multi-core feature of the medium type. The paper 
concludes that the cost of running  the  MRI  application  
when  increasing  the  number of Cloud nodes is subdued 
by the significant reduction in application  makespan.  
Reference  [8]  looks  at  the  perfor- mance and the cost of 

applications in the areas of climate, material-science, 
fusion, accelerator modeling, astrophysics, and quantum 
chromodynamics. Amazon EC2 shows a lower 
performance than other two commodity clusters under 
study. Reference [16] examines the performance of 
running coupled atmosphere-ocean climate models on 
Amazon EC2, using small, medium and large standard and 
high-cpu instance types. Reference [18]  compares the  
performance and  the  cost  of the bioinformatics 
application (WCD) between Amazon EC2, using the large 
instance type, and two commodity clusters. WCD is 
characterized by generating more computation than 
communication as the data size grows. The performance 
and the  cost  of  running  the  Montage  workflow  are  
examined by reference [19]. Other applications, such as 
NAMD, a molecular dynamics application, and NQueens, 
a backtracking search problem, were evaluated by 
reference [17]. 

IV.  EXPERIMENTAL TESTBED 

In this section, we describe the different platforms we use 
for our experiments. These platforms are representative of 
different categories of platforms available to High 
Performance Computing community. From each platform, 
we use 16 cores to deploy and run our applications: the 
broadcast-based par- allel CG method, the overlap-based 
parallel CG method and the NPB3.2.1 version of the NAS 
parallel benchmark. 

A. Amazon Cloud Computing 
Amazon Elastic Cloud Computing (EC2) [20] is probably 
one of the most well known cloud computing 
infrastructures which implement Infrastructure As A 
Service (IAAS) cloud [21].  EC2  exposes  to  users  an  
Application  Programming 

EX P E R I M E N TA L TE S T B E D : AM A Z O N EL A S T I C CL 
O U D CO M P U T I N G (EC2) 

 

Instance Type Memory 

 

Number 

  

Number  of  
EC2 

 
   

Number 

 
  

 

Standard Large 7.5 GB 2 2 8 
High-CPU  Extra 

Large 
7 GB 8 2.5 2 

Cluster  Compute 
Quadruple  Extra 

Large 

23 GB 2 x Intel 
Xeon X5570, 

quad- core 
Ne- halem 

architec- ture 

4.19 2 

 
Interface which allows the deployment of cluster and Grid 
environments and the deployment of parallel applications. 
Amazon provides an  amount of  CPU  per  hour,  no  
matter what the underlying hardware is. It is based on the 
utility computing model [22]. One EC2 Compute Unit 
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provides the equivalent CPU capacity of a 1.0-1.2 GHz 
2007 Opteron or 
2007 Xeon processor [23]. This is also the equivalent to an 
early-2006 1.7 GHz Xeon processor. We chose 3 different 
types of instances of the EC2 that are representative to run 
distributed applications. In amazon, a core is a virtual core. 
Table I shows the different types of instances which are 
used in our experiments. We use US East (Virginia) 
Amazon AWS region. 
We use the Sun N1 Grid Engine as an engine to dispatch 
jobs to the virtual cores of the Amazon EC2. Our parallel 
CG method as well as NAS use Message Passing Interface 
(MPI) [24]. We use the StarCluster cluster-computing 
toolkit [25] which is developed by the Massachusetts 
Institute of Technology (MIT) group. StarCluster uses the 
API of the Amazon EC2 to build, configure and manage 
clusters of virtual cores. We use version 0.93.1 of the 
toolkit. 
B. Heterogeneous Cluster 
To analyze the performance and the cost of the parallel CG 
method on a heterogeneous cluster, we conduct the 
experiments on a set of heterogeneous machines made of 2 
AMD Opteron processors and 7 Intel Xeon processors. 
The AMD Opteron Processor model is 252 with 2.59 GHz 
dual CPU single core. Each core has 1MB of cache, and 2 
GB of memory. 5 out of the 7 Intel machines have Intel 
Xeon CPU of 
3.06 GHz, dual CPU, dual core. Each core has 512KB of 
cache and 4GB of memory. Let us denote those Intel 
machines by Intel Type1. 1 out of 7 Intel machines has 
Intel Xeon CPU of 
3.06 GHz with dual CPU, single core. Each core has 512 
KB of cache and 4 GB of memory. Let us denote this Intel 
machine by Intel Type2. The AMD Opteron machines 
along with those 
6 Intel machines described earlier are connected to each 
others via one hop 1Gb/second switch, those are connected 
to another Intel machine located in the shared LAN 
network via two-hop connectivity of 1 Gb/s. That Intel 
machine has Xeon CPU of 
3.0 GHz and it has a single CPU, dual core. Let us denote 
that 

TABLE II HE T E RO G E N E O U S CL U S T E R TE S T B E D 

Computing Worker Machine 

 CPU Type Memory 
Size Cache Size 

CW0 and CW1 
AMD 

Opteron 
Processor 

2GB 1MB 

CW2 and CW3 
AMD 

Opteron 
Processor 

2GB 1MB 

CW4 and CW5 Intel Type 1 4GB 512KB 

CW6 and CW7 Intel Type 1 4GB 512KB 

CW8 and CW9 Intel Type 1 4GB 512KB 

CW10 Intel Type 3 4GB 512KB 

CW11 and 
CW12 

Intel Type 1 4GB 512KB 

CW13 and 
CW14 

Intel Type 1 4GB 512KB 

CW15 Intel Type 2 4GB 512KB 
 
Intel machine by Intel Type3. Each core has 4MB of cache 
and 2GB of memory. The Linux Suse 3.1.0. was used. 16 
computing workers (cores) from the heterogeneous 
platform were used to run the experiments. The workers 
are mapped to their corresponding machines as shown in 
Table II. Figure 2 shows the performance of the machines 
in terms of MFlops, measured by running the class C of the 
NAS benchmark on the platform. 
 

 

Fig. 2.   Computing performance of our experimental heterogeneous 
platform. 

C. HPC-Optimized Cluster 
Our HPC-Optimized cluster consists of 2 Xeon Intel Quad 
Core 5355 machines with 2.66GHz CPUs. Each machine 
has a dual CPU. Each core has 4MB of cache, 1GB of 
memory, 
2.66 x 4GFLOPS of peak performance. The machines are 
connected using Qlogic 9120 InfiniBand (IB) switch. The 
operating system used on the machines is Red Hat 
Enterprise Linux Server release 5.2. The experiments are 
done using the parallel capabilities of a single multicore 
machine, and using a Cloud of machines. Message Passing 
Interface (Open MPI version 1.3.2) library is used for 
implementing the parallel CG. 
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V.  PERFORMANCE EVALUATION 

In this section, we evaluate efficiency of the parallel CG 
method for broadcast-based implementation and overlap-
based implementation when running on the different 
platforms under experiments. We also evaluate the 
performance of the NAS 
 
A. Experimental Runs 
The experiments use a set of 16 cores running 16 
computing workers. The total execution time of the 
parallel CG is measured on each platform under 
experiments. The relative runtime of the parallel CG on the 
Amazon EC2 platforms and the heterogeneous platform 
compared to an HPC-optimized cluster  is  measured.  In  
our  experiments, one  core  acts  as a master which 
distributes the tasks to the other cores that we call 
computing workers. The total execution time for the 
parallel CG is the elapsed time when master starts 
distributing the  matrix till  the  final results are  received 
by  the  master from the computing workers. The 
gettimeofday function is used to compute the elapsed time 
on the master. The average communication time involved 
in the parallel CG method is computed  by  computing  the  
total  communication  time  on each computing worker 
divided by the number of computing workers involved in 
the computation. In all our experiments, each experiment 
was run 100 times and the average was computed. The 
experiments use different matrix sizes of the matrix A. 
There is a total of 5 experiments or runs as shown in Table 
III to assess the impact of increasing matrix size to the 
performance of the parallel CG on the platforms under 
experiments. The matrix sizes are the same used by the 
NAS parallel CG benchmark. We also use the same 
sparsity patterns as implemented by NAS. In each run on a 
platform, the total execution time of the parallel CG is 
measured by vertically scaling the matrix size. On the 
heterogeneous platform, each run has executed using a 
load-balanced approach. The load- balanced approach 
takes into consideration the heterogeneity of the machines 
in the heterogeneous cluster. It computes dynamically the 
corresponding load; i.e., the number of non- zero elements 
of the matrix A to be allocated to each machine of the 
cluster based on its available computing power. 
In order to know the relative speed of the CG method on 
each platform compared to the HPC-optimized cluster, we 
calculate the ratio of the total execution time of the CG 
method on the platform over its total execution time on the 
HPC- optimize cluster; with increasing problem size. 
 
B. Experimental Results Analysis 

When running our MPI-based implementation of the 
parallel CG method to Amazon cloud computing, we had 
the following requirements. These requirements have an 
impact on the usability of a cloud infrastructure to deploy 

and run distributed applications based on MPI. 
a) Building a virtual cluster within the Cloud. To run a 
parallel CG on the allocated instances, it is needed to build 
a cluster out of the number of instances used to run the 
parallel CG. A cluster should be configured and 
consequently managed. Some instances can be configured 
as administration nodes while others are configured as 
computing  nodes.  Amazon  provides  API  tools  which 
serve as a client interface to launch and destroy instances, 
to  read  and  write  files within  the  instances,  etc.  We 
use the StarCluster [25] software which automatically 
configures a cluster out of Cloud instances. To configure 
and manage the cluster, Star Cluster uses an endpoint of 
communication defined by Amazon [27] depending on  the  
region  in  which  instances are  running. In  our 
experiments the endpoint of communication is ec2.us − 
east − 1.amazonaws.com for US East (Northern Vir- 
ginia) Region. 
b)  Installation of the development tools in the Cloud. To 
run a CG in the cloud, it is needed to install development 
tools, such as MPI and gcc libraries for compiling and 
running CG. The StarCluster tools deploys an image which 
includes all the necessary tools to compile, dis- patch an 
run an MPI-based program. 
c)  Computing workers and user access to the virtual 
cluster file system. The cluster should have a shared file 
sys- tem between the cluster nodes to run our parallel CG 
implemented by using MPI [24] an to access files as a 
result of the parallel CG execution. We use commands of 
StarCluster tools to copy files, resultant from the CG 
parallel execution, from the virtual cluster to our local 
machines and analyze the results. 
At the platform level, although it is obvious that the 
Amazon EC2 cluster compute quadruple extra large 
instance type will perform better than the Amazon standard, 
and the Amazon high-cpu extra large instance type, due to 
a higher network bandwidth assigned to the cluster 
compute [20] and more dedicated CPU cycles [28], as 
shown in Figures 3, 4, and 
5.  However,  our  experiments  show  the  performance  
gain that can be obtained by the CG method when 
considering the performance of the platforms under 
experiments for the broadcast-based approach and the 
overlap-based approach. For the broadcast-based approach, 
the HPC-optimized cluster has the best performance, 
followed by the Amazon cluster com- pute for small 
problem sizes (Class S, Class W and Class A). This is due 
to the small percentage of computation compared to the 
communication that should be done for small problem 
sizes. For instance, Figure 6, for the class S, shows that 
more than 70% of the total execution time is spent in 
communication by the Amazon cluster compute. However, 
the Amazon cluster compute performs better than HPC-
optimized cluster for big problem sizes (Class B and Class 
C), where the percentage of computation to 
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communication increases and thus the cluster compute 
computing capabilities are used, as shown in Figure 
7 for the Class C problem size for example. Consequently 
a more computing power in the Amazon cluster compute 
does not give a boost to performance for small problem 
sizes, this is due to the Amazon cluster compute network 
being shared with other applications and users by 
virtualization. Except for the Amazon cluster compute, 
commodity clusters are performing better than the Amazon 
cloud instances under study for the broadcast and overlap 
as shown in Figures 3, 4, and 5. However, for NAS, the 
high-cpu extra large is performing better than the 
heterogeneous for large problem sizes, as the percentage of 
computation increases and thus NAS benefits from a larger 
computing power provided by the high-cpu extra large 
compared to our heterogeneous commodity cluster. For the 
overlap approach, the Amazon cluster compute shows the 
best performance as shown in Figures 4 and 8. 
Figure 8 shows that the performance gap is bigger for 
small matrix sizes than larger matrix sizes, showing that 
platform types other than HPC-optimized clusters starts to 
perform for bigger matrix sizes than smaller matrix sizes. 
For instance, the HPC-optimized cluster is 195.3 times 
faster than the standard large instance type for NAS 
benchmark for class S matrix size. It is 131.4 times faster 
for the broadcast-based approach, and it is 55.7 times 
faster for the overlap-based approach. Our HPC-Optimized 
cluster performs 82.2 faster than the high-CPU extra large 
for the NAS parallel benchmark, 
78.7 faster for the broadcast-based approach, and 62.7 
faster for the overlap-based approach. Our HPC-optimized 
cluster performs  2  times  better  than  the  cluster  
compute  quadru- ple extra large performs for the 
broadcast-based approach. However, the cluster compute 
quadruple extra large performs better for the overlap-based 
approach (2.5 faster) and for the NAS parallel benchmark 
(1.67 faster). The performance gap between our HPC-
optimized cluster and the other Amazon instance types 
decrease with increasing matrix sizes, showing that the 
Amazon cloud computing becomes more interesting for 
running a parallel CG, when more computation is involved 
with  larger  matrix sizes.  This  is  because for  small  
matrix sizes, more communication is involved than 
computation when running a parallel CG, making cloud 
computing less effective as shown in Figures 9, 10, and 11, 
in particular for the broadcast-based approach. 

VI.  COST EVALUATION 

Table IV shows the price that is charged per hour of execu- 
tion. For our HPC-optimized cluster, we make an 
assumption of  a  charging rate of  US$2.5 per  core per  
hour [29]. For our built heterogeneous cluster, we make an 
assumption of US$0.6 per core per hour. The objective 

here is not to make a comparison of prices but to evaluate 
the tradeoff between the execution of running a parallel 
CG method and NAS benchmark and their corresponding 
costs on the platforms under study. This is with increasing 
matrix size. To compute the total runtime cost, TC ost , we 
use the following formula: 
TC ost  = TRun ∗ N  ∗  (price/(60 ∗  60)) (3) 
where, TRun is the total runtime of the parallel application, 
N  is the number of cores used in the parallel computation, 
and price is the price of use per core per hour. 

 

Fig. 3. Total makespan of the broadcast-based approach with 
increasing problem size running on different platforms. 

 

Fig.  4. Total  makespan  of  the  overlap-based approach  with  
increasing problem size. 
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Fig. 5.    Total makespan of the NAS parallel benchmark with increasing 
problem size running on different platforms. 

 

Fig. 6.     Distribution of communication and computation for the Class S 
problem size running on different platforms. 

Figures 13, 14, and 15 show that the total runtime cost as a 
function of total execution time and increasing problem 
size. For all cases, the cost increases as the problem size 
increases, due to the linear relationship between problem 
size and total execution time within the same platform. For 
all cases, the Amazon cluster compute instance shows the 
best cost to performance relationship for all problem sizes, 
except for the Class S problem size and for the broadcast-
based approach, where the use of an HPC-optimized 
cluster is less costly than Amazon cluster compute. These 
results show it is more cost- effective  to  run  a  parallel  
CG  on  an  HPC-Cloud instance type.  The  performance 
of  a  parallel  CG  method  increases and the cost 

decreases by using a communication-computation overlap 
strategy. For instance, the total execution time of the 
overlap-based parallel CG is 1,52 versus 2.33 seconds of 
the broadcast-based approach for the Class C matrix size, 
while the corresponding cost is 0.017 versus 0.011. 

 

Fig. 7. Distribution of communication and computation for the Class 
C problem size running on different platforms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.    Relative Runtime of the parallel CG method and NAS on 
different platforms to the runtime on HPC-optimized cluster 
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Fig. 9.   Percentage of Communication and computation time with 
increasing matrix size for the broadcast-based approach and the overlap-

based approach 

 

Fig. 10.   Percentage of communication and computation time with 
increasing matrix size for the broadcast-based approach and the overlap-

based approach. 

 

Fig. 11.   Percentage of communication and computation time with 
increasing matrix size for the broadcast-based approach and the overlap-

based approach 

 

Fig. 12.   Percentage of communication and computation time with 
increasing matrix size for the broadcast-based approach and the overlap-

based approach. 

TABLE IV CO S T P E R US E 

Platform Type Price 
per Hour (US$) 

Number 
of Cores or In- 
stances Used 

HPC-Optimized 
cluster 

2.5    per 
core 

2 

Built 
heterogeneous cluster 

0.6    per 
core 8 

Amazon EC2 
Standard    Large instance 

type 

0.34  per 
instance 8 

Amazon       EC2 
High-CPU Extra Large 

instance type 

0.68  per 
instance 2 

Amazon       EC2 
Cluster Compute Quadruple 

Extra Large instance type 

1.3    per 
instance 2 

 

 

Fig. 13.   Total execution cost of the broadcast-based approach for the 
parallel CG on different platforms with increasing matrix size. 
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Fig. 14.    Total execution cost of the overlap-based approach for the 
parallel CG on different platforms with increasing matrix size. 

 

 

Fig.  15. Total  execution cost  of  NAS  parallel  benchmark on  
different platforms with increasing matrix size 

VII.  CONCLUSION 

In this work, we study the tradeoffs between the perfor- 
mance and the cost of a parallel CG application on 
different cluster types, ranging from a commodity 
heterogeneous clus- ter, to an HPC-optimized cluster to 
different cloud instance types including HPC-cloud 
instance type. We used the Ama- zon Cloud as a Cloud 
reference platform. We experimented with two versions of 
a parallel CG, one based on a broadcast approach strategy 
for the inter-processors communications and one based on 
a communication-computation overlap strategy using the 
ring approach. We also experimented with the NAS CG 

benchmark as it is widely used as a reference by the 
scientific community. Our results show that the HPC-
Cloud instance type performs the best results with 
increasing matrix size. In addition, the performance of the 
parallel CG increases as the cost decreases compared to the 
other platforms under study. Other cloud instance types 
result in a bigger execution time and a bigger cost 
compared to the HPC-Cloud instance type. Our results 
show that, on those cloud types, a big percentage of the 
CG method total execution time was spent in 
communication. This is due to the virtualization 
mechanisms and the cloud network being shared by 
different applications. 
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