
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

48

Manuscript received December 5, 2012
Manuscript revised December 20, 2012

An Overview of Pathfinding in Navigation Mesh

Xiao Cui and Hao Shi,

Victoria University, School of Engineering and Science, VIC, AUSTRALIA

Summary
Pathfinding is a fundamental problem that most commercial
games must deal with. Due to the increase in game complexity,
early solutions to the problem of pathfinding were soon
overwhelmed. A* alone, a classic search algorithm, is no longer
sufficient to provide the best solution. The popularization of
using navigation mesh in pathfinding makes A* search a very
small proportion of pathfinding implementation. In this paper, it
systematically reviews the entire process of using a navigation
mesh to find an optimal path. First a general pathfinding solution
is described. Then examples of using A* in a navigation mesh
are given. Additionally, implementation details of using funnel
algorithm in both triangulation and polygonization are given,
which is a major contribution of this paper.
Key words:
Pathfinding, A*, navigation mesh, triangulation, funnel
algorithm

1. Introduction

For most commercial games, especially real-time strategy
games, gameplay experience heavily relies on a brilliant
artificial intelligent system. Pathfinding, as a fundamental
part of artificial intelligence, is critical to the success of a
game. In this multi-billion-dollar industry, game designers
have put enormous amount of efforts to improve the
pathfinding performance. As a computational intensive
task, pathfinding often requires huge amount of
computational resources. However, in practice, the major
part of these resources is allocated to graphics. Because
only limited CPU time and memory space are available, it
is very important to improve efficiency of a pathfinding
solution.

Navigation mesh is a technique to represent a game world
using polygons. Due to its simplicity and high efficiency
in representing the 3D environment, navigation mesh has
become a mainstream choice for 3D games. According to
the number of sides of polygons, navigation mesh can be
categorized into triangulation and polygonization.
Implementation details of using funnel algorithm in both
of them are given. A general pathfinding solution is
described in Section 3 and intuitive examples of
pathfinding in both triangulation and polygonization are
given in Section 4.

2. Pathfinding

Generally speaking, pathfinding is a process of
determining a set of movements for an object from one
position to another, without colliding with any obstacles in
its path. Obviously, selecting a reasonable path for each
moving object is often considered the most fundamental
artificial intelligence task in a commercial game.

A ‘reasonable’ path must have two properties. The first
property is called validity which is the most common
measure to indicate whether or not the path is collision
free. The second property is called optimality which is
measured normally by either a distance metric or the time
required for travelling through the path. Using a distance
metric, an optimal path is simply the shortest path. It
means the distance between start and goal in such a path is
no greater than any other routes. It is an intuitive
requirement. For example, if someone travels from
London to Pairs, a route passing through New York would
not be considered optimal.

Time is another widely used measure. It defines an optimal
path as the fastest route. Simply it means the time required
for an optimal path to be travelled through is always less
than any other routes. In most cases, the shortest path is
often the fastest one. . However, there are some special
cases. For example, when travelling between two locations,
the travel time for following a highway is obviously less
than it for driving on a rough road even the distance may
be shorter. In the context of commercial games, measuring
optimality by time is a better choice, especially in real-
time strategy games such as StarCraft and Age of Empires,
where the time to reach a destination is more important
than the distance travelled.

Regarding efficiency of a pathfinding solution, generally it
is measured by execution time and memory usage.
According to existing research, finding a nearly optimal
path only requires a small part of the resources that are
needed to find an exactly optimal path. As commercial
games often impose strict requirements on both execution
time and memory usage, finding an exactly optimal path is
not always worthwhile. As long as the path appears
‘reasonable’, a suboptimal approach is usually acceptable.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

49

3. Approach to pathfinding

Generally speaking, finding an optimal path for a game
character requires at least 3 stages. At the 1st stage, a game
world is transformed into a geometric representation such
as a navigation mesh. There are many ways to approach
but they are not discussed in this paper. Once a navigation
mesh is generated, no matter it is a triangulation or a
polygonization, at stage 2 A* search is performed in such a
mesh. Because A* search could not give a real path (see
Section 4.1 for detail), further processes are required to
find a real path, which is the 3rd stage. A popular
algorithm, simple stupid funnel algorithm, is used to
overcome the issue. Demonstrations of the simple stupid
funnel algorithm in both triangulation and polygonization
are given in Section 4.2 and Section 4.3 respectively.

4. Navigation Mesh

Navigation Mesh (NavMesh) is a method for representing
a game world using polygons. Polygons on a NavMesh
must be convex. The properties of a convex polygon could
guarantee a free-walk for a game character as long as such
a character stays in the same polygon [1]. Triangulation is
a special case of NavMesh as all of its polygons on the
NavMesh are triangles. In most cases, the number of sides
of polygons on a NavMesh varies from 3 to 6; as in
practice, over 6 could result in a significant increase in
memory usage [2].

4.1 A* in a NavMesh

Below is a brief example of how A* works in a NavMesh.
Let G be a graph with P polygons which are walkable and
B polygons which are blocked as shown in Fig. 1.

Figure.1 Construct a NavMesh

First, we must find a set of polygons 𝐶 ⊆ 𝑃 where an
optimal path will go through. If Ps is the polygon where
the start is, then Ps must be the first polygon in C. If Pg is
the polygon where the goal is, then Pg must be the last
polygon in C. To find the remaining parts of C, we must
make some changes in the map. Each polygon in G is

mapped to a node in G’. For instance, Ps is mapped to Ns
and Pg is mapped to Ng. Each edge shared by two
polygons in G is mapped to an edge connecting two nodes
in G’ as shown in Fig. 2.

Figure.2 Transform polygons to nodes

Then, an optimal path p from Ns to Ng in G’ can be found
with A*. As each node in G’ corresponds to a polygon in
G, each node in p corresponds to a polygon in C as shown
in Fig. 3.

Figure.3 Run standard A*

C is not a real path; instead, it is a set of polygons. Fig. 4
illustrates three different ways to find a real path in C. No
matter which method we use, none of them could
guarantee an optimal path. Thus, further process is
required.

Along polygon

centroid

Along edge midpoint

Along obstacle

corners

Figure.4 Three different ways to find a pathin C

4.2 Triangulation

Triangulation is a special case of NavMesh where
polygons are replaced with triangles. The minimum angle
of a triangle must be maximized. This property guarantees

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 50

an optimal path will not cross any triangle more than once
[3]. Using A* alone could not yield a real path in a
triangulation; instead, a set of triangles with a start and a
goal is given. A channel is formed, a simple polygon with
start and goal as two nodes and which traces perimeter of
triangles in between as shown in Fig. 5. We aim to find a
real path within it to use for object motion.

Figure.5 Construct a funnel

For a point object, such path could be found with funnel
algorithm in linear time [3]. Instead of describing the
original funnel algorithm, here we prefer to present a
simplified version, simple stupid funnel algorithm (SSF)
which was first time introduced by Mononen in 2010 [4].

For example, as shown in Fig. 5, a channel is formed from
8 triangles with 7 line segments. A funnel is constructed
using the node s (s represents the start) and the endpoints
(v1and v2) of the first line segment (from left to right). sv2������⃗
represents the left funnel edge and sv1������⃗ represents the right
funnel edge. Assume v2 is the left node and v1 is the right
node. Then, the next left and right nodes are v2 and v3
respectively. The rest could be done in the same manner.

Figure.6 Update the funnel

All of the left nodes are represented by solid circles and all
of the right nodes are represented by hollow circles. If the
next left and right nodes are inside the funnel, for instance
as shown in Fig. 5, v2 and v3 are both inside the funnel,
simply narrow the funnel as shown in Fig. 6. If the next
left node is outside the funnel, do not update the funnel.

Figure.7 Finding the turning point on the path

If the next left node is over the right funnel edge, for
instance as shown in Fig. 7, v8 is over the right edge, set
v3 as an apex in the path and construct a new funnel using
v3, v4 and v5 and restart the above steps as shown in Fig.
8.

Figure.8 Restart the search

The same logic goes for right nodes as well. These steps
are repeated until all the line segments are processed. Then,
a shortest path from s to g is found. Instead of using a
double-ended queue in the original funnel algorithm, SSF
runs a loop and restarts the loop from earlier location when
new apex is added. Some line segments may be calculated
more often than others because of the restart, but the
calculations are too simple to impair the execution time.
This simplified version is much easier to implement and in
practice is even faster as well [4]. Compared with the
original funnel algorithm where a triangulation is required
[3], SSF provides the possibility to be deployed in a
polygonization.

4.3Polygonization

If a NavMesh is not a triangulation, it must be a
polygonization. Such a NavMesh must have a property of
at least one of its polygons that the number of sides is
greater than 3. All polygons on a NavMesh must be
convex. This property guarantees a game character could
move anywhere it likes to in a straight line as long as it
stays in the same polygon. A* alone could not generate a

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

51

real path as stated before; instead, a series of polygons are
given. Similar with pathfinding in a triangulation, SSF can
be used to find a real path in the channel. As described in
Section 4.2, apexes can be found by analyzing the relative
position between nodes and edges. Thus, being able to
identify the left or right nodes correctly is critical to SSF.

In a triangulation, the left and right nodes can be easily
found. For example, as shown in Fig. 5, v3 is a right node
because v2 is a left node which is set at the beginning. As
v3 is a right node, v4, another endpoint in the same line
segment with v3, must be a left node. However, in a
polygonization, it is slightly different. In a polygonization,
as long as the vertices in the polygons are stored in a
counter clockwise (CCW) order, the first vertex on the line
segment is always the right node and the second vertex,
another endpoint on the same line segment, is always the
left node.

Figure.9 Identify the left and right nodes

The difference is as shown in Fig. 9, setting v2 is the left
node and v1 is the right node. Then, the endpoints v3 and
v4 on the second line segment are the right and left nodes
respectively. Once the next left and right nodes are
identified, the remaining steps are exactly the same as SSF
in a triangulation, where the relative positions between the
left and right nodes and the funnel edges are used to
identify the apexes on the optimal path.

A polygonization provides a possibility to use fewer large
polygons to represent a game world. Especially, in real-
time strategy games, large open areas are everywhere. In
this case, a large polygon could cover the whole open area
while a triangle could not able to cope due to its geometric
properties. Regarding efficiency, using fewer large
polygons could reduce both memory footprint and search
space, especially the reduction in the search space could
significantly speed up the search.

5. Conclusion

This paper reviewed a general approach to finding an
optimal path in a navigation mesh and illustrated how to

achieve it in both triangulation and polygonization. The
solution described in this paper is an A* search with
funneling based on a navigation mesh. Although SSF is
applicable to both of triangulation and polygonization, a
further modification is required when identifying the left
and right nodes in a polygonization. A major contribution
of this paper is to give implementation details of both of
them in an intuitive way. Further work is required to
explore applicability of both of triangulation and
polygonization to classic game maps as well as compare
their performances.

References

[1] S. Rabin, “A* speed optimizations”, in Game Programming
GEMS, pp.264-271, Charles River Media, America, 2000

[2] M. Mononen, “Recast and Detour, a navigation mesh
construction toolset for games”,
http://code.google.com/p/recastnavigation/, accessed
September 20, 2012.

[3] D. Demyen and M. Buro, “Efficient triangulation-based
pathfinding”, in the 21st National Conference on Artificial
Intelligence, pp.942-947, Boston, 2006.

[4] M. Mononen, “Simple stupid funnel algorithm”,
http://digestingduck.blogspot.com.au/2010/03/simple-
stupid-funnel-algorithm.html, accessed August 4, 2012.

Xiao Cui is a Ph.D student in School of
Engineering and Science at Victoria
University, Australia. He completed his
master degree in the area of Software
Engineering at Australian National
University and obtained his Bachelor of
Computer Science degree at Victoria
University. His research interests include
game artificial intelligence and social
network computing.

Hao Shi is an Associate Professor in
School of Engineering and Science at
Victoria University, Australia. She
completed her PhD in the area of
Computer Engineering at University of
Wollongong and obtained her Bachelor of
Engineering degree at Shanghai Jiao Tong
University, China. She has been actively
engaged in R&D and external consultancy
activities. Her research interests include

p2p Network, Location-Based Services, Web Services,
Computer/Robotics Vision, Visual Communications, Internet and
Multimedia Technologies.

http://code.google.com/p/recastnavigation/
http://digestingduck.blogspot.com.au/2010/03/simple-stupid-funnel-algorithm.html
http://digestingduck.blogspot.com.au/2010/03/simple-stupid-funnel-algorithm.html

