
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012 
 

 
 

84 

Manuscript received November 5, 2012 
Manuscript revised November 20, 2012 

A Modified Congestion Control Algorithm for Evaluating High 
BDP Networks 

Ehab Aziz Khalil 
  

Dept. of Computer Science & Engineering Faculty of Electronic Engineering (Minufiya University) 
 

Summary 
It is well known that the TCP congestion control algorithm has 
been remarkably successful in improving the current TCP/IP 
function better and efficiently. However, it can perform poorly in 
networks with high Bandwidth Delay Product (BDP) paths. This 
paper presents modification to a congestion control algorithm 
that may help the TCP better utilize the bandwidth provided by 
huge bandwidth long delay links. It also presents results to show  
a comparison of the original algorithm. 
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1. Introduction 

Today as well as tomorrow the main problem in the design 
of networks is the development of congestion control 
algorithms. Conventional congestion control algorithms 
were deployed for two principle reasons: the first one is to 
ensure avoidance of network congestion collapse [1], [2]; 
and second one is to ensure a degree of network fairness. 
Roughly speaking, network fairness refers to the situation 
whereby a data source receives a fair share of available 
bandwidth, whereas congestion collapse refers to the 
situation whereas an increase in network load results in a 
decrease of useful work done by the network (usually due 
to retransmission of data). Attempts to deal with network 
congestion have resulted in the widely applied 
transmission control protocol [3]. 
While the current TCP congestion control algorithm has 
proved remarkably durable, it is likely to be less effective 
on next generation networks featuring gigabit speed 
connectivity and heterogeneous traffic and sources. These 
considerations have led to widespread acceptance that new 
congestion control algorithms must be developed to 
accompany the realization of next generation systems and 
perhaps also to better exploit the resources of existing 
networks [4].    
In recent years, several more aggressive versions of TCP 
have been proposed [5-20], and there are some researches 
investigate the congestion control and long delay 
bandwidth product such as in [21-30],  have been 
published and many are still in progress, all of them 
investigate and discuss the congestion control mechanisms 

in the Internet which consists of the congestion window 
algorithms of TCP, running at the end-systems, and Active 
Queue Management (AQM) algorithm at routers, seeking 
to obtain high network utilization, small amounts of 
queuing delay, and some degree of fairness among users. 
This paper presents a comparison performance evaluation 
of a modified TCP congestion algorithm [19],[20]. 

2. Background and Motivation 

It is well known that network congestion control occurs 
when too many sources attempt to send data at too high 
rates. At the sender end, this is detected by packet loss. 
Due to congestion, the network experiences large queue 
delays and consequently the sender must retransmissions in 
order to compensate for the lost packets. Hence the 
average transmission capacity of the upstream routers is 
reduced. A TCP connection control its transmission rate by 
limiting its number of unacknowledged segments; the TCP 
window size W. TCP congestion control is based on 
dynamic window adjustment. The TCP connection is 
begins in slow start phase the congestion window is 
doubled every RTT until the window size reaches slow-
start threshold. After this threshold, the window is 
increased at a much slower rate of about one packet each  
RTT. The window cannot exceed a maximum threshold 
size that is advertised by the receiver. If there is a packet 
loss then the threshold drops to half of the present value 
and the window size drops to the one Maximum Segment 
Size (MSS). A congestion avoidance mechanism maintains 
the network at an operating point of low delay and high 
throughput.  
However, there are four basic congestion algorithms that 
should be included in any modern implementation of TCP, 
these algorithms are: Slow Start, Congestion Avoidance, 
Fast Retransmit, and Fast Recovery [15]. The last two 
algorithms were developed to overcome the short comings 
of earlier implementations, like TCP Tahoe [31], where 
TCP Tahoe was getting into the slow start phase every 
time a packet was lost and thus valuable bandwidth was 
wasted and the slow start algorithm is used to gradually 
increase the size of the TCP congestion window. It 
operates by observing that the rate at which  new packets 
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should be injected into the network is the rate at which the 
acknowledgments are returned by the other end. 
 Indeed, a modern TCP implementation that includes the 
above four algorithms is known as TCP Reno which is the 
dominant TCP version. J.C. Hoe [32] modified the Reno 
version of TCP to improve the start up behavior of TCP 
congestion control scheme. These improvements include 
finding the appropriate initial threshold window (ssthresh) 
value to minimize the number of packets lost during the 
start up period and creating a more aggressive fast 
retransmit algorithm to recover from multiple packet losses 
without waiting unnecessarily for the retransmission timer 
to expire. We have to mention here that the TCP Reno is 
like TCP Tahoe except that if the source receives three 
"duplicate" Acks, it consider this indicative of transient 
buffer overflow rather than congestion, and does the 
following: (1) it immediately (i.e., without waiting for 
timeout) resends the data requested in the Ack; this is 
called fast retransmit. (2) it sets the congestion windows 
and slow start threshold to half the previous congestion 
window (i.e., avoids the slow start phase) this is called fast 
recovery. The two variable congestion window (CWND) 
and slow start threshold (ssthresh), are used to throttle the 
TCP input rates in order to much the network available 
bandwidth. All these congestion control algorithms exploit 
the Additive Increase Multiplication Decrease (AIMD) 
paradigm, which additively increases the CWND to grab 
the available bandwidth and suddenly decreases the 
CWND when the network capacity is hit and congestion is 
experienced via segment losses, i.e., timeout or duplicate 
acknowledgments. AIMD algorithms ensure network 
stability but they don't guarantee fair sheering of network 
resources [33],[34],[35]. The next section will highlight 
the comparison of different versions of TCP. 

2.1- Swift Start Algorithm 

Swift Start is a new congestion control algorithm was 
proposed and designed by BBN Technologies [36] to 
increase the performance of TCP over high delay-
bandwidth product networks by improving its start up. 
Swift Start tries to solve the congestion control problems 
by using packet pair and pacing algorithms together. 
As known that the traditional packet pair algorithm has a 
problem in which it assumes that the ACK path does not 
affect the delay between ACKs. But both ACKs may be 
subjected to different queuing delays in their path, which 
may causes an over or under estimate of the bottleneck 
capacity. However, to avoid congestion due to over 
estimation the Swift Start uses only a fraction of the 
calculated bandwidth; this fraction is determined by a 
variable α which indicates the rates between 1 and 8.   
The following sub-section presents the propose 
modification in packet pair algorithm to avoid the 

mentioned defects in traditional packet pair, and use the 
modification packet pair algorithm in the Swift Start. 

2.2- Modification Swift Start Algorithm [20] 

The objective of this modification is to avoid error sources 
in the traditional packet pair algorithm. However the idea 
behind that is instead of time depending on the interval 
between the acknowledgments that may cause errors, the 
time between the original messages will be calculated by 
the receiver when they arrive it, and then the receiver sends 
this information to the source when acknowledging it. The 
sender sends its data in form of packet pairs, and identifies 
them by First/Second (F/S) flag. When the receiver 
receives the first message, it will record its sequence 
number and its arrival time, and it will send the 
acknowledgment on this message normally according its 
setting. When it receives the second one, it will check 
whether it is the second for the recorded one or not, if it is 
the second for the recorded one, the receiver will calculate 
the interval ∆t between the arrival time of the second one 
and that of the first one:-  
          ∆t = t_seg1 – t_seg2         μ sec ….…. (1) 
 
Where:  t_seg1 and t_seg2 are the arrival time of the first 
and second segments respectively. However, when the 
receiver sends the acknowledgment for the second 
segment, it will insert the value of ∆t into the transport 
header option field. The sender’s TCP will extract ∆t from 
the header and calculate the available bit rate BW : 
 

BW = ∆t x SegSize    ………..……….. (2) 
 
Where:  SegSize is the length of the second segment. 
If the receiver uses the DACK technique, it will record the 
first segment arrival time and wait for 200 ms, when it 
receives the second one it will calculate ∆t and wait for 
new 200 ms, if it receives another packet pair it will 
calculate another ∆t, whenever it sends an 
acknowledgment, it will send ∆t in it.    

By this way the error sources are avoided and the 
estimated capacity is the actual capacity without neither 
over estimation nor under estimation. So it is not needed to 
use only a fraction of the capacity like the traditional Swift 
Start. 

2.3 –Motivation 

Swift Start faces many problems when combining with 
other techniques such Delayed Acknowledgment and 
acknowledgment compression.  

I- Effect of Delayed Acknowledgment (DACK) 
The majority of TCP receivers implement the delayed 
acknowledgment algorithm [37], [38] for reducing the 
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number of pure data less acknowledgment packets sent. A 
TCP receiver, which is using that algorithm, will only send 
acknowledgments for every other received segment. If no 
segment is received within a specific time, an ACK will 
send, (this time typically is 200 ms.). The algorithm will 
directly influence packet pair estimation, because the ACK 
is not sent promptly, but it may be delayed some time (200 
ms). If the second segment of the packet pair arrives within 
200 ms the receiver will send single ACK for the two 
segments instead of sending an ACK for each segment. 
Hence the sender can not make that estimation. 

II- Effect of Acknowledgment Compression [39], [40] 
       Router that supports acknowledgment compression 
will send only one ACK if it receives two consecutive ACK 
messages of a connection within small interval. This will 
also affect the Swift Start and cause it to falsely estimate 
the path capacity.  
   III-Effect of ACK Path 
       It is well known that the traditional packet pair 
algorithm has a problem in which it assumes that the ACK 
path does not affect the delay between ACKs. But both 
ACKs may be subjected to different queuing delays in their 
path, which may causes an over or under estimate of the 
bottleneck capacity. However, to avoid congestion due to 
over estimation the Swift Start uses only a fraction of the 
calculated bandwidth; this fraction is determined by a 
variable α which indicates the rates between 1 and 8.   

3- Slow Start over High BDP Networks 

As stated in TCP congestion control [13], the slow start 
and congestion avoidance algorithms must be used by a 
TCP sender to control the amount of outstanding data 
being injected into the network.  
To implement these algorithms, two variables are added to 
the TCP per-connection state.  The congestion window 
(CWND) is a sender-side limit on the amount of data the 
sender can transmit into the network before receiving an 
acknowledgment (ACK), while the receiver's advertised 
window (RWND) is a receiver-side limit on the amount of 
outstanding data.  The minimum of CWND and RWND 
governs data transmission.  Another state variable, the 
slow start threshold (ssthresh), is used to determine 
whether the slow start or congestion avoidance algorithm is 
used to control data transmission. When a new connection 
is established with a host, the congestion window is 
initialized to a value that is called Initial window (IW) 
which typically equals to one segment. Each time an 
acknowledgement (ACK) is received; the CWND is 
increased by one segment. So TCP increases the CWND by 
percentage of 1.5 to 2 each round trip time (RTT), The 
sender can transmit up to the minimum of the CWND and 
the advertised window “RWND”. When the congestion 

window reaches the ssthresh the congestion avoidance 
should starts to avoid occurrence of congestion. The 
congestion avoidance increases the CWND when receiving 
an acknowledge according to equation 3. 

CWND += SMSS*SMSS/CWND    ---   (3) 
Where SMSS  is the sender maximum segment size  
TCP uses slow start and congestion avoidance until the 
CWND reaches the capacity of the connection path, and an 
intermediate router will start discarding packets. Timeouts 
of these discarded packets informs the sender that its 
congestion window has gotten too large and congestion has 
been occurred. At this point TCP reset CWND to the IW, 
and the ssthresh is divided by two and the slow start 
algorithm starts again. 
Many other additions such as fast retransmit, fast 
recovery], the new Reno Modification to TCP fast 
recovery algorithm, and increasing TCP's initial window 
were added to TCP congestion control. 
The current implementations of Slow Start algorithm   are 
suitable for common link which has low-delay and modest-
bandwidth. Because it takes a small time to correctly 
estimate and begin transmitting data at the available 
capacity. While, over high delay-bandwidth product 
networks, it may take several seconds to complete the first 
slow start and estimate available path capacity.  
 Fig. 1 shows a network model used to illustrate the effect 
of Round Trip Time (RTT) on the connection time, using 
different RTTs and bottleneck bandwidth of 49.5 Mbps. 
Fig 2 shows the effect of RTT on the connection time, for a 
connection that transmit a 10 Mbytes file. Fig. 3 shows the 
bandwidth utilization for the same RTTs. 
 
 

  

Fig. 1   Network Model 

From Fig 2, 3, it is clear that as RTT increases the 
bandwidth utilization decreases and the connection time 
increases although there is a large amount of bandwidth is 
available. The second note shown in Fig 3 is that as the 
RTT increases the time to reach the maximum transfer rate 
increases. These are two problems in slow start over high 
delay bandwidth product connections. 
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Fig. 2   Effect of RTT on the TCP Connection Time 

 

Fig. 3   Effect of RTT on the TCP Transmission Rate 

The first problem is due to the fact that each RTT the slow 
start can not send greater than the minimum of CWND and 
RWND, the later one is limited to 65535 bytes because its 
advertised by the receiver in a 16 bit field. It can be 
overcome by using Window Scaling option in TCP. 
The second problem is the longer time to reach the 
maximum transfer rate, many algorithms was  proposed to 
overcome this problem such Increasing TCP's Initial 
Window, Fast TCP, TCP Fast Start, Explicit Control 
Protocol (XCP), High speed TCP, Quick-Start for TCP 
and IP [32] and Swift start for TCP. 

4- Simulation and Results 

We implement the Modified swift start model using Opnet 
modeler to compare its performance with that of the slow 

start in deferent network conditions of bandwidth and path 
delay, then we compare between them using single flow 
and multiple flow to show the effect of these flows on each 
other. 

4.1- Single Flow Low BDP Networks 

The network shown in Fig 1 was used to show the 
performance of Swift start TCP and compare it with Slow 
start using single flow the sender and the receiver. The 
sender uses FTP to send a 10 MB file to the receiver. The 
TCP parameters of both the sender and the receiver is  
shown in Table-1.  
The sender and the receiver  are connected to the routers 
with 100 Mbps Ethernet connections. both of the routers 
are CISCO 3640 with forwarding rate 5000 

Table-1 TCP Parameters of the Sender and Receiver 
Maximum Segment Size 1460 Bytes 

Receive Buffer 100000 Bytes 
Receive Buffer Usage Threshold 0 

Delayed ACK Mechanism Segment/Clock Based 
Maximum ACK Delay 0.200  Sec 

Slow-Start Initial Count 4 
Fast Retransmit Disabled 
Fast Recovery Disabled 

Window Scaling Disabled 
Selective ACK (SACK) Disabled 

Nagle's SWS Avoidance Disabled 
Karn's Algorithm Enabled 

Initial RTO 1.0 Sec 
Minimum RTO 0.5  Sec 
Maximum RTO 64  Sec 

RTT Gain 0.125 
Deviation Gain 0.25 

RTT Deviation Coefficient 4.0 
Persistence Timeout 1.0 Sec 

 
packets/second and memory size 265 MB. The two router 
are interconnected with point to point link  that link is used 
as a bottleneck  by changing its data rate , also the path 
delay is controlled using this link.  
Fig. 4 shows the congestion window for both slow start 
TCP and Modified swift start TCP when the bottleneck 
data rate is 1.5 Mbps (T1) and the path RTT is 0.11674 
second, which is low rate, low delay network. its clear that 
the modified swift start is faster and better than slow start 
TCP in estimating the path congestion window which is = 
22120 bytes after only one RTT , then  the packet pair is 
disabled and the slow start runs normally. The estimated 
congestion window is proportional to the link bandwidth 
and round trip time it can be calculated as follow:  
Assuming that  packet pair delay deference is D 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012 
 

 

88 

 

CWND = the amount of data that can be sent in RTT 
          = RTT * MSS / D 
Theoretically the packet pair delay deference is the frame 
length on the bottleneck link, so   
D = frame length /link rate 
    = (1460+20+7) * 8 / 1544000 = 0.007705 sec 
and RTT is measured for the first pair (RTT = 0.11674  sec 
)  so  CWND = 0.11674 * 1460 / 0.007705 = 22120.75 
bytes. We neglect the processing delay which may affect 
the value of D and so decrease CWND. The result in the 
simulation shows that the delay difference is 0.007772 sec 
and the CWND is 21929 bytes, these results very close to 
the mathematical results. 
In Fig. 4 also we note that the next value for the congestion 
window is 24849 bytes, because this window was 
calculated when receiving the ACK for the second pair, this 
pair was buffered in the network, so the round trip time for 
it was increased, the simulation results shows that RTT for 
the second pair is 0.13228 sec, and the delay between the 
first and second packet is the same 0.007772 sec. 

 

Fig-4.  Congestion Window for Slow Start TCP and Modified Swift Start 
TCP for BW = 1.5 Mbps and Path RTT= 0.11674  Sec 

Fig. 5-a and 5-b show the sent segment sequence number 
for this connection. it is shown that both algorithms start 
the connection by sending 4 segments, after 1 RTT (0. 
11674 sec) slow start send 6 segments with in the second 
RTT, while modified swift start send a large number of 
segments because of its large congestion window which is 
20722 bytes which is about 14 segments, these segments 
were paced along the second RTT, until the sender receives 
an other ACK that indicates the end of the second RTT and 
the beginning of the third RTT, at this time the pacing was 
stopped and the slow start was used to complete the 
connection.   
In Fig 5-a we note that after a certain time both algorithms 
reaches a constant transmission rate , we roughly calculate 
this rate as :  
Transmission rate = 187848 bytes / sec, 

Rate * RTT = 187848 * 0.343 = 64431, 
This is a proximately equal to the max RWND, 

 

Fig-5-a .  The Sent Segment Sequence Number for Slow Start TCP and 
Modified swift start TCP for BW = 1.5 Mbps and Path RTT= 0.11674 

Sec. 

 

Fig-5-b.  The Sent Segment Sequence Number for Slow Start TCP and 
Modified Swift Start TCP for BW = 1.5 Mbps and Path RTT= 0.11674 

Sec 

We also not that the modified swift start algorithm reaches 
this rate more faster than the slow start so it enhances the 
startup for the connection.  
Fig.6 shows the received sequence number at the receiver, 
combined with the sent sequence number from the sender, 
from this Figure we have two notes. The first is that for 
Modified swift start the sending  rate at the first and 
second RTT form the sender is equal to the to the receiving 
rate at the receiver this means no buffering in the routers, 
this is the objective of using pacing in connection to avoid 
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over flow in the routers buffers. then slow start also tries to 
avoid congestion by slowly  increasing the window each 
ACK, so it also tries to avoid congestion. The second note 
is that for slow start there are some idle intervals that is not 
used and so the network resources are wasted, this time 
wasting is avoided in modified swift start. 

 

Fig-6.  The Received Segment Sequence Number at the Receiver and the 
Sent Segment Sequence Number at the Sender for Slow Start TCP and 
Modified Swift Start TCP for BW = 1.5 Mbps and path RTT=0.11674  

Sec 

Fig. 7 shows the calculated RTT for both slow start and 
modified swift start, it is clear that the modified swift start 
quickly calculate the mean  RTT because it start sending 
data with a high rate faster that the former, which leads to 
more buffering in the routers so each segment RTT will 
increase. 

 

Fig-7. Calculated Mean RTT for Slow Start TCP and Modified Swift 
Start TCP for BW = 1.5 Mbps and Path RTT= 0.11674  Sec 

 

4.2- Low Bandwidth, Long Delay Networks 

We also test the modified swift start model on this 
connection with the same bandwidth but with longer delays 
to check the performance for long delay paths. for link 
delay 0.1 sec the first RTT was 0.31281 sec, the second 
RTT was 0.32836 sec, the first CWND was 58762 bytes 
and the second was 61683 bytes, Fig 8 shows the 
congestion window for this connection, its clear that the 
modified swift start is very faster than slow start takes in 
estimating the congestion window, Fig 9 shows the sent 
segment sequence number for RTT = 0.32836 Sec. 
Comparing between Fig.4 with Fig 8 and Fig.5 with Fig.9, 
we conclude that as RTT increased the difference between 
slow start and modified swift start increases. 

 

Fig-8.  Congestion Window for Slow Start TCP and Modified Swift Start 
TCP for BW = 1.5 Mbps and Path RTT= 0.32836 Sec 
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Fig- 9  .  The sent segment sequence number for Slow start TCP and 
Modified swift start TCP for BW = 1.5 Mbps and path RTT= 0.32836 

Sec 

For test the modified swift start on high bandwidth 
networks we use the same model in Fig. 1 with PPP link of 
rate OC1 (518400000 bps) and with different RTT. 
Table-2 shows the summary information for link 
bandwidth T1 and different delays. The table shows that as 
RTT increases the first estimated congestion window also 
increases and the connection time difference between slow 
start and modified swift start also increases which means 
the larger RTT the better performance of modified swift 
start. 

Table–2 Information for T1 Connection for  Bandwidth T1 and Different 
Link Delays 

Conn. 
Time diff. 

Second 
CWND 

First 
CWND RTT Link Delay 

0.0326 24849 21929 0.11674 0.0001 
0.0236 24300 21379 0.11381 0.0005 
0.0362 24488 21567 0.11481 0.001 
0.0893 25991 23070 0.12281 0.005 
0.0902 27869 24948 0.13281 0.01 
0.3697 42898 39977 0.21281 0.05 
0.8290 61683 58762 0.31281 0.1 
0.2451 99254 96333 0.51281 0.2 
1.0378 136824 133903 0.71281 0.3 
1.8887 174395 171474 0.91281 0.4 

26.0561 211966 209045 1.11281 0.5 
30.8050 249638 246719 1.31336 0.6 
35.9797 287107 284186 1.51281 0.7 
40.9113 324678 321757 1.71281 0.8 

 

4.3- High Bandwidth Networks 

First we check for small RTT to test low delay–high 
bandwidth networks. We check for RTT= 0. 07327 sec, 
Fig.10 shows the congestion window for this connection, 
we note the large congestion window which equals 462128 
bytes  and 539251 bytes which were estimated by  the 
modified swift start TCP.  

 

Fig-10.  Congestion Window for Slow Start TCP and Modified Swift 
Start TCP for BW = OC1 Mbps and Path RTT= 0.07327 Sec. 

This congestion window can be calculated as follow: 
CWND= RTT * MSS / D 

D = (1460+20+ 7) * 8 / 51840000 = 0.0002295 sec 
CWND = 0. 07327 * 1460 / 0.0002295 = 466168 bytes 

 
Fig.11 shows the sent sequence number for this connection, 
Fig.11 shows the effect of large congestion window on the 
traffic sent in the second RTT slow start transmits six 
segments only while modified swift start send a bout 44 
segments, that’s equal to the maximum RWIND. For long 
delay-high bandwidth networks we increase the link delay 
to achieve a longer RTT.   
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Fig- 11  .  The Sent Segment Sequence Number for Slow Start TCP and 
Modified Swift Start TCP for BW = OC1 Mbps and Path RTT= 0.07327 

Sec 

Table-3 summarizes the information for OC1 connection 
with different  RTT. The table show s that the modified 
swift start finished before the slow start TCP. 

Table–3  Information for OC1 Connection for  Bandwidth T1 and 
Different Link Delays 

Conn. 
Time diff. 

Second 
CWND 

First 
CWND RTT 

Link 
Delay 

0.281211 539251 462128 0.07327 0.0001 
0.282627 545091 467174 0.07407 0.0005 
0.229694 552391 473481 0.07507 0.001 
0.317579 610791 523939 0.08307 0.005 
0.284387 683791 587011 0.09307 0.01 
0.522022 1267791 1091587 0.17307 0.05 
0.873903 1997791 1722307 0.27307 0.01 
1.42374 3457791 2983747 0.47307 0.2 

2.024241 4917791 4245187 0.67307 0.3 
3.478777 6377791 5506627 0.87307 0.4 
26.86863 7837791 6768067 1.07307 0.5 
31.85851 9297791 8029507 1.27307 0.6 
36.81996 10757791 9290947 1.47307 0.7 
41.82369 12217791 10552387 1.67307 0.8 

5- Conclusions 

This paper presents modification to what is called a Swift 
Start congestion control algorithm that may help the TCP 
better utilize the bandwidth provided by huge bandwidth 
long delay links. It also presents results to show  a 
comparison of the original algorithm. 
However, the modified swift start algorithm combines 
three algorithms to enhance the connection start up, it uses 

packet pair to quickly estimate the available bandwidth and 
calculate the congestion window, then uses pacing to avoid 
overflowing the networking nodes that may occur  if this 
window sent in burst, and then uses slow start to try using 
the available buffers capacity on the networking nodes. 
The algorithm avoids the drawbacks of each algorithm by 
using all of them each in suitable time. It succeeded in 
enhancing the  start up of the connection even in low speed 
or moderate networks. 
Modified swift start maintains the core of current TCP 
implementations; it needs only simple modification to 
current TCP.  
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