
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

84

Manuscript received November 5, 2012
Manuscript revised November 20, 2012

A Modified Congestion Control Algorithm for Evaluating High
BDP Networks

Ehab Aziz Khalil

Dept. of Computer Science & Engineering Faculty of Electronic Engineering (Minufiya University)

Summary
It is well known that the TCP congestion control algorithm has
been remarkably successful in improving the current TCP/IP
function better and efficiently. However, it can perform poorly in
networks with high Bandwidth Delay Product (BDP) paths. This
paper presents modification to a congestion control algorithm
that may help the TCP better utilize the bandwidth provided by
huge bandwidth long delay links. It also presents results to show
a comparison of the original algorithm.
Key words:
TCP congestion control, Swift Start algorithm, round trip time,
high BDP, performance evaluation.

1. Introduction

Today as well as tomorrow the main problem in the design
of networks is the development of congestion control
algorithms. Conventional congestion control algorithms
were deployed for two principle reasons: the first one is to
ensure avoidance of network congestion collapse [1], [2];
and second one is to ensure a degree of network fairness.
Roughly speaking, network fairness refers to the situation
whereby a data source receives a fair share of available
bandwidth, whereas congestion collapse refers to the
situation whereas an increase in network load results in a
decrease of useful work done by the network (usually due
to retransmission of data). Attempts to deal with network
congestion have resulted in the widely applied
transmission control protocol [3].
While the current TCP congestion control algorithm has
proved remarkably durable, it is likely to be less effective
on next generation networks featuring gigabit speed
connectivity and heterogeneous traffic and sources. These
considerations have led to widespread acceptance that new
congestion control algorithms must be developed to
accompany the realization of next generation systems and
perhaps also to better exploit the resources of existing
networks [4].
In recent years, several more aggressive versions of TCP
have been proposed [5-20], and there are some researches
investigate the congestion control and long delay
bandwidth product such as in [21-30], have been
published and many are still in progress, all of them
investigate and discuss the congestion control mechanisms

in the Internet which consists of the congestion window
algorithms of TCP, running at the end-systems, and Active
Queue Management (AQM) algorithm at routers, seeking
to obtain high network utilization, small amounts of
queuing delay, and some degree of fairness among users.
This paper presents a comparison performance evaluation
of a modified TCP congestion algorithm [19],[20].

2. Background and Motivation

It is well known that network congestion control occurs
when too many sources attempt to send data at too high
rates. At the sender end, this is detected by packet loss.
Due to congestion, the network experiences large queue
delays and consequently the sender must retransmissions in
order to compensate for the lost packets. Hence the
average transmission capacity of the upstream routers is
reduced. A TCP connection control its transmission rate by
limiting its number of unacknowledged segments; the TCP
window size W. TCP congestion control is based on
dynamic window adjustment. The TCP connection is
begins in slow start phase the congestion window is
doubled every RTT until the window size reaches slow-
start threshold. After this threshold, the window is
increased at a much slower rate of about one packet each
RTT. The window cannot exceed a maximum threshold
size that is advertised by the receiver. If there is a packet
loss then the threshold drops to half of the present value
and the window size drops to the one Maximum Segment
Size (MSS). A congestion avoidance mechanism maintains
the network at an operating point of low delay and high
throughput.
However, there are four basic congestion algorithms that
should be included in any modern implementation of TCP,
these algorithms are: Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery [15]. The last two
algorithms were developed to overcome the short comings
of earlier implementations, like TCP Tahoe [31], where
TCP Tahoe was getting into the slow start phase every
time a packet was lost and thus valuable bandwidth was
wasted and the slow start algorithm is used to gradually
increase the size of the TCP congestion window. It
operates by observing that the rate at which new packets

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

85

should be injected into the network is the rate at which the
acknowledgments are returned by the other end.
 Indeed, a modern TCP implementation that includes the
above four algorithms is known as TCP Reno which is the
dominant TCP version. J.C. Hoe [32] modified the Reno
version of TCP to improve the start up behavior of TCP
congestion control scheme. These improvements include
finding the appropriate initial threshold window (ssthresh)
value to minimize the number of packets lost during the
start up period and creating a more aggressive fast
retransmit algorithm to recover from multiple packet losses
without waiting unnecessarily for the retransmission timer
to expire. We have to mention here that the TCP Reno is
like TCP Tahoe except that if the source receives three
"duplicate" Acks, it consider this indicative of transient
buffer overflow rather than congestion, and does the
following: (1) it immediately (i.e., without waiting for
timeout) resends the data requested in the Ack; this is
called fast retransmit. (2) it sets the congestion windows
and slow start threshold to half the previous congestion
window (i.e., avoids the slow start phase) this is called fast
recovery. The two variable congestion window (CWND)
and slow start threshold (ssthresh), are used to throttle the
TCP input rates in order to much the network available
bandwidth. All these congestion control algorithms exploit
the Additive Increase Multiplication Decrease (AIMD)
paradigm, which additively increases the CWND to grab
the available bandwidth and suddenly decreases the
CWND when the network capacity is hit and congestion is
experienced via segment losses, i.e., timeout or duplicate
acknowledgments. AIMD algorithms ensure network
stability but they don't guarantee fair sheering of network
resources [33],[34],[35]. The next section will highlight
the comparison of different versions of TCP.

2.1- Swift Start Algorithm

Swift Start is a new congestion control algorithm was
proposed and designed by BBN Technologies [36] to
increase the performance of TCP over high delay-
bandwidth product networks by improving its start up.
Swift Start tries to solve the congestion control problems
by using packet pair and pacing algorithms together.
As known that the traditional packet pair algorithm has a
problem in which it assumes that the ACK path does not
affect the delay between ACKs. But both ACKs may be
subjected to different queuing delays in their path, which
may causes an over or under estimate of the bottleneck
capacity. However, to avoid congestion due to over
estimation the Swift Start uses only a fraction of the
calculated bandwidth; this fraction is determined by a
variable α which indicates the rates between 1 and 8.
The following sub-section presents the propose
modification in packet pair algorithm to avoid the

mentioned defects in traditional packet pair, and use the
modification packet pair algorithm in the Swift Start.

2.2- Modification Swift Start Algorithm [20]

The objective of this modification is to avoid error sources
in the traditional packet pair algorithm. However the idea
behind that is instead of time depending on the interval
between the acknowledgments that may cause errors, the
time between the original messages will be calculated by
the receiver when they arrive it, and then the receiver sends
this information to the source when acknowledging it. The
sender sends its data in form of packet pairs, and identifies
them by First/Second (F/S) flag. When the receiver
receives the first message, it will record its sequence
number and its arrival time, and it will send the
acknowledgment on this message normally according its
setting. When it receives the second one, it will check
whether it is the second for the recorded one or not, if it is
the second for the recorded one, the receiver will calculate
the interval ∆t between the arrival time of the second one
and that of the first one:-
 ∆t = t_seg1 – t_seg2 μ sec ….…. (1)

Where: t_seg1 and t_seg2 are the arrival time of the first
and second segments respectively. However, when the
receiver sends the acknowledgment for the second
segment, it will insert the value of ∆t into the transport
header option field. The sender’s TCP will extract ∆t from
the header and calculate the available bit rate BW :

BW = ∆t x SegSize ………..……….. (2)

Where: SegSize is the length of the second segment.
If the receiver uses the DACK technique, it will record the
first segment arrival time and wait for 200 ms, when it
receives the second one it will calculate ∆t and wait for
new 200 ms, if it receives another packet pair it will
calculate another ∆t, whenever it sends an
acknowledgment, it will send ∆t in it.

By this way the error sources are avoided and the
estimated capacity is the actual capacity without neither
over estimation nor under estimation. So it is not needed to
use only a fraction of the capacity like the traditional Swift
Start.

2.3 –Motivation

Swift Start faces many problems when combining with
other techniques such Delayed Acknowledgment and
acknowledgment compression.

I- Effect of Delayed Acknowledgment (DACK)
The majority of TCP receivers implement the delayed
acknowledgment algorithm [37], [38] for reducing the

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

86

number of pure data less acknowledgment packets sent. A
TCP receiver, which is using that algorithm, will only send
acknowledgments for every other received segment. If no
segment is received within a specific time, an ACK will
send, (this time typically is 200 ms.). The algorithm will
directly influence packet pair estimation, because the ACK
is not sent promptly, but it may be delayed some time (200
ms). If the second segment of the packet pair arrives within
200 ms the receiver will send single ACK for the two
segments instead of sending an ACK for each segment.
Hence the sender can not make that estimation.

II- Effect of Acknowledgment Compression [39], [40]
 Router that supports acknowledgment compression
will send only one ACK if it receives two consecutive ACK
messages of a connection within small interval. This will
also affect the Swift Start and cause it to falsely estimate
the path capacity.
 III-Effect of ACK Path
 It is well known that the traditional packet pair
algorithm has a problem in which it assumes that the ACK
path does not affect the delay between ACKs. But both
ACKs may be subjected to different queuing delays in their
path, which may causes an over or under estimate of the
bottleneck capacity. However, to avoid congestion due to
over estimation the Swift Start uses only a fraction of the
calculated bandwidth; this fraction is determined by a
variable α which indicates the rates between 1 and 8.

3- Slow Start over High BDP Networks

As stated in TCP congestion control [13], the slow start
and congestion avoidance algorithms must be used by a
TCP sender to control the amount of outstanding data
being injected into the network.
To implement these algorithms, two variables are added to
the TCP per-connection state. The congestion window
(CWND) is a sender-side limit on the amount of data the
sender can transmit into the network before receiving an
acknowledgment (ACK), while the receiver's advertised
window (RWND) is a receiver-side limit on the amount of
outstanding data. The minimum of CWND and RWND
governs data transmission. Another state variable, the
slow start threshold (ssthresh), is used to determine
whether the slow start or congestion avoidance algorithm is
used to control data transmission. When a new connection
is established with a host, the congestion window is
initialized to a value that is called Initial window (IW)
which typically equals to one segment. Each time an
acknowledgement (ACK) is received; the CWND is
increased by one segment. So TCP increases the CWND by
percentage of 1.5 to 2 each round trip time (RTT), The
sender can transmit up to the minimum of the CWND and
the advertised window “RWND”. When the congestion

window reaches the ssthresh the congestion avoidance
should starts to avoid occurrence of congestion. The
congestion avoidance increases the CWND when receiving
an acknowledge according to equation 3.

CWND += SMSS*SMSS/CWND --- (3)
Where SMSS is the sender maximum segment size
TCP uses slow start and congestion avoidance until the
CWND reaches the capacity of the connection path, and an
intermediate router will start discarding packets. Timeouts
of these discarded packets informs the sender that its
congestion window has gotten too large and congestion has
been occurred. At this point TCP reset CWND to the IW,
and the ssthresh is divided by two and the slow start
algorithm starts again.
Many other additions such as fast retransmit, fast
recovery], the new Reno Modification to TCP fast
recovery algorithm, and increasing TCP's initial window
were added to TCP congestion control.
The current implementations of Slow Start algorithm are
suitable for common link which has low-delay and modest-
bandwidth. Because it takes a small time to correctly
estimate and begin transmitting data at the available
capacity. While, over high delay-bandwidth product
networks, it may take several seconds to complete the first
slow start and estimate available path capacity.
 Fig. 1 shows a network model used to illustrate the effect
of Round Trip Time (RTT) on the connection time, using
different RTTs and bottleneck bandwidth of 49.5 Mbps.
Fig 2 shows the effect of RTT on the connection time, for a
connection that transmit a 10 Mbytes file. Fig. 3 shows the
bandwidth utilization for the same RTTs.

Fig. 1 Network Model

From Fig 2, 3, it is clear that as RTT increases the
bandwidth utilization decreases and the connection time
increases although there is a large amount of bandwidth is
available. The second note shown in Fig 3 is that as the
RTT increases the time to reach the maximum transfer rate
increases. These are two problems in slow start over high
delay bandwidth product connections.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

87

Fig. 2 Effect of RTT on the TCP Connection Time

Fig. 3 Effect of RTT on the TCP Transmission Rate

The first problem is due to the fact that each RTT the slow
start can not send greater than the minimum of CWND and
RWND, the later one is limited to 65535 bytes because its
advertised by the receiver in a 16 bit field. It can be
overcome by using Window Scaling option in TCP.
The second problem is the longer time to reach the
maximum transfer rate, many algorithms was proposed to
overcome this problem such Increasing TCP's Initial
Window, Fast TCP, TCP Fast Start, Explicit Control
Protocol (XCP), High speed TCP, Quick-Start for TCP
and IP [32] and Swift start for TCP.

4- Simulation and Results

We implement the Modified swift start model using Opnet
modeler to compare its performance with that of the slow

start in deferent network conditions of bandwidth and path
delay, then we compare between them using single flow
and multiple flow to show the effect of these flows on each
other.

4.1- Single Flow Low BDP Networks

The network shown in Fig 1 was used to show the
performance of Swift start TCP and compare it with Slow
start using single flow the sender and the receiver. The
sender uses FTP to send a 10 MB file to the receiver. The
TCP parameters of both the sender and the receiver is
shown in Table-1.
The sender and the receiver are connected to the routers
with 100 Mbps Ethernet connections. both of the routers
are CISCO 3640 with forwarding rate 5000

Table-1 TCP Parameters of the Sender and Receiver
Maximum Segment Size 1460 Bytes

Receive Buffer 100000 Bytes
Receive Buffer Usage Threshold 0

Delayed ACK Mechanism Segment/Clock Based
Maximum ACK Delay 0.200 Sec

Slow-Start Initial Count 4
Fast Retransmit Disabled
Fast Recovery Disabled

Window Scaling Disabled
Selective ACK (SACK) Disabled

Nagle's SWS Avoidance Disabled
Karn's Algorithm Enabled

Initial RTO 1.0 Sec
Minimum RTO 0.5 Sec
Maximum RTO 64 Sec

RTT Gain 0.125
Deviation Gain 0.25

RTT Deviation Coefficient 4.0
Persistence Timeout 1.0 Sec

packets/second and memory size 265 MB. The two router
are interconnected with point to point link that link is used
as a bottleneck by changing its data rate , also the path
delay is controlled using this link.
Fig. 4 shows the congestion window for both slow start
TCP and Modified swift start TCP when the bottleneck
data rate is 1.5 Mbps (T1) and the path RTT is 0.11674
second, which is low rate, low delay network. its clear that
the modified swift start is faster and better than slow start
TCP in estimating the path congestion window which is =
22120 bytes after only one RTT , then the packet pair is
disabled and the slow start runs normally. The estimated
congestion window is proportional to the link bandwidth
and round trip time it can be calculated as follow:
Assuming that packet pair delay deference is D

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

88

CWND = the amount of data that can be sent in RTT
 = RTT * MSS / D
Theoretically the packet pair delay deference is the frame
length on the bottleneck link, so
D = frame length /link rate
 = (1460+20+7) * 8 / 1544000 = 0.007705 sec
and RTT is measured for the first pair (RTT = 0.11674 sec
) so CWND = 0.11674 * 1460 / 0.007705 = 22120.75
bytes. We neglect the processing delay which may affect
the value of D and so decrease CWND. The result in the
simulation shows that the delay difference is 0.007772 sec
and the CWND is 21929 bytes, these results very close to
the mathematical results.
In Fig. 4 also we note that the next value for the congestion
window is 24849 bytes, because this window was
calculated when receiving the ACK for the second pair, this
pair was buffered in the network, so the round trip time for
it was increased, the simulation results shows that RTT for
the second pair is 0.13228 sec, and the delay between the
first and second packet is the same 0.007772 sec.

Fig-4. Congestion Window for Slow Start TCP and Modified Swift Start
TCP for BW = 1.5 Mbps and Path RTT= 0.11674 Sec

Fig. 5-a and 5-b show the sent segment sequence number
for this connection. it is shown that both algorithms start
the connection by sending 4 segments, after 1 RTT (0.
11674 sec) slow start send 6 segments with in the second
RTT, while modified swift start send a large number of
segments because of its large congestion window which is
20722 bytes which is about 14 segments, these segments
were paced along the second RTT, until the sender receives
an other ACK that indicates the end of the second RTT and
the beginning of the third RTT, at this time the pacing was
stopped and the slow start was used to complete the
connection.
In Fig 5-a we note that after a certain time both algorithms
reaches a constant transmission rate , we roughly calculate
this rate as :
Transmission rate = 187848 bytes / sec,

Rate * RTT = 187848 * 0.343 = 64431,
This is a proximately equal to the max RWND,

Fig-5-a . The Sent Segment Sequence Number for Slow Start TCP and
Modified swift start TCP for BW = 1.5 Mbps and Path RTT= 0.11674

Sec.

Fig-5-b. The Sent Segment Sequence Number for Slow Start TCP and
Modified Swift Start TCP for BW = 1.5 Mbps and Path RTT= 0.11674

Sec

We also not that the modified swift start algorithm reaches
this rate more faster than the slow start so it enhances the
startup for the connection.
Fig.6 shows the received sequence number at the receiver,
combined with the sent sequence number from the sender,
from this Figure we have two notes. The first is that for
Modified swift start the sending rate at the first and
second RTT form the sender is equal to the to the receiving
rate at the receiver this means no buffering in the routers,
this is the objective of using pacing in connection to avoid

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

89

over flow in the routers buffers. then slow start also tries to
avoid congestion by slowly increasing the window each
ACK, so it also tries to avoid congestion. The second note
is that for slow start there are some idle intervals that is not
used and so the network resources are wasted, this time
wasting is avoided in modified swift start.

Fig-6. The Received Segment Sequence Number at the Receiver and the
Sent Segment Sequence Number at the Sender for Slow Start TCP and
Modified Swift Start TCP for BW = 1.5 Mbps and path RTT=0.11674

Sec

Fig. 7 shows the calculated RTT for both slow start and
modified swift start, it is clear that the modified swift start
quickly calculate the mean RTT because it start sending
data with a high rate faster that the former, which leads to
more buffering in the routers so each segment RTT will
increase.

Fig-7. Calculated Mean RTT for Slow Start TCP and Modified Swift
Start TCP for BW = 1.5 Mbps and Path RTT= 0.11674 Sec

4.2- Low Bandwidth, Long Delay Networks

We also test the modified swift start model on this
connection with the same bandwidth but with longer delays
to check the performance for long delay paths. for link
delay 0.1 sec the first RTT was 0.31281 sec, the second
RTT was 0.32836 sec, the first CWND was 58762 bytes
and the second was 61683 bytes, Fig 8 shows the
congestion window for this connection, its clear that the
modified swift start is very faster than slow start takes in
estimating the congestion window, Fig 9 shows the sent
segment sequence number for RTT = 0.32836 Sec.
Comparing between Fig.4 with Fig 8 and Fig.5 with Fig.9,
we conclude that as RTT increased the difference between
slow start and modified swift start increases.

Fig-8. Congestion Window for Slow Start TCP and Modified Swift Start
TCP for BW = 1.5 Mbps and Path RTT= 0.32836 Sec

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

90

Fig- 9 . The sent segment sequence number for Slow start TCP and
Modified swift start TCP for BW = 1.5 Mbps and path RTT= 0.32836

Sec

For test the modified swift start on high bandwidth
networks we use the same model in Fig. 1 with PPP link of
rate OC1 (518400000 bps) and with different RTT.
Table-2 shows the summary information for link
bandwidth T1 and different delays. The table shows that as
RTT increases the first estimated congestion window also
increases and the connection time difference between slow
start and modified swift start also increases which means
the larger RTT the better performance of modified swift
start.

Table–2 Information for T1 Connection for Bandwidth T1 and Different
Link Delays

Conn.
Time diff.

Second
CWND

First
CWND RTT Link Delay

0.0326 24849 21929 0.11674 0.0001
0.0236 24300 21379 0.11381 0.0005
0.0362 24488 21567 0.11481 0.001
0.0893 25991 23070 0.12281 0.005
0.0902 27869 24948 0.13281 0.01
0.3697 42898 39977 0.21281 0.05
0.8290 61683 58762 0.31281 0.1
0.2451 99254 96333 0.51281 0.2
1.0378 136824 133903 0.71281 0.3
1.8887 174395 171474 0.91281 0.4

26.0561 211966 209045 1.11281 0.5
30.8050 249638 246719 1.31336 0.6
35.9797 287107 284186 1.51281 0.7
40.9113 324678 321757 1.71281 0.8

4.3- High Bandwidth Networks

First we check for small RTT to test low delay–high
bandwidth networks. We check for RTT= 0. 07327 sec,
Fig.10 shows the congestion window for this connection,
we note the large congestion window which equals 462128
bytes and 539251 bytes which were estimated by the
modified swift start TCP.

Fig-10. Congestion Window for Slow Start TCP and Modified Swift
Start TCP for BW = OC1 Mbps and Path RTT= 0.07327 Sec.

This congestion window can be calculated as follow:
CWND= RTT * MSS / D

D = (1460+20+ 7) * 8 / 51840000 = 0.0002295 sec
CWND = 0. 07327 * 1460 / 0.0002295 = 466168 bytes

Fig.11 shows the sent sequence number for this connection,
Fig.11 shows the effect of large congestion window on the
traffic sent in the second RTT slow start transmits six
segments only while modified swift start send a bout 44
segments, that’s equal to the maximum RWIND. For long
delay-high bandwidth networks we increase the link delay
to achieve a longer RTT.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

91

Fig- 11 . The Sent Segment Sequence Number for Slow Start TCP and
Modified Swift Start TCP for BW = OC1 Mbps and Path RTT= 0.07327

Sec

Table-3 summarizes the information for OC1 connection
with different RTT. The table show s that the modified
swift start finished before the slow start TCP.

Table–3 Information for OC1 Connection for Bandwidth T1 and
Different Link Delays

Conn.
Time diff.

Second
CWND

First
CWND RTT

Link
Delay

0.281211 539251 462128 0.07327 0.0001
0.282627 545091 467174 0.07407 0.0005
0.229694 552391 473481 0.07507 0.001
0.317579 610791 523939 0.08307 0.005
0.284387 683791 587011 0.09307 0.01
0.522022 1267791 1091587 0.17307 0.05
0.873903 1997791 1722307 0.27307 0.01
1.42374 3457791 2983747 0.47307 0.2

2.024241 4917791 4245187 0.67307 0.3
3.478777 6377791 5506627 0.87307 0.4
26.86863 7837791 6768067 1.07307 0.5
31.85851 9297791 8029507 1.27307 0.6
36.81996 10757791 9290947 1.47307 0.7
41.82369 12217791 10552387 1.67307 0.8

5- Conclusions

This paper presents modification to what is called a Swift
Start congestion control algorithm that may help the TCP
better utilize the bandwidth provided by huge bandwidth
long delay links. It also presents results to show a
comparison of the original algorithm.
However, the modified swift start algorithm combines
three algorithms to enhance the connection start up, it uses

packet pair to quickly estimate the available bandwidth and
calculate the congestion window, then uses pacing to avoid
overflowing the networking nodes that may occur if this
window sent in burst, and then uses slow start to try using
the available buffers capacity on the networking nodes.
The algorithm avoids the drawbacks of each algorithm by
using all of them each in suitable time. It succeeded in
enhancing the start up of the connection even in low speed
or moderate networks.
Modified swift start maintains the core of current TCP
implementations; it needs only simple modification to
current TCP.

References

[1] V. Jacobson, "Congestion Avoidance and Control,"
Proceedings of the ACM SIGCOMM ’88 Conference,
August 1988, pp. 314–329.

[2] S. Floyd and K. Fall, " Promoting the use of End – to -
End Congestion Control in the Internet," IEEE / ACM
Transactions on Networking, Vol.7, No.4, 1999, pp.
458-472.

[3] R.N. Shorten, D.J.Leith, J.Foy, R.Kiduff, “ Analysis and
Design of Congestion Control in Synchronized
Communication Networks,” Hamilton Institute, NUI
Maynooth, June 20, 2003.

[4] Steven H. Low, F. Paganini, and John C. Doyle,
“Internet Congestion Control,” IEEE Control Systems
Magazine,Vol.22, No.1, Feb.2002, pp.28-39.

[5] J. Postl, " Transmission Control Protocol," RFC793,
September 1981.

[6] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H.
Choe, R. L. A. Cottrell, J. C. Doyle, W. Feng, O. Martin,
H. Newman, F. Paganini, S. Ravot, and S.Singh, " Fast
TCP: From Theory to Experiments," IEEE Network,
Vol.19, No.1, Jan. / Feb. 2005, pp.4-11.

[7] Y.-T. Li, D. Leith, and R. N. Shorten, "Experimental
Evaluation of TCP Protocols For High-Speed Networks,"
IEEE Trans. On Networking 2005.

[8] Y. J. Zhu and L. Jacob, " On Making TCP Robust
Against Spurious Retransmissions, " Computer
Communication, Vol.28, I.11, Jan. 2005 , pp.25-36.

[9] F. Paganini, Z. Wang, J.C. Doyle and S. H. Low,
"Congestion Control For High Performance, Stability
and Fairness in General Network," IEEE / ACM,
Transactions on Networking, Vol.13, No.1, Feb.2005 ,
pp.43-56.

[10] C. Jin, D. X. Wei, and S. Low, " Fast TCP Modification,
Architecture, Algorithm, Performance," Proc. of
IEEE INFOCOM'04, 2004.

[11] C. Jin, D. Wei, and S. Low, “ Fast TCP
Modification, Architecture, Algorithm, Performance,”
Caltech CS Report Caltech CSTR:2003:01Q 2003.

[12] S . Floyd, and T. Henderson " The new Reno Modification
to TCP Fast Recovery Algorithm,” RFC 2582, April 1999.

[13] M. Allman, W. Richard Stevens "TCP Congestion
Control," RFC 2581 NASA Glenn Research Center, April
1999.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

92

[14] V.Padmanabhan and R. Katz," TCP Fast Start: A
Technique for Speeding up Web Transfers,"Globecom
Sydney Australia, Nov. 1998.

[15] W. R. Stevens, "TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms,"
RFC 2001 Jan. 1997.

[16] S. Floyd, "TCP and Successive Fast
Retransmits," ftp://ftp.ee.lbl.gov/papers/fastretransmit.pps.
Feb 1995.

[17] V. Jacobson, " Berkeley TCP Evolution from 4.3-Tahoe
to 4.3-Reno, " Proceedings of the British Columbia
Internet Engineering Task Force, July 1990.

[18] V. Jacobson "Fast Retransmit, Message to the End2End,"
IETF Mailing List , April 1990.

[19] E. A. Khalil, and etc., " A Modification to Swifter
Start Algorithm for TCP Congestion Control,"
Accepted for Publication in the, VI. International
Enformatika Conference IEC 2005, Budapest, Hungary,
October 26-28, 2005.

[20] E.A. Khalil, “ Comparison Performance Evaluation of
a Congestion Control Algorithm,” Accepted for
publication in the 2nd IEEE International Conference
on Information & Technologies From Theory to
Applications (ICTTA’06) which has been held at Damascus,
Syria, April 24-28, 2006.

[21] R. El-Khoury, E. Altman, R. El-Azouzi, "Analysis of
Scalable TCP Congestion Control Algorithm," IEEE
Computer Communications, Vol.33, pp.41-49, November
2010.

[22] K. Srinivas, A.A. Chari, N. Kasiviswanath, "Updated
Congestion Control Algorithm for TCP Throughput
Improvement in Wired and Wireless Network," In Global
Journal of Computer Science and Technology, Vol.9, Issue5,
pp. 25-29, Jan. 2010.

[23] Carofiglio, F. Baccelli, M. Piancino, "Stochastic Analysis of
Scalable TCP," Proceedings of INFOCOM, 2009.

[24] A. Warrier, S. Janakiraman, Sangtae Ha, I. Rhee, "DiffQ.:
Practical Differential Backlog Congestion Control for
Wireless Networks," Proceedings of INFOCOM 2009.

[25] Sangtae Ha, Injong Rhee, and Lisong Xu, "CUBIC: A New
TCP-Friendly High-Speed TCP Variant," ACM SIGOPS
Operating System Review, Vol.42, Issue 5, pp.64-74, July
2008.

[26] Injong Rhee, and Lisong Xu, "Limitation of Equation Based
Congestion Control," IEEE/ACM Transaction on Computer
Networking, Vol.15, Issue 4, pp.852-865, August 2007.

[27] L-Wong, and L. –Y. Lau, "A New TCP Congestion Control
with Weighted Fair Allocation and Scalable Stability,"
Proceedings of 2006 IEEE International Conference on
Networks, Singapore, September 2006.

[28] Y. Ikeda, H. Nishiyama, Nei. Kato, "A Study on Transport
Protocols in Wireless Networks with Long Delay," IEICE,
Rep. Vol.109, No.72, pp.23-28, June 2009.

[29] Yansheng Qu, Junzhou Luo, Wei Li, Bo Liu, Laurence T.
Yang, " Square: A New TCP Variant for Future High Speed
and Long Delay Environments," Proceedings of 22nd
International Conference on Advanced Information
Networking and Applications, pp.636-643, (aina) 2008.

[30] Yi- Cheng Chan, Chia – Liang Lin, Chen – Yuan Ho,
"Quick Vegas: Improving Performance of TCP Vegas for

High Bandwidth Delay Product Networks," IEICE
Transactions on Communications Vol.E91-B, No.4, pp.987-
997, April, 2008.

[31] T. V. Lakshman, U. Madhow, " The Performance of
TCP/IP for networks with High Bandwidth delay Products
and Random loss," IEEE/ACM Trans. on Networking, June
1997.

[32] J. C. Hoe, "Improving the Start-up Behavior of a
Congestion Control Scheme for TCP," Proce., of ACM
SIGCOMM'96, Antibes, France, August 1996, pp.270-
280.

[33] K. Chandrayana, S Ramakrishnan, B. Sikdar, S.
Kalyanaraman, "On Randomizing the Sending Times in
TCP and other Window Based Algorithm," Vol.50,
Issue5, Feb. 2006, pp.422-447.

[34] C. Dah-Ming and R. Jain, "Analysis of the Increase
and Decrease Algorithms for Congestion
Avoidance in Computer Networks," Computer Networks
and ISDN Systems, Vol.17, No.1, 1989, pp.1-14.

[35] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, "Modeling
TCP Throughput: A Simple Model and it's Empirical
Validation," Proceedings of ACM SIGCOMM'98,
Sept.1998, pp.303-314.

[36] C. Partridge, D. Rockwell, M. Allman, R. Krishnan,
J. Sterbenz "A Swifter Start For TCP" BBN Technical
Report No. 8339, 2002.

[37] Afifi, H., Elloumi, O., Rubino, G. " A Dynamic
Delayed Acknowledgment Mechanism to Improve TCP
Performance for Asymmetric Links," Computers and
Communications, 1998. ISCC '98. Proceedings. 3rd IEEE
Symposium, on 30 June-2 July 1998, pp.188 – 192.

[38] D. D. Clark, "Window and Acknowledgement Strategy
in TCP," RFC 813, July 1982.

[39] Mogul, J.C., " Observing TCP Dynamics in Real
Networks," Proc. ACM SIGCOMM ’92, Baltimore, MD,
August 1992, pp. 305-317.

[40] Zhang, L., S. Shenker, and D. D. Clark, "Observations on
the Dynamics of a Congestion Control Algorithm: The
Effects of Two-Way Traffic," Proc. ACM
SIGCOMM’91, Zurich, Switzerland, August 1991, pp.
133-148

Ehab A. Khalil, (B.Sc’78 – M.Sc.’83 –
Ph.D.’94), Got B.Sc. in the Dept. of
Industrial Electronics, Faculty of the
Electronic Engineering, Minufiya University,
Menouf – 32952, EGYPT, in May 1978,
M.Sc in the Systems and Automatic
Control, with the same Faculty in Oct. 1983,
Research Scholar from 1989-1994 with the

Dept. of Computer Science & Engineering, Indian Institute of
Technology (IIT) Bombay-400076, India, Ph.D. in Computer
Network and Multimedia from the Dept. of Computer Science &
Engineering, Indian Institute of Technology (IIT) Bombay-
400076, India in July 1994. Lecturer, with the Dept. of Computer
Science & Engineering, Faculty of Electronic Engineering,
Minufiya University, Menouf – 32952, EGYPT, Since July 1994
up to now. Participated with the TCP of the IASTED Conference,
Jordan in March 1998. With the TPC of IEEE IC3N, USA, from
2000-2002. Consulting Editor with the “Who’s Who?” in 2003-

ftp://ftp.ee.lbl.gov/papers/fastretransmit.pps

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

93

2004. Member with the IEC since 1999. Member with the
Internet2 group. Manager of the Information and Link Network
of Minufiya University, Manager of the Information and
Communication Technology Project (ICTP) which is currently
implementing in Arab Republic of EGYPT, Ministry of Higher
Education and the World Bank. Published more than 70 research
papers and article reviews in the international conferences,
Journals and local newsletter.
For more details you can visit http://ehab.a.khalil.50megs.com or
http://www.menofia.edu.eg/network_administrtor.asp

http://ehab.a.khalil.50megs.com/
http://www.menofia.edu.eg/network_administrtor.asp

