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ABSTRACT: The message digest procedure MDP-384 is 
a cryptographic hash function improvement of the hash 
function MDP-192 which is based on the principles 
provided by Markel’s work, Rivest MD-5, SHA-1 and 
RIPEMD. MDP-384 accepts a variable-size input message 
and returns a fixed-size string as 384-bit long hash that 
utilizes twelve variables for the round function with 
cascaded XOR operations and deliberate asymmetry in the 
design structure to provide higher security with negligible 
increase in execution time and memory requirement. In 
this work, we provide a Field Programmable Gate Array 
(FPGA) hardware implementation of this hash function. 
Keywords: FPGA, Hash function, MDP-384, 
Cryptography, Hardware.  

1. Introduction  

The message digest procedure MDP-384 is a one-way 
function having the attributes of cryptographic hash 
function and can be applied in many applications of 
computer communication security as message tampering 
detection, message authentication codes, digital signatures, 
user authentication when used with a secret key, code 
recognition for protecting original codes, malware 
identification, commitment schemes, key update and 
derivation, cryptographic primitive for block and stream 
ciphers, detection of random errors, and finally random 
number generation which is used in stone metamorphic 
cipher. The details of the stone metamorphic cipher and its 
FPGA implementation can be found in [1] and [2] 
respectively. MDP-384 modified and based on the 
provided principles of the hash function MDP-192 where 
twelve variables instead of six variables in MDP-192 are 
used for the round function. The principles similar to those 
used by SHA-1 of the Secure Hash Standard (SHS) of the 
US Federal Information Processing Standard Publications 
(FIPS PUB 180-3) [3], [4] ,[5], the design objectives of 
MD-2, MD-4, and MD-5 [6], [5], [7] developed by Ron 
Rivest, RIPEMD-160 [8], and Merkle, in his dissertation 
[9] are adopted in MDP-192 and MDP-384. 

The main improvements which included in MDP-384 
to be more secure than MDP-192 are:  

● The increased size of the hash; that is 384 bits 
compared to 192, 128 and 160 bits for the MDP-192, 
MD-5 and SHA-1 schemes respectively. The security 
bits have been increased from 64, 80 and 96 to 192 bits 
in MDP-384.  
● The other improvement than MDP-192 is based on 
processing the message blocks employing twelve 
variables rather than six variables where this 
contributes to better security and faster avalanche 
effect. 

Also the hash function MDP-384 inherits all 
improvements of MDP-192 which are:   

● The message block size is increased to 1024 bits 
providing faster execution times. 
● The message words in the different rounds are not 
only permuted but computed by XOR and addition 
with the previous message words. This renders it 
harder for local changes to be confined to a few bits. In 
other words, individual message bits influence the 
computations at a large number of places. This, in turn, 
provides faster avalanche effect and added security.  
● Moreover, adding two nonlinear functions and one of 
the variables to compute another variable, not only 
eliminates the possibility of certain attacks but also 
provides faster data diffusion.  
● The XOR and addition operations do not cause 
appreciable execution delays for today’s processors. 
Nevertheless, the number of rotation operations, in 
each branch, has been optimized to provide fast 
avalanche with minimum overall execution delays [10]. 
In the following sections, we provide the conventional 
method of using a hash as message authentication code, 
the formal description of MDP-384 algorithm, the 
details of our circuit design, discussion of the results of 
the FPGA implementation and finally a summary and 
our conclusions. 

2. Description of The Procedure 

The procedure can be summarized as follows: 
1). Read a file as binary file, we call it the message (m). 
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2). Divide this file into a number of 1024-bit blocks 
. 

3). Last block will, in general, need padding to complete it 
to 1024-bit block where the padding can be achieved 
by adding a “1” followed by as many as needed “0” 
then a 64-bit integer representing the original length of 
the message. 

4). Use the algorithm of MDP-192 for all  
       : k = 0, 1, 2, … , n.  
5). Append hash to original message, encrypt and send to 

destination. 

3. The Algorithm 

The formal description of the MDP-192 algorithm is 
shown in [10], and we provide a summary of message 
digest procedure MDP-384 as follows: 

 
The symbols in the algorithm which illustrates 

different actions during a process are: 
Symbol Mnemonic Operation 

 ROTL m Rotate to the left m times 
 ADD Addition 

 XOR Bitwise XOR 
← ASG Assigned to 

 AND Bitwise AND 
 OR Bitwise OR 
 INV Complement 

 
Algorithm: Message Digest Procedure MDP-384 
INPUT: A given set of 1024-bit blocks (M0, M1, ... , Mn 

where each block is 32 32-bit words); this set of 
blocks represents the message to be hashed. 

OUTPUT: A 384-bit hash function that is representing the 
original message. 

Begin 
Repeat Begin 

{For all Mk for k =1, 2, … , n} 
{Within each block Mk, process each word Wi 
as follows :} 

for i = 0 to 383 
{That is the reason we need to expand Wi from 
32 values to 384 since each 1024-bit message 
Mi is only 32 32-bit words} 

begin 
 ←  

 ; 
 ←  ; 
 ←   ; 
 ←    ; 
 ←    ; 
 ←    ; 
 ←  

 ; 

 ←  ; 
 ←   ; 
 ←    ; 
 ←    ; 
 ←    ; 

end; 
{The number of rotations for each branch mi is     
optimized for fast avalanche effect; taken equal to 
00100 for each side} 
Repeat this iteration loop until end-of message; 
{That is Repeat for all blocks Mk for k= 1, 2, … , n, 
until end-of-message. After processing the message, 
the message digest is computed by concatenating the 
final values of the twelve variables: Af , Bf , Cf , Df , 
Ef , Ff , Pf , Qf , Rf , Sf , Tf , Uf; This is a 384-bit 
message digest where the final values of each variable 
are computed as follows: } 
Repeat End; 

 ←    
 ←    

 ←    
 ←    

 ←    
 ←    

 ←    
 ←    

 ←    
 ←    

 ←    
  ←         

End.  
The functions : 

 
for  i = 0 to 31; 
for  i = 192 to 223; 

 
for  i = 32 to 63; 
for  i = 224 to 255; 

 
for  i = 64 to 95; 
for  i = 256 to 287; 

 
for  i = 96 to 127; 
for  i = 288 to 319; 

 
for  i = 128 to 159; 
for  i = 320 to 351; 
 
for  i = 160 to 191; 
for  i = 352 to 383. 

 
The values of Wi: 

 ←  for  i = 0 to 31; 
 ←  
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 for  i = 32 to 383. 
 
Also, this algorithm is summarized in Figure 1. 

 
Figure 1. Operation of MDP-384 hash function  

 
The constants :  

 ←  for  i = 0 to 31; 
 ←  for  i = 32 to 63; 
 ←  for  i = 64 to 95; 
 ←  for  i = 96 to 127; 
 ←  for  i = 128 to 159; 
 ←  for  i = 160 to 191; 
 ←  for  i = 192 to 223; 
 ←  for  i = 224 to 255; 
 ←  for  i = 256 to 287; 
 ←  for  i = 288 to 319; 
 ←  for  i = 320 to 351; 
 ←  for  i = 352 to 383. 

To initialize the iteration process, we used the following 
randomly chosen Initialization Values (IV) based on some 
natural unrelated constants, rather than a mathematical 
function: 

 ←  Based on Electron Charge; 

 ←  Based on Electron Mass; 
 ←  Based on Avogadro’s number; 
 ←  Based on Earth’s Diameter; 
 ←  Based on Earth’s Mass; 
 ←  Based on Moon’s Diameter; 
 ←  Based on Speed of Light; 
 ←  Based on Euler's Constant; 
 ←  Based on Faraday’ Constant; 
 ←  Based on Proton’s Mass; 
 ←  Based on Neutron’s Mass; 
 ←  Based on Planck's Constant. 

4.  FPGA Implementation 

The lucidity of the message digest procedure MDP-384 
lead to a relatively easy-to-design FPGA-based 
implementation. We have implemented the MDP-384 
using VHDL hardware description language [11], [12], 
[13] and Quartus II 9.1 Service Pack 2 Web Edition [14], 
and utilizing Altera design environment. The hash function 
implementation is performed by dividing the procedure 
into three parts in order to use three FPGA devices or 
chips connected sequentially on the board. The first chip 
(chip1) is responsible for padding the 256-bit input to 
1024-bit block. Subsequently, The block is divided into 
32-bit words Wi; starting from the twelve initial values 
A0, B0, C0, D0, E0, F0, P0, Q0, R0, S0, T0, U0 to produce 
A127, B127, C127, D127, E127, F127, P127, Q127, R127, S127, 
T127, U127 values as outputs. The second chip (chip2) 
employs the outputs of chip1 as inputs producing A255, 
B255, C255, D255, E255, F255, P255, Q255, R255, S255, T255, 
U255 as outputs. The third chip (chip3) is used to compute 
the values A383, B383, C383, D383, E383, F383, P383, Q383, 
R383, S383, T383, U383  and then applying the last step in the 
algorithm by XORing the initial values with resulting 
values and concatenating the result values together to have 
a 384-bit hash block as output. The schematic diagrams for 
demonstrative parts of MDP-384 algorithm are shown in 
Figures 2, 3, and 4. The design was implemented using 
three EP2C70F896C6, Cyclone II family devices. Based 
on this device characteristic, the worst case pin-to-pin 
delay in chip1 was found to be equal to 1089.363 ns. The 
worst case pin-to-pin delay in chip2 was found to be equal 
to 1159.366 ns. The worst case pin-to-pin delay in chip3 
was found to be equal to 1203.756 ns. A series of screen-
captures of the different implementation results are shown 
in Figures 5 to 16. For example, Figures 5, 6, and 7 
provide indication of successful compilation for chip1, 
chip2 and chip3 of MDP-384 respectively.  In addition, 
parts of RTL for chip1, chip2 and chip3 of MDP-384 are 
shown in Figures 8, 9, and 10 respectively. Figure 11 
displays chip1 simulation result showing the output A127, 
B127, C127, D127, E127, F127, P127, Q127, R127, S127, T127, 
U127 values bits. Figure 12 displays chip2 simulation 
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showing the output A255, B255, C255, D255, E255, F255, P255, 
Q255, R255, S255, T255, U255 bit values. Figure 13 displays 
the chip3 simulation showing the output of the hash 
function procedure which is highlighted in this screen 
capture. Figures 14, 15 and 16 demonstrate the floor plan 
for chip1, chip2 and chip3 respectively.  The details of the 
analysis and synthesis report, and the implementation 
delays in Balanced, Area and Speed optimization 
techniques are shown in appendixes A, B and C for chip1, 
chip2 and chip3 respectively. Figure 17 shows a 
comparison chart between various implementation delays. 
 

 
Figure 2. Schematic diagram of chip1 of MDP-384 implementation 

 

 
Figure 3. Schematic diagram of chip2 of MDP-384 implementation 

 

 
Figure 4. Schematic diagram of chip3 of MDP-384 implementation 

 

 
Figure 5. Compiler tool screen showing correct implementation of chip1 

of MDP-384 
 

 
Figure 6. Compiler tool screen showing correct implementation of chip2 

of MDP-384 
 

 
Figure 7. Compiler tool screen showing correct implementation of chip3 

of MDP-384 
 

 
Figure 8. RTL screen for part of chip1 of MDP-384 implementation  
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Figure 9. RTL screen for part of chip2 of MDP-384 implementation 

 

 
Figure 10. RTL screen for part of chip3 of MDP-384 implementation 

 

 
Figure 11. Simulator screen showing the outputs of chip1 of MDP-384 

 

 
Figure 12. Simulator screen showing the outputs of chip2 of MDP-384 

 
Figure 13. Simulator screen showing the hash MDP-384 

 

 
Figure 14. Floor-plan of chip1 implementation 

 

 
Figure 15. Floor-plan of chip2 implementation 

 

 
Figure 16. Floor-plan of chip3 implementation 
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Figure 17. Delays in our design of the MDP-384 implementation 

Summary & Conclusion 

We have furnished a brief discussion of the hardware 
implementation of the Message Digest Procedure MDP-
384. Various modules, using three Altera Cyclone II 
family devices, are connected sequentially to allow for the 
FPGA implementation relatively high gate count.  The 
resulting circuit provides a proof-of-concept FPGA 
implementation. It was shown that the worst case pin-to-
pin delay in chip1 is equal to 1089.363 ns. The worst case 
pin-to-pin delay in chip2 is equal to 1159.366 ns. The 
worst case pin-to-pin delay in chip3 is equal to 1203.756 
ns. The reports also indicate 87%, 89% and 94% total 
logic elements utilization in chip1, 2 and 3 respectively. A 
comparison with other implementations is not applicable 
since this is the first time this hash function is FPGA- 
implemented. This and other related issues will be dealt 
with in future development of the device. 
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 Appendix A: The analysis and synthesis report details 
of chip1 of MDP-384: 
 
Family: Cyclone II 
Device: EP2C70F896C6 
Total logic elements: 59,571 out of 68,416 (87 %) 
Total combinational functions: 59,571 
Logic element usage by number of LUT inputs 

          -- 4 input functions: 13,696 
              -- 3 input functions: 33,868 
          -- <=2 input functions: 12,007 

Total memory bits: 0 out of 1,152,000 (0 %) 
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %) 
Total PLLs: 0 out of 4 (0 %) 
Optimization Technique: Balanced 
Maximum fan-out: 39 
Total fan-out: 180399 
Average fan-out: 3.00 

Fitter Summary 
Block interconnects: 98,509 out of 197,592 (50 %) 
C16 interconnects: 1,308 out of 6,270 (21 %) 
C4 interconnects: 59,229 out of 123,120 (48 %) 
Direct links: 15,113 out of 197,592 (8 %) 
Global clocks: 0 out of 16 (0 %) 
Local interconnects: 904 out of 68,416 (1 %) 
R24 interconnects: 1,281 out of 5,926 (22 %) 
R4 interconnects: 67,646 out of 167,484 (40 %) 
Nominal Core Voltage: 1.20 V 
Low Junction Temperature: 0 °C 
High Junction Temperature: 85 °C. 
 
Table A1 shows the number of usage logic elements and 
the interconnections between them in Area, Speed, and 
Balanced optimization technique. Also, the comparison 

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
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between optimization techniques was extracted from the 
timing reports of implementing Area, Speed, and Balanced 
optimization. 
   ● In Balanced optimization, Longest pin-to-pin delay 
from source pin "Input[97]" to destination pin "A[31]" was 
1089.363 ns. Total cell delay was 630.674 ns. Total 
interconnect delay was 458.689 ns.   
   ● In Area optimization, Longest pin-to-pin delay from 
source pin "Input[101]" to destination pin "A[29]" was 
1093.791 ns. Total cell delay was 628.256 ns. Total 
interconnect delay was 465.535 ns.  
   ● In Speed optimization, Longest pin-to-pin delay from 
source pin "Input[97]" to destination pin "A[27]"  was 
1120.524 ns. Total cell delay was 598.666 ns.  Total 
interconnect delay was 521.858 ns.  
 
Table A1: A comparison between optimization technique 

implementations of chip1of MDP-384 
 Balance Area Speed 
Total logic elements 59571 58892 60417 
Total combinational functions 59571 58892 60417 

4 input functions 13696 11035 18146 
3 input functions 33868 35929 30193 

<=2 input functions 12007 11928 12078 
Maximum fan-out 39 35 37 
Total fan-out 180399 175780 187316 
Average fan-out 3.00 2.96 3.07 
Block interconnects 98509 96734 103208 
C16 interconnects 1308 1459 1529 
C4 interconnects 59229 58464 63564 
Direct links 15113 15402 14993 
Global clocks 0 0 0 
Local interconnects 904 627 822 
R24 interconnects 1281 1227 1789 
R4 interconnects 67646 66031 77125 

 
Appendix B: The analysis and synthesis report details 
of chip2 of MDP-384: 
 
Family: Cyclone II 
Device: EP2C70F896C6 
Total logic elements: 60,740 out of 68,416 (89 %) 
Total combinational functions: 60,740 
Logic element usage by number of LUT inputs 

          -- 4 input functions: 14,143 
              -- 3 input functions: 35,108 
          -- <=2 input functions: 11,489 

Total memory bits: 0 out of 1,152,000 (0 %) 
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %) 
Total PLLs: 0 out of 4 (0 %) 
Optimization Technique: Balanced 
Maximum fan-out: 28 
Total fan-out: 184776 
Average fan-out: 3.02 

Fitter Summary 
Block interconnects: 99,603 out of 197,592 (50 %) 
C16 interconnects: 942 out of 6,270 (15 %) 
C4 interconnects: 57,565 out of 123,120 (47 %) 

Direct links: 15,988 out of 197,592 (8 %) 
Global clocks: 0 out of 16 (0 %) 
Local interconnects: 883 out of 68,416 (1 %) 
R24 interconnects: 1,339 out of 5,926 (23 %) 
R4 interconnects: 70,041 out of 167,484 (42 %) 
 
Table B1 shows the number of usage logic elements and 
the interconnections between them in Area, Speed, and 
Balanced optimization technique. Also, the comparison 
between optimization techniques was extracted from the 
timing reports of implementing Area, Speed, and Balanced 
optimization. 
   ● In Balanced optimization, Longest pin-to-pin delay 
from source pin "Input[32]" to destination pin "A[31]"  
was 1159.366 ns. Total cell delay was 680.616 ns. Total 
interconnect delay was 478.750 ns. 
   ● In Area optimization, Longest pin-to-pin delay from 
source pin "Input[36]" to destination pin "P[30]" was 
1150.398 ns. Total cell delay was 677.351 ns. Total 
interconnect delay was 473.047 ns. 
   ● In Speed optimization, Longest pin-to-pin delay from 
source pin "Input[32]" to destination pin "P[20]"  was 
1171.155 ns. Total cell delay was 671.717 ns. Total 
interconnect delay was 499.438 ns. 
Table B1: A comparison between optimization technique 
implementations of chip2 of MDP-384 
 Balance Area Speed 
Total logic elements 60740 59803 62048 
Total combinational functions 60740 59803 62048 

4 input functions 14143 10195 20299 
3 input functions 35108 38173 29835 

<=2 input functions 11489 11435 11914 
Maximum fan-out 28 26 30 
Total fan-out 184776 178071 194431 
Average fan-out 3.02 2.95 3.11 
Block interconnects 99603 96675 105328 
C16 interconnects 942 893 1327 
C4 interconnects 57565 55571 63353 
Direct links 15988 15607 15801 
Global clocks 0 0 0 
Local interconnects 883 718 1096 
R24 interconnects 1339 1119 1888 
R4 interconnects 70041 66083 79269 

Appendix C: The analysis and synthesis report details 
of chip3 of MDP-384: 
 
Family: Cyclone II 
Device: EP2C70F896C6 
Total logic elements: 64,479 out of 68,416 (94 %) 
Total combinational functions: 64,479 
Logic element usage by number of LUT inputs 

          -- 4 input functions: 14,583 
              -- 3 input functions: 34,544 
          -- <=2 input functions: 15,352 

Total memory bits: 0 out of 1,152,000 (0 %) 
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %) 
Total PLLs: 0 out of 4 (0 %) 
Optimization Technique: Balanced 
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Maximum fan-out: 25 
Total fan-out: 192436 
Average fan-out: 2.97 

 
Fitter Summary 

Block interconnects: 103,679 out of 197,592 (52 %) 
C16 interconnects: 1,164 out of 6,270 (19 %) 
C4 interconnects: 60,876 out of 123,120 (49 %) 
Direct links: 18,265 out of 197,592 (9 %) 
Global clocks: 0 out of 16 (0 %) 
Local interconnects: 688 out of 68,416 (1 %) 
R24 interconnects: 1,305 out of 5,926 (22 %) 
R4 interconnects: 70,453 out of 167,484 (42 %) 
Nominal Core Voltage: 1.20 V 
Low Junction Temperature: 0 °C 
High Junction Temperature: 85 °C. 
 
Table C1 shows the number of usage logic elements and 
the interconnections between them in Area, Speed, and 
Balanced optimization technique. Also, the comparison 
between optimization techniques was extracted from the 
timing reports of implementing Area, Speed, and Balanced 
optimization. 
   ● In Balanced optimization, Longest pin-to-pin delay 
from source pin "Input[96]" to destination pin 
"Output[254]" was 1203.756 ns. Total cell delay was 
686.548 ns. Total interconnect delay was 517.208 ns. 
   ● In Area optimization, Longest pin-to-pin delay from 
source pin "Input[34]" to destination pin "Output[254]" 
was 1191.374 ns. Total cell delay was 683.596 ns. Total 
interconnect delay was 507.778 ns. 
   ● In Speed optimization, Longest pin-to-pin delay from 
source pin "Input[98]" to destination pin "Output[54]" was 
1213.668 ns. Total cell delay was 658.809 ns. Total 
interconnect delay was 554.859 ns. 
 
Table C1: A comparison between optimization technique 

implementations of chip3 of MDP-384 
 Balance Area Speed 
Total logic elements 64479 63413 65627 
Total combinational functions 64479 63413 65627 

4 input functions 14583 10125 19945 
3 input functions 34544 38108 29930 

<=2 input functions 15352 15180 15752 
Maximum fan-out 25 26 29 
Total fan-out 192436 184952 200842 
Average fan-out 2.97 2.90 3.04 
Block interconnects 103679 100898 108563 
C16 interconnects 1164 726 1420 
C4 interconnects 60876 55432 66769 
Direct links 18265 18173 17526 
Global clocks 0 0 0 
Local interconnects 688 324 979 
R24 interconnects 1305 1235 1556 
R4 interconnects 70453 67713 78926 

 
Appendix D: 
 

Sample VHDL code for a MDP-1 module of hash function  
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.all; 
 
ENTITY MDP_1 IS 
Port (input_to_hash : 
                               in std_logic_vector (1023 downto 0); 
         M_D_P_1 :  out std_logic_vector (383 downto 0)); 
END MDP_1; 
 
ARCHITECTURE behavioral OF MDP_1 IS 
     signal W0 : std_logic_vector (31 downto 0); 
     signal K0 : std_logic_vector(31 downto 0) := 
                      "01100000011100010100100110001111"; 
 
     signal A0 : std_logic_vector(31 downto 0) := 
                      "01011111011111110100010111001100"; 
     signal B0 : std_logic_vector(31 downto 0) := 
                      "00110110010010111101000001001100"; 
     signal C0 : std_logic_vector(31 downto 0) := 
                      "00100011111001010000111001110000"; 
     signal D0 : std_logic_vector(31 downto 0) := 
                      "01001100000010000001110010000000"; 
     signal E0 : std_logic_vector(31 downto 0) := 
                      "00100011100110111110011111101001"; 
     signal F0 : std_logic_vector(31 downto 0) := 
                      "00010100101101111111010010000000"; 
     signal P0 : std_logic_vector(31 downto 0) := 
                      "00010001110111100111100001001010"; 
     signal Q0 : std_logic_vector(31 downto 0) := 
                      "00100010011001111001110010110001"; 
     signal R0 : std_logic_vector(31 downto 0) := 
                      "00111001100000100111111010000111"; 
     signal S0 : std_logic_vector(31 downto 0) := 
                      "01100011101100100010111001000101"; 
     signal T0 : std_logic_vector(31 downto 0) := 
                      "01100011110101010101110001101011"; 
     signal U0 : std_logic_vector(31 downto 0) := 
                      "00100111011111101001010000110000"; 
 
     signal A1, B1,C1, D1, E1, F1, P1,Q1, R1, S1, T1, U1  

                      : std_logic_vector(31 downto 0); 
BEGIN 
W0 <= input_to_hash (1023 downto 992); 
   
A1 <= (P0(30 downto 0) & P0(31)) + ((P0 and Q0) or 

((not P0) and R0)) +  ((R0 and S0) or ((not R0) 
and T0)) + U0 + W0 + K0;  

B1 <= (T0(26 downto 0) & T0(31) & T0(30) & T0(29) & 
T0(28) & T0(27)); 
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C1 <= (P0(30 downto 0) & P0(31)); 
D1 <= (Q0(29 downto 0) & Q0(31) & Q0(30)) xor (P0(30 

downto 0) & P0(31)); 
E1 <= (R0(28 downto 0) & R0(31)& R0(30) & R0(29)) 

xor (Q0(29 downto 0) & Q0(31) & Q0(30)); 
F1 <= (S0(27 downto 0) & S0(31) & S0(30) & S0(29) & 

S0(28)) xor (R0(28 downto 0) & R0(31) & R0(30) 
& R0(29));   

P1 <= (A0(30 downto 0) & A0(31)) + ((A0 and B0) or 
((not A0) and C0)) + ((C0 and D0) or ((not C0) 
and E0)) + F0 + W0 + K0;  

Q1 <= (E0(26 downto 0) & E0(31) & E0(30) &  E0(29) & 
E0(28) & E0(27)); 

R1 <=  (A0(30 downto 0) & A0(31)); 
S1 <= (B0(29 downto 0) & B0(31) & B0(30)) xor (A0(30 

downto 0) & A0(31)); 
T1 <= (C0(28 downto 0) & C0(31) &C0(30) & C0(29)) 

xor (B0(29 downto 0) & B0(31) & B0(30)); 
U1 <= (D0(27 downto 0) & D0(31) & D0(30) & D0(29) & 

D0(28)) xor (C0(28 downto 0) & C0(31) & C0(30) 
& C0(29));   

 
M_D_P_1 <= A1 & B1 & C1 & D1 & E1 & F1 & P1 & 

Q1 & R1 & S1 & T1 & U1;   
END behavioral; 
 
 
Sample VHDL code for a MDP-352 module of hash 
function  
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.all; 
 
ENTITY MDP_352 IS 
Port (A351, B351, C351, D351, E351, F351, P351,  
         Q351, R351, S351, T351, U351 :  
                                   in std_logic_vector (31 downto 0); 
       W319 : in std_logic_vector (31 downto 0); 
       M_D_P_352: out std_logic_vector (383 downto 0)); 
END MDP_352; 
 
ARCHITECTURE behavioral OF MDP_352 IS 
     signal K11 : std_logic_vector (31 downto 0) := 
                      "11101111110000100011100100100001"; 
     signal   A352, B352, C352, D352, E352, F352, P352,   
                Q352, R352, S352, T352, U352: 
                                    std_logic_vector (31 downto 0); 
 
BEGIN    

A352 <= (P351(30 downto 0) & P351(31)) + (P351 xor 
Q351 xor R351) + (R351 xor S351 xor T351) + 
U351 + W351 + K11;  

B352 <= (T351(26 downto 0) & T351(31) & T351(30) & 
T351(29) & T351(28) & T351(27)); 

C352 <= (P351(30 downto 0) & P351(31)); 
D352 <= (Q351(29 downto 0) & Q351(31) & Q351(30)) 

xor (P351(30 downto 0) & P351(31)); 
E352 <= (R351(28 downto 0) & R351(31) & R351(30) & 

R351(29)) xor (Q351(29 downto 0) & Q351(31) 
& Q351(30)); 

F352 <= (S351(27 downto 0) & S351(31) & S351(30) & 
S351(29) & S351(28)) xor (R351(28 downto 0) 
& R351(31) & R351(30) & R351(29));   

P352 <= (A351(30 downto 0) & A351(31)) + (A351 xor 
B351 xor C351) + (C351 xor D351 xor E351) + 
F351 + W351 + K11;        

Q352 <= (E351(26 downto 0) & E351(31) & E351(30) &  
E351(29) & E351(28) & E351(27)); 

R352 <= (A351(30 downto 0) & A351(31)); 
S352 <= (B351(29 downto 0) & B351(31) & B351(30)) 

xor (A351(30 downto 0) & A351(31)); 
T352 <= (C351(28 downto 0) & C351(31) & C351(30) & 

C351(29)) xor (B351(29 downto 0) & B351(31) 
& B351(30)); 

U352 <= (D351(27 downto 0) & D351(31) & D351(30) & 
D351(29) & D351(28)) xor (C351(28 downto 0) 
& C351(31) & C351(30) & C351(29));      

M_D_P_352 <= A352 & B352 & C352 & D352 & E352 
& F352 & P352 & Q352 & R352 & 
S352 & T352 & U352;   

END behavioral; 
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