
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

99

Manuscript received November 5, 2012
Manuscript revised November 20, 2012

Hardware Implementation of The Message Digest Procedure
MDP-384

Rabie Mahmoud1, Magdy Saeb2
1. Department of Mathematics, Faculty of Science, Cairo University, Cairo, Egypt.

2. Computer Engineering Department, Arab Academy for Science, Tech. & Maritime Transport (AAST),
Alexandria, Egypt.

ABSTRACT: The message digest procedure MDP-384 is
a cryptographic hash function improvement of the hash
function MDP-192 which is based on the principles
provided by Markel’s work, Rivest MD-5, SHA-1 and
RIPEMD. MDP-384 accepts a variable-size input message
and returns a fixed-size string as 384-bit long hash that
utilizes twelve variables for the round function with
cascaded XOR operations and deliberate asymmetry in the
design structure to provide higher security with negligible
increase in execution time and memory requirement. In
this work, we provide a Field Programmable Gate Array
(FPGA) hardware implementation of this hash function.
Keywords: FPGA, Hash function, MDP-384,
Cryptography, Hardware.

1. Introduction

The message digest procedure MDP-384 is a one-way
function having the attributes of cryptographic hash
function and can be applied in many applications of
computer communication security as message tampering
detection, message authentication codes, digital signatures,
user authentication when used with a secret key, code
recognition for protecting original codes, malware
identification, commitment schemes, key update and
derivation, cryptographic primitive for block and stream
ciphers, detection of random errors, and finally random
number generation which is used in stone metamorphic
cipher. The details of the stone metamorphic cipher and its
FPGA implementation can be found in [1] and [2]
respectively. MDP-384 modified and based on the
provided principles of the hash function MDP-192 where
twelve variables instead of six variables in MDP-192 are
used for the round function. The principles similar to those
used by SHA-1 of the Secure Hash Standard (SHS) of the
US Federal Information Processing Standard Publications
(FIPS PUB 180-3) [3], [4] ,[5], the design objectives of
MD-2, MD-4, and MD-5 [6], [5], [7] developed by Ron
Rivest, RIPEMD-160 [8], and Merkle, in his dissertation
[9] are adopted in MDP-192 and MDP-384.

The main improvements which included in MDP-384
to be more secure than MDP-192 are:

● The increased size of the hash; that is 384 bits
compared to 192, 128 and 160 bits for the MDP-192,
MD-5 and SHA-1 schemes respectively. The security
bits have been increased from 64, 80 and 96 to 192 bits
in MDP-384.
● The other improvement than MDP-192 is based on
processing the message blocks employing twelve
variables rather than six variables where this
contributes to better security and faster avalanche
effect.

Also the hash function MDP-384 inherits all
improvements of MDP-192 which are:

● The message block size is increased to 1024 bits
providing faster execution times.
● The message words in the different rounds are not
only permuted but computed by XOR and addition
with the previous message words. This renders it
harder for local changes to be confined to a few bits. In
other words, individual message bits influence the
computations at a large number of places. This, in turn,
provides faster avalanche effect and added security.
● Moreover, adding two nonlinear functions and one of
the variables to compute another variable, not only
eliminates the possibility of certain attacks but also
provides faster data diffusion.
● The XOR and addition operations do not cause
appreciable execution delays for today’s processors.
Nevertheless, the number of rotation operations, in
each branch, has been optimized to provide fast
avalanche with minimum overall execution delays [10].
In the following sections, we provide the conventional
method of using a hash as message authentication code,
the formal description of MDP-384 algorithm, the
details of our circuit design, discussion of the results of
the FPGA implementation and finally a summary and
our conclusions.

2. Description of The Procedure

The procedure can be summarized as follows:
1). Read a file as binary file, we call it the message (m).

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

100

2). Divide this file into a number of 1024-bit blocks
.

3). Last block will, in general, need padding to complete it
to 1024-bit block where the padding can be achieved
by adding a “1” followed by as many as needed “0”
then a 64-bit integer representing the original length of
the message.

4). Use the algorithm of MDP-192 for all
 : k = 0, 1, 2, … , n.
5). Append hash to original message, encrypt and send to

destination.

3. The Algorithm

The formal description of the MDP-192 algorithm is
shown in [10], and we provide a summary of message
digest procedure MDP-384 as follows:

The symbols in the algorithm which illustrates

different actions during a process are:
Symbol Mnemonic Operation

 ROTL m Rotate to the left m times
 ADD Addition

 XOR Bitwise XOR
← ASG Assigned to

 AND Bitwise AND
 OR Bitwise OR
 INV Complement

Algorithm: Message Digest Procedure MDP-384
INPUT: A given set of 1024-bit blocks (M0, M1, ... , Mn

where each block is 32 32-bit words); this set of
blocks represents the message to be hashed.

OUTPUT: A 384-bit hash function that is representing the
original message.

Begin
Repeat Begin

{For all Mk for k =1, 2, … , n}
{Within each block Mk, process each word Wi
as follows :}

for i = 0 to 383
{That is the reason we need to expand Wi from
32 values to 384 since each 1024-bit message
Mi is only 32 32-bit words}

begin
 ←

 ;
 ← ;
 ← ;
 ← ;
 ← ;
 ← ;
 ←

 ;

 ← ;
 ← ;
 ← ;
 ← ;
 ← ;

end;
{The number of rotations for each branch mi is
optimized for fast avalanche effect; taken equal to
00100 for each side}
Repeat this iteration loop until end-of message;
{That is Repeat for all blocks Mk for k= 1, 2, … , n,
until end-of-message. After processing the message,
the message digest is computed by concatenating the
final values of the twelve variables: Af , Bf , Cf , Df ,
Ef , Ff , Pf , Qf , Rf , Sf , Tf , Uf; This is a 384-bit
message digest where the final values of each variable
are computed as follows: }
Repeat End;

 ←
 ←

 ←
 ←

 ←
 ←

 ←
 ←

 ←
 ←

 ←
 ←

End.
The functions :

for i = 0 to 31;
for i = 192 to 223;

for i = 32 to 63;
for i = 224 to 255;

for i = 64 to 95;
for i = 256 to 287;

for i = 96 to 127;
for i = 288 to 319;

for i = 128 to 159;
for i = 320 to 351;

for i = 160 to 191;
for i = 352 to 383.

The values of Wi:

 ← for i = 0 to 31;
 ←

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

101

 for i = 32 to 383.

Also, this algorithm is summarized in Figure 1.

Figure 1. Operation of MDP-384 hash function

The constants :

 ← for i = 0 to 31;
 ← for i = 32 to 63;
 ← for i = 64 to 95;
 ← for i = 96 to 127;
 ← for i = 128 to 159;
 ← for i = 160 to 191;
 ← for i = 192 to 223;
 ← for i = 224 to 255;
 ← for i = 256 to 287;
 ← for i = 288 to 319;
 ← for i = 320 to 351;
 ← for i = 352 to 383.

To initialize the iteration process, we used the following
randomly chosen Initialization Values (IV) based on some
natural unrelated constants, rather than a mathematical
function:

 ← Based on Electron Charge;

 ← Based on Electron Mass;
 ← Based on Avogadro’s number;
 ← Based on Earth’s Diameter;
 ← Based on Earth’s Mass;
 ← Based on Moon’s Diameter;
 ← Based on Speed of Light;
 ← Based on Euler's Constant;
 ← Based on Faraday’ Constant;
 ← Based on Proton’s Mass;
 ← Based on Neutron’s Mass;
 ← Based on Planck's Constant.

4. FPGA Implementation

The lucidity of the message digest procedure MDP-384
lead to a relatively easy-to-design FPGA-based
implementation. We have implemented the MDP-384
using VHDL hardware description language [11], [12],
[13] and Quartus II 9.1 Service Pack 2 Web Edition [14],
and utilizing Altera design environment. The hash function
implementation is performed by dividing the procedure
into three parts in order to use three FPGA devices or
chips connected sequentially on the board. The first chip
(chip1) is responsible for padding the 256-bit input to
1024-bit block. Subsequently, The block is divided into
32-bit words Wi; starting from the twelve initial values
A0, B0, C0, D0, E0, F0, P0, Q0, R0, S0, T0, U0 to produce
A127, B127, C127, D127, E127, F127, P127, Q127, R127, S127,
T127, U127 values as outputs. The second chip (chip2)
employs the outputs of chip1 as inputs producing A255,
B255, C255, D255, E255, F255, P255, Q255, R255, S255, T255,
U255 as outputs. The third chip (chip3) is used to compute
the values A383, B383, C383, D383, E383, F383, P383, Q383,
R383, S383, T383, U383 and then applying the last step in the
algorithm by XORing the initial values with resulting
values and concatenating the result values together to have
a 384-bit hash block as output. The schematic diagrams for
demonstrative parts of MDP-384 algorithm are shown in
Figures 2, 3, and 4. The design was implemented using
three EP2C70F896C6, Cyclone II family devices. Based
on this device characteristic, the worst case pin-to-pin
delay in chip1 was found to be equal to 1089.363 ns. The
worst case pin-to-pin delay in chip2 was found to be equal
to 1159.366 ns. The worst case pin-to-pin delay in chip3
was found to be equal to 1203.756 ns. A series of screen-
captures of the different implementation results are shown
in Figures 5 to 16. For example, Figures 5, 6, and 7
provide indication of successful compilation for chip1,
chip2 and chip3 of MDP-384 respectively. In addition,
parts of RTL for chip1, chip2 and chip3 of MDP-384 are
shown in Figures 8, 9, and 10 respectively. Figure 11
displays chip1 simulation result showing the output A127,
B127, C127, D127, E127, F127, P127, Q127, R127, S127, T127,
U127 values bits. Figure 12 displays chip2 simulation

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

102

showing the output A255, B255, C255, D255, E255, F255, P255,
Q255, R255, S255, T255, U255 bit values. Figure 13 displays
the chip3 simulation showing the output of the hash
function procedure which is highlighted in this screen
capture. Figures 14, 15 and 16 demonstrate the floor plan
for chip1, chip2 and chip3 respectively. The details of the
analysis and synthesis report, and the implementation
delays in Balanced, Area and Speed optimization
techniques are shown in appendixes A, B and C for chip1,
chip2 and chip3 respectively. Figure 17 shows a
comparison chart between various implementation delays.

Figure 2. Schematic diagram of chip1 of MDP-384 implementation

Figure 3. Schematic diagram of chip2 of MDP-384 implementation

Figure 4. Schematic diagram of chip3 of MDP-384 implementation

Figure 5. Compiler tool screen showing correct implementation of chip1

of MDP-384

Figure 6. Compiler tool screen showing correct implementation of chip2

of MDP-384

Figure 7. Compiler tool screen showing correct implementation of chip3

of MDP-384

Figure 8. RTL screen for part of chip1 of MDP-384 implementation

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

103

Figure 9. RTL screen for part of chip2 of MDP-384 implementation

Figure 10. RTL screen for part of chip3 of MDP-384 implementation

Figure 11. Simulator screen showing the outputs of chip1 of MDP-384

Figure 12. Simulator screen showing the outputs of chip2 of MDP-384

Figure 13. Simulator screen showing the hash MDP-384

Figure 14. Floor-plan of chip1 implementation

Figure 15. Floor-plan of chip2 implementation

Figure 16. Floor-plan of chip3 implementation

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

104

Figure 17. Delays in our design of the MDP-384 implementation

Summary & Conclusion

We have furnished a brief discussion of the hardware
implementation of the Message Digest Procedure MDP-
384. Various modules, using three Altera Cyclone II
family devices, are connected sequentially to allow for the
FPGA implementation relatively high gate count. The
resulting circuit provides a proof-of-concept FPGA
implementation. It was shown that the worst case pin-to-
pin delay in chip1 is equal to 1089.363 ns. The worst case
pin-to-pin delay in chip2 is equal to 1159.366 ns. The
worst case pin-to-pin delay in chip3 is equal to 1203.756
ns. The reports also indicate 87%, 89% and 94% total
logic elements utilization in chip1, 2 and 3 respectively. A
comparison with other implementations is not applicable
since this is the first time this hash function is FPGA-
implemented. This and other related issues will be dealt
with in future development of the device.

References

[1] Magdy Saeb, "The Stone Cipher-192 (SC-192): A
Metamorphic Cipher," The International Journal on
Computers and Network Security (IJCNS), Vol.1 No.2, pp.
1-7, Nov., 2009.

[2] Rabie Mahmoud, Magdy Saeb, "Hardware Implementation
of the Stone Metamorphic Cipher," International Journal of
Computer Science & Network Security, Vol.10, No.8, pp.
54-60, 2010.

[3] Bruce Schneier, Applied Cryptography, second edition,
John Wiley & Sons Inc., 1996.

[4] Federal Information Processing Standard Publication,
"Secure Hash Standard (SHS)," FIPS PUB 180-
3, http://csrc.nist.gov/publications/fips/fips180-3/fips180-
3_final.pdf, October 17, 2008.

[5] Paul C. van Oorschot, Alfred J. Menezes, Scott A. Vanstone,
Handbook of Applied Cryptography, MIT Press, 1996.

[6] Bruce Schneier, Secrets and Lies, John Wiley & Sons Inc.,
2000.

[7] Wenbo Mao, Modern Cryptography, second printing,
Prentice Hall PTR, 2004.

[8] Hans Dobbertin, Antoon Bosselaers, Bart Preneel,
"RIPEMD-160: A Strengthened Version of RIPEMD," Fast
Software Encryption, LNCS 1039, Springer-Verlag, pp.
71.82, 1996.

[9] Ralph C. Merkle, Secrecy, Authentication and Public Key
Systems, Ph.D. Dissertation, Stanford University, June,
1979.

[10] Magdy Saeb, "Design & Implementation of the Message
Digest Procedures MDP-192 and MDP-384," ICCCIS2009,
International Conference on Cryptography, Coding &
Information Security, Paris, June 24-26, 2009.

[11] Enoch O. Hwang, Digital Logic and Microprocessor Design
with VHDL, La Sierra University, Riverside, California,
USA, 2005.

[12] Pong P. Chu, RTL Hardware Design Using VHDL, John
Wiley & Sons, Inc., New Jersey, 2006.

[13] Volnei A. Pedroni, Circuit Design with VHDL, MIT Press,
2004.

[14] Altera’s user-support site:
http://www.altera.com/support/examples/vhdl/vhdl.html

 Appendix A: The analysis and synthesis report details
of chip1 of MDP-384:

Family: Cyclone II
Device: EP2C70F896C6
Total logic elements: 59,571 out of 68,416 (87 %)
Total combinational functions: 59,571
Logic element usage by number of LUT inputs

 -- 4 input functions: 13,696
 -- 3 input functions: 33,868
 -- <=2 input functions: 12,007

Total memory bits: 0 out of 1,152,000 (0 %)
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %)
Total PLLs: 0 out of 4 (0 %)
Optimization Technique: Balanced
Maximum fan-out: 39
Total fan-out: 180399
Average fan-out: 3.00

Fitter Summary
Block interconnects: 98,509 out of 197,592 (50 %)
C16 interconnects: 1,308 out of 6,270 (21 %)
C4 interconnects: 59,229 out of 123,120 (48 %)
Direct links: 15,113 out of 197,592 (8 %)
Global clocks: 0 out of 16 (0 %)
Local interconnects: 904 out of 68,416 (1 %)
R24 interconnects: 1,281 out of 5,926 (22 %)
R4 interconnects: 67,646 out of 167,484 (40 %)
Nominal Core Voltage: 1.20 V
Low Junction Temperature: 0 °C
High Junction Temperature: 85 °C.

Table A1 shows the number of usage logic elements and
the interconnections between them in Area, Speed, and
Balanced optimization technique. Also, the comparison

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

105

between optimization techniques was extracted from the
timing reports of implementing Area, Speed, and Balanced
optimization.
 ● In Balanced optimization, Longest pin-to-pin delay
from source pin "Input[97]" to destination pin "A[31]" was
1089.363 ns. Total cell delay was 630.674 ns. Total
interconnect delay was 458.689 ns.
 ● In Area optimization, Longest pin-to-pin delay from
source pin "Input[101]" to destination pin "A[29]" was
1093.791 ns. Total cell delay was 628.256 ns. Total
interconnect delay was 465.535 ns.
 ● In Speed optimization, Longest pin-to-pin delay from
source pin "Input[97]" to destination pin "A[27]" was
1120.524 ns. Total cell delay was 598.666 ns. Total
interconnect delay was 521.858 ns.

Table A1: A comparison between optimization technique

implementations of chip1of MDP-384
 Balance Area Speed
Total logic elements 59571 58892 60417
Total combinational functions 59571 58892 60417

4 input functions 13696 11035 18146
3 input functions 33868 35929 30193

<=2 input functions 12007 11928 12078
Maximum fan-out 39 35 37
Total fan-out 180399 175780 187316
Average fan-out 3.00 2.96 3.07
Block interconnects 98509 96734 103208
C16 interconnects 1308 1459 1529
C4 interconnects 59229 58464 63564
Direct links 15113 15402 14993
Global clocks 0 0 0
Local interconnects 904 627 822
R24 interconnects 1281 1227 1789
R4 interconnects 67646 66031 77125

Appendix B: The analysis and synthesis report details
of chip2 of MDP-384:

Family: Cyclone II
Device: EP2C70F896C6
Total logic elements: 60,740 out of 68,416 (89 %)
Total combinational functions: 60,740
Logic element usage by number of LUT inputs

 -- 4 input functions: 14,143
 -- 3 input functions: 35,108
 -- <=2 input functions: 11,489

Total memory bits: 0 out of 1,152,000 (0 %)
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %)
Total PLLs: 0 out of 4 (0 %)
Optimization Technique: Balanced
Maximum fan-out: 28
Total fan-out: 184776
Average fan-out: 3.02

Fitter Summary
Block interconnects: 99,603 out of 197,592 (50 %)
C16 interconnects: 942 out of 6,270 (15 %)
C4 interconnects: 57,565 out of 123,120 (47 %)

Direct links: 15,988 out of 197,592 (8 %)
Global clocks: 0 out of 16 (0 %)
Local interconnects: 883 out of 68,416 (1 %)
R24 interconnects: 1,339 out of 5,926 (23 %)
R4 interconnects: 70,041 out of 167,484 (42 %)

Table B1 shows the number of usage logic elements and
the interconnections between them in Area, Speed, and
Balanced optimization technique. Also, the comparison
between optimization techniques was extracted from the
timing reports of implementing Area, Speed, and Balanced
optimization.
 ● In Balanced optimization, Longest pin-to-pin delay
from source pin "Input[32]" to destination pin "A[31]"
was 1159.366 ns. Total cell delay was 680.616 ns. Total
interconnect delay was 478.750 ns.
 ● In Area optimization, Longest pin-to-pin delay from
source pin "Input[36]" to destination pin "P[30]" was
1150.398 ns. Total cell delay was 677.351 ns. Total
interconnect delay was 473.047 ns.
 ● In Speed optimization, Longest pin-to-pin delay from
source pin "Input[32]" to destination pin "P[20]" was
1171.155 ns. Total cell delay was 671.717 ns. Total
interconnect delay was 499.438 ns.
Table B1: A comparison between optimization technique
implementations of chip2 of MDP-384
 Balance Area Speed
Total logic elements 60740 59803 62048
Total combinational functions 60740 59803 62048

4 input functions 14143 10195 20299
3 input functions 35108 38173 29835

<=2 input functions 11489 11435 11914
Maximum fan-out 28 26 30
Total fan-out 184776 178071 194431
Average fan-out 3.02 2.95 3.11
Block interconnects 99603 96675 105328
C16 interconnects 942 893 1327
C4 interconnects 57565 55571 63353
Direct links 15988 15607 15801
Global clocks 0 0 0
Local interconnects 883 718 1096
R24 interconnects 1339 1119 1888
R4 interconnects 70041 66083 79269

Appendix C: The analysis and synthesis report details
of chip3 of MDP-384:

Family: Cyclone II
Device: EP2C70F896C6
Total logic elements: 64,479 out of 68,416 (94 %)
Total combinational functions: 64,479
Logic element usage by number of LUT inputs

 -- 4 input functions: 14,583
 -- 3 input functions: 34,544
 -- <=2 input functions: 15,352

Total memory bits: 0 out of 1,152,000 (0 %)
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %)
Total PLLs: 0 out of 4 (0 %)
Optimization Technique: Balanced

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

106

Maximum fan-out: 25
Total fan-out: 192436
Average fan-out: 2.97

Fitter Summary

Block interconnects: 103,679 out of 197,592 (52 %)
C16 interconnects: 1,164 out of 6,270 (19 %)
C4 interconnects: 60,876 out of 123,120 (49 %)
Direct links: 18,265 out of 197,592 (9 %)
Global clocks: 0 out of 16 (0 %)
Local interconnects: 688 out of 68,416 (1 %)
R24 interconnects: 1,305 out of 5,926 (22 %)
R4 interconnects: 70,453 out of 167,484 (42 %)
Nominal Core Voltage: 1.20 V
Low Junction Temperature: 0 °C
High Junction Temperature: 85 °C.

Table C1 shows the number of usage logic elements and
the interconnections between them in Area, Speed, and
Balanced optimization technique. Also, the comparison
between optimization techniques was extracted from the
timing reports of implementing Area, Speed, and Balanced
optimization.
 ● In Balanced optimization, Longest pin-to-pin delay
from source pin "Input[96]" to destination pin
"Output[254]" was 1203.756 ns. Total cell delay was
686.548 ns. Total interconnect delay was 517.208 ns.
 ● In Area optimization, Longest pin-to-pin delay from
source pin "Input[34]" to destination pin "Output[254]"
was 1191.374 ns. Total cell delay was 683.596 ns. Total
interconnect delay was 507.778 ns.
 ● In Speed optimization, Longest pin-to-pin delay from
source pin "Input[98]" to destination pin "Output[54]" was
1213.668 ns. Total cell delay was 658.809 ns. Total
interconnect delay was 554.859 ns.

Table C1: A comparison between optimization technique

implementations of chip3 of MDP-384
 Balance Area Speed
Total logic elements 64479 63413 65627
Total combinational functions 64479 63413 65627

4 input functions 14583 10125 19945
3 input functions 34544 38108 29930

<=2 input functions 15352 15180 15752
Maximum fan-out 25 26 29
Total fan-out 192436 184952 200842
Average fan-out 2.97 2.90 3.04
Block interconnects 103679 100898 108563
C16 interconnects 1164 726 1420
C4 interconnects 60876 55432 66769
Direct links 18265 18173 17526
Global clocks 0 0 0
Local interconnects 688 324 979
R24 interconnects 1305 1235 1556
R4 interconnects 70453 67713 78926

Appendix D:

Sample VHDL code for a MDP-1 module of hash function

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.all;

ENTITY MDP_1 IS
Port (input_to_hash :
 in std_logic_vector (1023 downto 0);
 M_D_P_1 : out std_logic_vector (383 downto 0));
END MDP_1;

ARCHITECTURE behavioral OF MDP_1 IS
 signal W0 : std_logic_vector (31 downto 0);
 signal K0 : std_logic_vector(31 downto 0) :=
 "01100000011100010100100110001111";

 signal A0 : std_logic_vector(31 downto 0) :=
 "01011111011111110100010111001100";
 signal B0 : std_logic_vector(31 downto 0) :=
 "00110110010010111101000001001100";
 signal C0 : std_logic_vector(31 downto 0) :=
 "00100011111001010000111001110000";
 signal D0 : std_logic_vector(31 downto 0) :=
 "01001100000010000001110010000000";
 signal E0 : std_logic_vector(31 downto 0) :=
 "00100011100110111110011111101001";
 signal F0 : std_logic_vector(31 downto 0) :=
 "00010100101101111111010010000000";
 signal P0 : std_logic_vector(31 downto 0) :=
 "00010001110111100111100001001010";
 signal Q0 : std_logic_vector(31 downto 0) :=
 "00100010011001111001110010110001";
 signal R0 : std_logic_vector(31 downto 0) :=
 "00111001100000100111111010000111";
 signal S0 : std_logic_vector(31 downto 0) :=
 "01100011101100100010111001000101";
 signal T0 : std_logic_vector(31 downto 0) :=
 "01100011110101010101110001101011";
 signal U0 : std_logic_vector(31 downto 0) :=
 "00100111011111101001010000110000";

 signal A1, B1,C1, D1, E1, F1, P1,Q1, R1, S1, T1, U1

 : std_logic_vector(31 downto 0);
BEGIN
W0 <= input_to_hash (1023 downto 992);

A1 <= (P0(30 downto 0) & P0(31)) + ((P0 and Q0) or

((not P0) and R0)) + ((R0 and S0) or ((not R0)
and T0)) + U0 + W0 + K0;

B1 <= (T0(26 downto 0) & T0(31) & T0(30) & T0(29) &
T0(28) & T0(27));

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

107

C1 <= (P0(30 downto 0) & P0(31));
D1 <= (Q0(29 downto 0) & Q0(31) & Q0(30)) xor (P0(30

downto 0) & P0(31));
E1 <= (R0(28 downto 0) & R0(31)& R0(30) & R0(29))

xor (Q0(29 downto 0) & Q0(31) & Q0(30));
F1 <= (S0(27 downto 0) & S0(31) & S0(30) & S0(29) &

S0(28)) xor (R0(28 downto 0) & R0(31) & R0(30)
& R0(29));

P1 <= (A0(30 downto 0) & A0(31)) + ((A0 and B0) or
((not A0) and C0)) + ((C0 and D0) or ((not C0)
and E0)) + F0 + W0 + K0;

Q1 <= (E0(26 downto 0) & E0(31) & E0(30) & E0(29) &
E0(28) & E0(27));

R1 <= (A0(30 downto 0) & A0(31));
S1 <= (B0(29 downto 0) & B0(31) & B0(30)) xor (A0(30

downto 0) & A0(31));
T1 <= (C0(28 downto 0) & C0(31) &C0(30) & C0(29))

xor (B0(29 downto 0) & B0(31) & B0(30));
U1 <= (D0(27 downto 0) & D0(31) & D0(30) & D0(29) &

D0(28)) xor (C0(28 downto 0) & C0(31) & C0(30)
& C0(29));

M_D_P_1 <= A1 & B1 & C1 & D1 & E1 & F1 & P1 &

Q1 & R1 & S1 & T1 & U1;
END behavioral;

Sample VHDL code for a MDP-352 module of hash
function

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.all;

ENTITY MDP_352 IS
Port (A351, B351, C351, D351, E351, F351, P351,
 Q351, R351, S351, T351, U351 :
 in std_logic_vector (31 downto 0);
 W319 : in std_logic_vector (31 downto 0);
 M_D_P_352: out std_logic_vector (383 downto 0));
END MDP_352;

ARCHITECTURE behavioral OF MDP_352 IS
 signal K11 : std_logic_vector (31 downto 0) :=
 "11101111110000100011100100100001";
 signal A352, B352, C352, D352, E352, F352, P352,
 Q352, R352, S352, T352, U352:
 std_logic_vector (31 downto 0);

BEGIN

A352 <= (P351(30 downto 0) & P351(31)) + (P351 xor
Q351 xor R351) + (R351 xor S351 xor T351) +
U351 + W351 + K11;

B352 <= (T351(26 downto 0) & T351(31) & T351(30) &
T351(29) & T351(28) & T351(27));

C352 <= (P351(30 downto 0) & P351(31));
D352 <= (Q351(29 downto 0) & Q351(31) & Q351(30))

xor (P351(30 downto 0) & P351(31));
E352 <= (R351(28 downto 0) & R351(31) & R351(30) &

R351(29)) xor (Q351(29 downto 0) & Q351(31)
& Q351(30));

F352 <= (S351(27 downto 0) & S351(31) & S351(30) &
S351(29) & S351(28)) xor (R351(28 downto 0)
& R351(31) & R351(30) & R351(29));

P352 <= (A351(30 downto 0) & A351(31)) + (A351 xor
B351 xor C351) + (C351 xor D351 xor E351) +
F351 + W351 + K11;

Q352 <= (E351(26 downto 0) & E351(31) & E351(30) &
E351(29) & E351(28) & E351(27));

R352 <= (A351(30 downto 0) & A351(31));
S352 <= (B351(29 downto 0) & B351(31) & B351(30))

xor (A351(30 downto 0) & A351(31));
T352 <= (C351(28 downto 0) & C351(31) & C351(30) &

C351(29)) xor (B351(29 downto 0) & B351(31)
& B351(30));

U352 <= (D351(27 downto 0) & D351(31) & D351(30) &
D351(29) & D351(28)) xor (C351(28 downto 0)
& C351(31) & C351(30) & C351(29));

M_D_P_352 <= A352 & B352 & C352 & D352 & E352
& F352 & P352 & Q352 & R352 &
S352 & T352 & U352;

END behavioral;

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.11, November 2012

108

Magdy Saeb received the BSEE, School
of Engineering, Cairo University, in
1974, the MSEE, and Ph.D. degrees in
Electrical & Computer Engineering,
University of California, Irvine, in 1981
and 1985, respectively. He was with
Kaiser Aerospace and Electronics,
Irvine California, and The Atomic
Energy Establishment, Anshas, Egypt.
Currently, he is a professor in the
Department of Computer Engineering,
Arab Academy for Science, Technology

& Maritime Transport, Alexandria, Egypt; He was on-leave
working as a principal researcher in the Malaysian Institute of
Microelectronic Systems (MIMOS). His current research
interests include Cryptography, FPGA Implementations of
Cryptography and Steganography Data Security Techniques,
Encryption Processors, Mobile Agent Security.

Rabie Mahmoud received the BS.
Degree, Faculty of Science, Tishreen
University, Syria, in 2001, the MS. in
Computational Science, Faculty of
Science, Cairo University, Egypt, in 2007.
Currently, he is working on his Ph.D.
Dissertation in the Department of
Mathematics, Faculty of Science, Cairo
University, His current interests include
Image processing, Cryptography, FPGA
Implementations of Cryptography and

Data Security Techniques.

