
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

121

Manuscript received December 5, 2012
Manuscript revised December 20, 2012

Creation and Static Verification of Extended Automata
Knowledge Base

Germanas Budnikas, Tadeuš Lozovski and Miroslav Šeibak

Faculty of Economics and Informatics in Vilnius, University of Bialystok, Lithuania

Summary
The paper presents a technique for creation and static verification
of extended automata knowledge base that is expressed in a form
of productions and predicates. This knowledge representation is
natural for a human. Such knowledge base is understandable for
a domain expert too, while specification language might be
complex for reading. The constructed knowledge base is verified
to ensure satisfaction of its static properties — absence of
redundancy, ambivalence and deficiency. The static verification
is performed in these steps: productions and predicates of the
knowledge base are transformed to lexicographically ordered
decision tables; then the decision tables are checked for presence
of anomalies that are counter-examples of the general static
properties the knowledge base should satisfy. Static verification
is performed in Prologa system. Statically verified extended
automata knowledge base is intended for development of
extended automata based specifications. A case study of Internet
Cache Protocol illustrates suggested in the paper technique.
Key words:
Extended automata, knowledge base, static verification,
decision table.

1. Introduction

Formal methods and specification languages are widely
used for design of distributed systems. The most popular
formal specification languages being used for description
of distributed systems are Promela, SDL, Estelle [1]. Some
analysed applications might be complex and its analysis
can be difficult. Participation of a domain expert in the
development and analysis of a specified application might
be complicated due to unfamiliarity to the used
specification language.
A knowledge based approach has several advantages in
that problem. First, knowledge representation by
production rules when situations are represented by IF-
THEN rules is very usual and easy to understand.
Knowledge bases can be enhanced with a formal model in
order to make easier its construction as well as provide its
correctness analysis. Such knowledge bases can be later
transformed to formal specifications in order to perform
more comprehensive analysis as it was done in [2]. In this
paper an extended automata model [3] is used as a
knowledge base formal model, which is a background of
the most popular specification languages of distributed
systems. Correctness of the knowledge base is ensured

through performing its static verification. A static
verification as an analysis step has such an advantage that
it does not require execution of the constructed problem
description, i.e. a knowledge base. Moreover, the analysis
of description fragments becomes possible.
Extended automata knowledge base KBeA is created using
the knowledge acquisition technique that was adapted for
the creation of the specific knowledge base—the one,
which is intended for mapping to extended automata based
formal specification (a mapping is not covered in this
paper). Knowledge about a problem domain is represented
in a knowledge base in the context of the extended
automata model. As a tabular representation is very close
to production rule representation [4] and decision table
verification method is computerised in software system
Prologa, KBeA production rules are transformed to Prologa
decision tables to perform static verification automatically.
The Prologa system is an interactive design tool for
computer-supported construction and manipulation of
decision tables. The system offers design techniques and
additional features to enhance the construction and
validation of decision table [5]. The verification in Prologa
is implemented using the tabular verification method [6]
that belongs to a group of static verification methods. The
transformation to Prologa decision tables is specific with
respect to extended automata model. Production rules are
transformed to decision tables of certain groups thus
enabling to fully exploit advantages of tabular
representation to perform static verification. Further, a
verified KBeA can be used for creation of extended
automata model based specifications, although this last
stage is not covered in the paper.
A distinctive feature of the approach is the fact that
verification task is performed before the creation of
extended automata model based specification.
The proposed technique is similar to the one proposed by
Fuchs and Schwitter [7] in such a way that they also offer
transformation of problem domain description to
representation structures and then to an executable
language. However, the proposed technique checks
general properties during verification while Fuchs and
Schwitter technique checks specific invariant properties.
The proposed and Mi & Scacchi [8] approaches are
comparable in a viewpoint they both offer checking static
properties. General structures of predicates and rules of

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 122

knowledge base are defined in both approaches too. The
approach proposed in the paper is similar to those [9, 10]
since they all use decision tables for representation of
state-based systems. Mappings between productions and
decision tables in order to elaborate advantages of tabular
representation are used in the suggested in the paper and
Chambers and Parkinson [11], approaches. The suggested
approach as well as many others, examples of which are
[12, 13], exploit advantages of tabular representation in
order to perform verification by transforming certain
representation to decision tables. When performing static
verification, results of Vanthienen et al [5, 6] are being
used.
An applicability of the proposed technique is defined by
the applicability of the extended automata model and its
specifications. They are mostly used for formal
specification and analysis of distributed systems. The
technique was investigated while creating and analysing
static properties of a real sized application – Internet
Cache Protocol [14, 15]. The scalability of the proposed
technique is limited by software tool that is used for static
analysis. The limitation requirement for this tool is defined
in [5].
The paper is structured as follows. Section 2 describes
construction of extended automata knowledge base.
Section 3 presents static verification technique for analysis
of the extended automata knowledge base. Section 4
illustrates the proposed approach by analysing Internet
Cache Protocol model. Conclusions sum up the proposed
approach.

2. Creation of Extended Automata Knowledge
Base

Extended automata knowledge base uses production rule
representation. This representation is wide-spread due to
its easy acceptance by non-experienced users. Since most
of the common verification and validation problems in
rule-based systems can be solved using decision tables and
the tabular verification method is computerised in Prologa
system, in the suggested approach static verification will
be performed using this method. Thus, in order to perform
the static verification of the knowledge base, its production
rules have to be transformed to Prologa decision tables.
Additionally, as stated in [4], a decision table is equivalent
to a set of production rules, and their transformation to the
tables can be performed without too much effort.
Because the knowledge base is intended to use for
development of extended automata based specification, it
has to contain knowledge about the extended automata
model. To acquire this knowledge, the knowledge
acquisition technique [16] was applied. The following
knowledge about the extended automata model is used:

input and output signals, states, their parameters, timers,
conditions for state changes.
Next, examples of predicates and productions of the
extended automata knowledge base are given.

(Input
i
icc

jj
j

ii xxxa 1),

where ai – symbolic name of the ith automaton;
j

icc
jj xx ,,1  – components of input signal j

ix .

(State
i
dc

i
cc c

ii
c
iii ddwwa  11),

where
i
ccc

ii ww ,...,1 are timers of operations performed;
i
dcc

ii dd ,...,1 additional parameters.

The production rule that describes state change and
signal output after arrival of input signal has the following
general form:

IF (Input
i
icc

jj
j

ii xxxa 1)

 AND (State
i
dc

i
cc c

ii
c
iii ddwwa  11)

 AND (Aux
i
dc

i
cc c

ii
c
iii ddwwa  11)

THEN (State **** 11 i
dc

i
cc c

ii
c
iii ddwwa )

 AND (Output
j

occ
jj

j
ii xxxa 1

)
where (Aux

i
dc

i
cc c

ii
c
iii ddwwa  11) describes auxiliary

conditions
mpLCLC ,,1  to be satisfied for state change:

(Aux
i
dc

i
cc c

ii
c
iii ddwwa  11) ≡ LC1 AND|OR…AND|OR

mpLC , where mpni ,,1= – the number of additional
logical conditions for the m-th production rule that
describes state change.

3. Static Verification of Extended Automata
Knowledge Base

Most of the verification problems in rule-based systems
like redundant, ambivalent, categorised, cyclic or missing
rules, redundant conditions, and unused action parts may
be resolved using decision tables [5].
Suggested technique uses decision table representation for
static verification of extended automata knowledge base
since decision tables clearly demonstrate incompleteness
and inconsistency of knowledge [13] and software tool
Prologa assists verification process. Anomalies, which are
known as counter-examples of general properties, in
decision tables have direct correspondence to anomalies in
production rules that are being a part of the created
knowledge base.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 123

3.1 Static Anomalies in Rule Bases and Decision
Tables

A decision table formally is described as follows [6]:

{ }mSESESESE ,,, 21 = is a set of condition subjects, m
- number of condition subjects;

{ }mSDSDSDSD ,,, 21 = is a set of condition
domains. SDi - domain of the i-th condition, i.e. the set
of all possible values of condition subject SEi;

{ }mSBSBSBSB ,,, 21 = is a set of condition states.
{ }

iqiiii BBBSB ,2,1, ,,, = is an ordered set of qi

condition states kiB , . Each condition state is a logical
expression concerning elements of SDi, which
determines a subset of SDi such that the set of all these
subsets constitutes a partition of SDi;

{ }nVVVV ,,, 21 = is a set of action subjects;

{ }nVBVBVBVB ,,, 21 = is a set of action value sets.
{ }.,, −×=jVB is a set of possible values of action Vj,

where “×” denotes “execute the action”, “–”
denotes ”do not execute the action”, “.” – “action
execution is not defined”.

The decision table DT is a function from the Cartesian
product of the condition states to the Cartesian product of
the action values, by which every condition combination is
mapped onto action configuration: DT: SB1 × SB2 × … ×
SBm → VB1 × VB2 × … × VBn .

The most important criterion when distinguishing tables, is
the question whether all columns are mutually exclusive
(single hit versus multiply hit). In a single hit table, in
contrast to multiply hit table, each possible combination of
condition can be found in exactly one and only one
column. Single hit decision tables are also known
as lexicographically ordered DTs.

Definition [17]: Given an order i of each condition state

element from the set SBi ()mi ,1= between the elements in
the i-th row

iqiiiiii BBB ,2,1,  , let parts of
condition state elements ci,j (in the columns j and k) be
ordered as follows () jmjj ccc ,,2,1 ,,, ()kmkk ccc ,,2,1 ,,,  ,

and there is a row index i such that kiiji cc ,,  and for

 Anomalies
in decision tables in rule bases

 Redundancy

Redundant column
 Subsumed column pair Subsumed rule
 Duplicate column pair Duplicate rule
 Unsatisfiable column Unfirable rule
 Unsatisfiable condition value Unsatisfiable condition
Redundant row
 Irrelevant condition row
 Unreferenced action row Unused consequent

 Ambivalence

Ambivalent column pair Contradictory rules
Ambivalent action rows
 Circularity

Circular dependency Circularity

 Deficiency

Missing column Unused input
 Unused condition value Missing rule

Fig. 1 Relation between anomalies in decision tables and anomalies in

rule bases. Source: made by authors using [20] and [21].

()1,1 −= ih : khjh cc ,, = . If the columns in the DT are
arranged accordingly, we say that the DT
is lexicographically ordered.

The static anomalies are characteristics of a KBS that can
be evaluated without its execution. Such an evaluation is
often referred to as static or structural verification. During
static verification, a KB is checked for anomalies [18].
Preece and Shinghal [21] present a classification of the
anomalies that may be present in rule-based systems. It is
necessary to note the difference between an anomaly and
error. The anomaly indicates the existence of a possible
error. For contrast, the dynamic properties are those
characteristics of a rule-based system that can be evaluated
only by examining how the system operates at a run time.
The most common techniques of validation and
verification that have been developed for use on KBS are
identified in [19].

The following anomalies are distinguished: intra-tabular,
which occur in a single DT, and inter-tabular anomalies,
that originate from interactions between several DTs [20].
A relation between intra-tabular anomalies and anomalies
in rule bases is depicted in Figure 1. Using practical
experiments it was noticed, that in decision tables made of
extended automata knowledge base only intra-tabular
anomalies are possible. Anomalies of only that type are
being considered further.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 124

3.2 Transformation of Extended Automata
Knowledge Base Productions to Lexicographically
Ordered Decision Tables

A static verification of the created knowledge base is
performed using Prologa system in the proposed technique.
The system uses lexicographically ordered decision table
representation. Next, the suggested steps of transformation
of knowledge base productions to lexicographically
ordered decision tables are presented.

1. Productions that describe system functioning after event
occurrence (in case of input signal arrival or timer
expiration) are represented by single tables, which are
referred to as event master table.

2. Productions that describe an initial state, conditions of
event occurrences and signal interchange between
automata are represented by single tables too and are
referred to as auxiliary tables;

3. Predicates of antecedent part of a rule are written in a
form of condition subjects and condition states in a
decision table;

4. Condition subject states are determined with respect to a
problem description and the considered production rule;

5. Predicates of consequent part of a rule are written in a
form of actions in a decision table. Predicate State in the
rules that describe an initial state and timer expirations
as well as predicates Output, Input, Timer in all type
rules are written along with additionally
added “:=True” expression. In this way, a value that is
defined in an auxiliary table is passed to a master one
where this value is used.

6. If consequent parts of productions contain a pair of
assignments 1+= j

i
j

i dd and 1−= j
i

j
i dd , then before

transforming 1−= j
i

j
i dd assignment to decision table

action it is written in the following form: not
(1+= j

i
j

i dd), where j
id denotes parameter or variable.

Resulted decision tables are inspected in Prologa system
using decision table verification method that analyses its
different parts and comparing them. A verified KBeA can
be further transformed to extended automata based
specifications, e.g. Promela, SDL as it contains
components of its background model.

4. Case Study - Creation and Analysis of ICP
KBeA and Its Static Verification

A description of Internet Cache Protocol (ICP) is
presented in RFC 2186 [14] and RFC 2187 [15]
documents. The description consists of up to 30 pages and

was used for creation of KBeA of a protocol model. Below
a brief description is given.
ICP is a Web page caching protocol used to interchange
information about an existence of Web pages between
sibling caches. Wen caches communicate between
themselves by sending queries and replies in order to
gather information about the most appropriate location
from which to retrieve an object. The protocol is being
used in many software products [22].
A simplified view of the environment where ICP is used is
given in Figure 2. This architecture was used in the paper.
Internet network contains servers – caches that may
contain Web pages, which in their turn were requested by
local network computers (or other caches) – clients. These
servers are configured as a Local Cache or Parent Cache
depending on their physical allocation in a hierarchy of
computer networks. Local caches contain configurations
how they are connected to other local or parent caches.
To retrieve a Web page, a Client internet browser sends a
HTTP request using Hyper Text Transfer Protocol to a
Local Cache. The last, after message receiving, performs
such activities in the following order: (i) check a
syntactical correctness of the requested URL address; (ii)
check whether an address of a retrieved Web page is
closest than a Sibling Cache; (iii) check whether a client
retrieves a personal information; (iv) checks whether a
retrieved Web page belongs to a domain covered by a
Local Cache.
After performing these operations, a Local Cache searches
for a requested Web page in its repository. If failed, it
sends ICP requests to Sibling Caches and Parent Cache as
well as packets in order to evaluate a response time from a
Remote Server where the requested Web page is located
(ping command). Additionally, Local Cache sets a timer to
define a time to wait for the response after which
expiration; the ICP protocol chooses a Remote Server as a
source for Web page retrieval. Sibling Caches as well as
Parent Cache after reception of ICP request performs such
operations:

• check a syntactical correctness of the requested URL
address;

• check whether a request sender is authorised to access
Cache resources. If the access is restricted – a
corresponding ICP message is returned to a requester
and as well as a counter of access denied messages is
incremented. If the counter exceeds the defined
threshold, requests from such senders are ignored;

• calculation of the Web page size found in Cache
repository. Depending on ICP query parameters a
copy of the requested Web page can be sent out
together with a positive reply if it does not exceeds an
allowable message limit.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 125

Fig. 2 Internet Cache protocol architecture analysed in the paper. Source:
made by authors using [15].

Local Cache selects either a Sibling Cache or a Remote
Server depending on their response time. A fragment of a
created KBeA productions and decision tables used for
static verification are given below.

A part of conceptual description
KBeA predicates and productions

Local Cache LC inputs and input parameters

Arrived HTTP request from ClientA, where msg – a type of
message, mthd – a method, url – address of a retrieved Web
page, prgm – a sign, sender – sender IP address.

Input(LC,MsgFromClientA,msg,mthd,url,prgm,sender)
Local Cache is characterised by up to 40 parameters. For the
briefness, the predicate State_LC will be used instead of
predicate State (LC, …) naming all 40 parameters.

State change after arrival of input message
After arrival of a message from a Client which type is
Request to a non-occupied Local Cache, the Cache saves
parameters of the arrived message and starts syntax checking
of the requested URL address.

LC_R411a:
IF Input (LC,MsgFromClientA,msg,

mthd,url, prgm, sender)
 and State_LC

 and msg = Request
 and busy = False

THEN requester* = Sender
 and pragma* = prgm
 and method* = mthd
 and url_parsing* = Active
 and payload* = url
 and busy* = True and State_LC

Change of state after timer expiration
If search in a Cache has ended and both a retrieved Web page
has been found as well as Cache is not being updated either a
length of Cache queue is of a certain size then a retrieval of a
Web page from a Remote Server and its transmission to a
Client is starting.

LC_R561:
IF Timer(LC,Search_in_Cache)
 and State_LC
 and ((search_res =True and
 upd_timer =Passive)
 or (queue_len>=100))
THEN fetch_from* = RemoteServer
 and fetch_url* = Active
 and State_LC

If search in a Cache has ended and both a retrieved Web page
has been found as well as Cache is being updated and Web
page requester is a Client (Client A) then a retrieval of a Web
page from a Local Cache and its transmission to a Client is
starting.

LC_R563a:
IF Timer(LC,Search_in_Cache)
 and State_LC
 and search_res = True
 and upd_timer = Active
 and requester = ClientA
THEN fetch_from* = LocalCache
 and fetch_url* = Active
 and State_LC

If search in a Cache has ended and both a retrieved Web page
has been found as well as Cache is being updated and Web
page requester is a Client (Client B) then a retrieval of a Web
page from a Local Cache and its transmission to a Client is
starting.

LC_R563b:
IF Timer(LC,Search_in_Cache)
 and State_LC
 and search_res = True
 and upd_timer = Active
 and requester = ClientB
THEN fetch_from* = LocalCache
 and fetch_url* = Active
 and State_LC

Remote
Server

Parent Cache

Local
Cache

Sibling
Cache 1

Sibling
Cache 2

Client A Client B

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 126

Fig. 3. Prologa Decision Table Made of KBeA Productions. Decision Table Describes Activities After Search in Local Cache as Ended.

In order to perform static verification, ICP protocol model
KBeA productions and predicates was transformed to
Prologa system decision tables. A decision table that
corresponds to a set of productions
describing Search_in_Cache, is given below in Figure 3.
The table represents all productions that describe activities
after Search_in_Cache has ended while only a part of
them is presented in the paper. Some anomalies (or
counter-examples of general static properties) have been
detected during static verification; these are marked
directly on the Figure 3 and explained next.
Ambivalence – ambivalent action rows anomaly.
Production LC_R561 is described by 1,3,4 table columns;
and productions LC_R563a and LC_R563b are described
by 1 and 2 columns. Hence, condition parts of these rules
are overlapping. 1st action row of LC_R561
rule fetch_from*= RemoteServer as well as 14th action
row of the rules LC_R563a and LC_R563b fetch_from*=
LocalCache are ambivalent since different fetch-from
objects are specified at the overlapping conditions (see
table first column);

This anomaly is fixed by inserting additional
condition queue_len < 100 to the productions LC_R563a
and LC_R563b.
Redundancy – irrelevant condition row anomaly.
Productions LC_R563a and LC_R563b are described by
the same 1st table column and its 9th condition
subject requester is an irrelevant condition row– in spite of
possible values either ClientA or ClientB of this condition
item a set of performed actions is the same.
This anomaly is fixed by removing conditions related to
requester from aforementioned productions. Thus, a single
rule is obtained.
Redundancy – duplicated column pair anomaly. 5th
decision table column corresponds to two productions,
which are described by 5th and 7th decision rules (marked
in a bottom part of the Figure 3).
This anomaly is fixed by removing from KBeA a
duplicated production rule.
Deficiency – unknown action state anomaly. 8th column of
the decision table does not specify actions to be performed
in case of conditions, which are marked by a contour in
the Figure 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 127

The anomaly is fixed by supplementing KBeA with the
corresponding rule that specifies actions with respect to
the conditions marked out in the Figure 3.
After fixing these anomalies, the KBeA of the ICP protocol
model satisfies the general static properties – absence of
redundancy, ambivalence and deficiency.

5. Conclusions

Use of the proposed technique gives the following
advantages:
• creation of a model description is understandable by a

domain expert due to applied knowledge
representation;

• possibility to analyse completeness and consistency of
the description by performing its static verification;

• due to background model of the knowledge base - an
extended automaton, - it can be used further for
succeeding more comprehensive analysis of an
analysed problem domain.

References
[1] Rychwalski, P., Wytrębowicz, J. Unix streams generation

from a formal specification, 1-14 // Proc. of the 23rd IFIP
WG 6.1 International Conference "Formal Techniques for
Networked and Distributed Systems - FORTE2003",
H.Konig, M.Heiner, A.Wolisz (Eds.) Springer (2003)

[2] Budnikas, G. Application of knowledge-based techniques
for creation of ESTELLE/AG specifications. In proc. of the
International Conference Modelling and Simulation of
Business Systems, Eds. H. Pranevicius, E. Zavadskas, B.
Rapp. Kaunas, ,,Technologija” , 2003: pp. 172-176. ISBN
9955-09-420-6.

[3] Sharafi, M., Aliee, F.S., Movaghar, A. (2007). A Review on
Specifying Software Architectures Using Extended
Automata-Based Models. In International Symposium on
Fundamentals of Software Engineering. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg. 423-431;
ISBN: 978-3-540-75697-2

[4] Goedertier, S., Vanthienen, J. (2005) Rule-based business
process modeling and execution. In: Proceedings of the
IEEE EDOC Workshop on Vocabularies Ontologies and
Rules for The Enterprise. CTIT Workshop Proceeding
Series (ISSN 0929-0672)

[5] Vanthienen, J. (2000). Prologa v.5 User’s manual,
Katholieke Universiteit Leuven. 121 pp.

[6] Vanthienen, J., C. Mues, and G. Wets (1997). Inter-tabular
Verification in an Interactive Environment. In J. Vanthienen,
F.v. Harmelen (Eds.) Proc. 4th European Symposium on the
Validation and Verification of Knowledge Based Systems.
Katholieke Universiteit Leuven, pp. 155-165.

[7] Fuchs, N.E., R. Schwitter (1996). Attempto Controlled
English. In Proc. of the CLAW 96, The First International
Workshop on Controlled Language Applications,
Katholieke Universitet, Leuven, 26-27 March, 1996.

[8] Mi, P., W. Scacchi (1995). A Knowledge-based
Environment for Modeling and Simulating Software

Engineering Processes. IEEE Trans. on Knowledge and
Data Engineering, 2(3), 283-294.

[9] Arentze, T.A., Borgers, A.W.J., Timmermans, H.J.F. The
integration of expert knowledge in decision support systems
for facility location planning", Computers Environment and
Urban Systems, 19 (4), July-August, 1995: pp.227-247.

[10] Haughton H.. “Formal development of communications
software-a research project“, Mathematical Structures for
Software Engineering, based on the Proceedings of a
Conference, Clarendon Press, Oxford, UK (1991) p. 253-
274.

[11] Chambers, T.L., Parkinson, A.R. Knowledge representation
and conversion for hybrid expert systems", Journal of
Mechanical Design, 120 (3), September, 1998: pp.: 468-474.

[12] Colomb R., Chung C., “Very fast decision table execution
of propositional expert systems“, Eighth National
Conference on Artificial Intelligence, MIT Press,
Cambridge, MA, USA. 1990 vol.2, pp. 671-676.

[13] Degelder-J; Steenhuis-M, “A knowledge-based system
approach for code-checking of steel structures according to
Eurocode 3”, Computers-and-Structures. Jun 1998; 67 (5) :
347-355

[14] Wessels, D., K. Claffy. RFC 2186 - Internet Cache Protocol
(ICP), version 2. National Laboratory for Applied, Network
Research/UCSD. September 1997a.

[15] Wessels, D., K. Claffy. RFC 2187 - Application of Internet
Cache Protocol (ICP), version 2. National Laboratory for
Applied, Network Research/UCSD. September 1997 b.

[16] Russel, S., P. Norvig (2009). Artificial Intelligence—a
Modern Approach. Prentice Hall, Inc.

[17] Mues C. On the Use of Decision Tables and Diagrams in
Knowledge Modeling and Verification, PhD dissertation,
K.U. Leuven, 2002: 223 p.

[18] Meseguer, P., A. Preece (1996) Assessing the Role of
Formal Specifications in Verification and Validation of
Knowledge Based Systems. In Proc. 3rd IFIP International
Conference on Achieving Quality in Software, Chapman
and Hall. pp. 317-328.

[19] Preece, A. (2001). Evaluating Verification and Validation
Methods in Knowledge Engineering. In R. Roy (Ed.),
Micro-Level Knowledge Management, Morgan-Kaufman,
pp. 123-145.

[20] Vanthienen, J., C. Mues, A. Aerts. An illustration of
verification and validation in the modelling phase of KBS
development. Data & Knowledge Engineering 27, 1998: pp.
337-352.

[21] Preece, A., R. Shinghal. (1994). Foundation and Application
of Knowledge Base Verification. International Journal of
Intelligent Systems, 9, 683-702.

[22] Examples of ICP applications:
http://www.squid-cache.org/ ;
http://www.netapp.com/products/netcache/ ;
http://www.microsoft.com/isaserver/ ;
http://www.cisco.com/go/cache/ ;
http://www.novell.com/products/volera/ ;
http://www.bluecoat. com/ ; http://www.imimic.com/

http://www.imimic.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 128

Germanas Budnikas received the B.S.,
M.S. and Ph.D. degrees in Informatics
from Kaunas University of Technology in
1994, 1996 and 2004 respectively. His
research interests include artificial
intelligence, formal specifications, and
their static and dynamic analyses.

Tadeuš Lozovski received the M.E.
degrees, from Kaunas Technical University
in 1967. He received the Dr. Eng. degree
from Kaunas Technical University in 1985.
After working as a research assistant and
assistant professor (from 1991) in the Dept
of Solid State Electronics, Vilnius
University, and an associate professor
(from 1999) he received the Dr. Sc. degree
from Wroclaw Technical University

(Poland) in 2001, he has been a professor at Bialystok University
since 2007. His research interest includes nondestructive method
research surface potential thin semiconductor and dielectric layer.
He is a member of STIPL and SNPL Lithuania.

Miroslav Šeibak received the M.Sc.
degree from Vilnius University in
1986. He received the Ph.D. degree from
Vilnius University in 1993. After working
as a research assistant in the Department of
Differential Equations and Numerical
Analysis at Faculty of Mathematics and
Informatics, Vilnius University, he has
been an assistant professor at the Faculty of

Economics and Informatics of the University of Bialystok in
Vilnius since 2007. His research interest includes numerical
analysis.

