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Summary 
This paper presents an approach showing how first order 
predicate logic sentences can be used creating Estelle 
specifications. Some knowledge based techniques for creation of 
specifications are briefly introduced. Knowledge about Estelle 
specifications and its application are given too. An approach for 
application of first order predicate logic formulas to construct 
Estelle specifications is discussed — predicates and relations 
used to describe elements of an extended finite state machine and 
the specification language are described in detail. A mapping 
between predicate logic formulas and specification language 
constructs is defined for the use during specification construction 
process. In order to illustrate the approach explained in the paper, 
an alternating bit protocol model is used. 
Key words: 
Estelle specification, first order predicates, alternating bit 
protocol. 

1. Introduction 

There exist methods and software tools based on 
knowledge engineering techniques intended for the 
creation of formal specifications or programs. Their 
examples could be a suggested method that uses graphical 
and textual notations for the creation of formal 
specifications in logic from problem domain description 
[1]; Knowledge Based Software Assistant tool [2] that 
produces formal executable specifications; Acquisition of 
Requirements and Incremental Evolution of Specifications 
tool [3]; a system that translates semi-formal specifications 
to VDM [4].  
Formal specification languages such as Estelle, Promela 
and SDL are widely used designing distributed 
information processing systems [5]. In this paper it is 
shown how predicate logic formulas can be used to gather 
knowledge about a problem domain together with Estelle 
specification elements as well as how they could be 
applied for creation of the specification in Estelle language.  
Next, an introduction to Estelle specifications is given. 
Estelle specification language [6] is based on a model of 
an extended finite state machine [7]. For extending the last 
a programming language Pascal is used. The specification 
in Estelle language describes hierarchically structured 
system of non-deterministic components that interact using 
messages through bi-directional links between ports (so 
called interaction points). Each component is an entity of 
the module. The module is defined by a header and a body 

which is connected to that header. Interaction points of the 
module entities are connected with bi-directional channels. 
Each of such points has an associated to it an unlimited 
FIFO queue, which saves all messages sent to the module 
entity through this interaction point. A module body 
consists of the following sections: descriptions of 
initializations and descriptions of transitions. A description 
of constants, parameter types, variables, procedures and 
functions using a usual Pascal-style without any order 
make a description part. Description of a channel includes 
enumeration of all possible messages that can be 
transmitted through a given channel as well as types of 
parameters for each messages and name of roles that is 
assigned to each side of the channel, for example "sender" 
and "receiver" of messages. The initialization section 
defines initial values for some module variables. The 
transition section defines actions of a module. An internal 
behaviour of a module is characterized in terms of system 
states. The initial state is defined in the initialization 
section.  Each transition contains a condition for a state 
change as well as a transition action. The transition 
condition consists of one or several statements of the form 
from (a transition from one state to another), when (when 
an input signal arrives), provided (a logical condition for 
state change) and a delay (when a timer expires). A 
transition action consists of operator to and a transition 
block, which in its turn, consists of Pascal operators with 
some restrictions and special Estelle operators.  
Estelle specification languages likewise other popular 
languages — Lotos and SDL, which is considered as 
standard [8], is mainly used for specification and analysis 
of distributed system, for example — telecommunication 
protocols. 
The creation of Estelle specification consists of the 
following phases. Concepts and relations that characterise 
specification elements are elicited from a conceptual 
description. These main elements are modules, their 
interaction points, links, signals, states, variables. The first 
order predicate logic is used to describe these concepts and 
relations. The specification is constructed in two steps — 
during the first one, its structural part is defined; during the 
second one — the specification structure is filled with a 
behavioural description of how modules are interacting 
using defined mapping between described predicate logic 
sentences and specification language elements. The 
approach described in the paper is illustrated by creating 
Estelle specification of an alternating bit protocol using 
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first order predicate logic as a formalisation step towards 
the specification. 
The paper is structured as follows. Section 2 presents a 
definition of predicate logic sentences that describe 
elements of an extended finite state machine and Estelle 
specification constructs. These predicates and logical 
formulas are used to construct a structural part of the 
specification and are given in section 3. An approach is 
explored using well known illustrative example of an 
alternating bit protocol in section 4. Section 5 describes 
relation of the proposed approach to the closest 
investigations in the field. Conclusion sums up the paper. 

2. Definition of Predicate Logic Sentences for 
Estelle Specification 

Since a predicate logic sentences will be used for a 
creation of Estelle specifications, it has to contain 
knowledge about a specification structure and a related 
model to that specification — extended finite state 
machine. This model will be used as a framework 
according which knowledge will be extracted from an 
analysed system conceptual description. First order 
predicate logic can be used as a knowledge representation 
mean. 
Knowledge acquired in several stages. At the first one, 
targets of a developed predicate logic description are 
identified. They are the following: the first order predicate 
sentences will be used as an intermediate step to produce 
Estelle formal specification; knowledge about an analysed 
system as well as about the formal model related to the 
specification will be used. During the next stage, both the 
concepts and relations will be characterised. They are the 
following: 
• Concepts:  

a) Modules; their interaction points; links and their 
end points; 

b) Input and output signals, and their parameters; 
states, timers, variables. 

• Relations are: 
a) Interconnection between modules; 
b) Transition relations defining state changes; 

During the last stage the first order predicate logic is used 
for the description of concepts and relations, which were 
defined in the previous stage. The following main parts are 
introduced. 

1. Set of functions, which consists of arithmetic and 
logical operators: +, –, /, ×, not, =, <>. These 
operators are used for the description of state 
change.  

2. Predicates, which describe relations between 
variables.  

2.1. Predicates, which describe elements of some Estelle 
specification language constructs: 

• An identification of a system module — Module
( )iem , where emi – the i-th module ni ,1=  , n – 
number of modules in a system;  

• A description of the interaction point j
iiip  of the 

module emi - Ip ( ),, j
ii iipem  where ,,1,,1 ljni ==  

l – the number of interaction points in the i-th 
module.  

• A description of the elementary link lni and its 
end points 1

iep and 2
iep  Link ( )21,, iii epepln  , where 

ki ,1= , k - the number of elementary links in a 
system, 21, ii epep . 

• A description of an interconnection of two 
modules 

21
, ii emem , which are connected through 

their interaction points 1

1

j
iiip and 2

2

j
iiip -  

Connect ( )2
22

1
11

,,, j
ii

j
ii iipemiipem  ,  

where  ljrjkinii ,1,,1,,1,,1, 21321 ==== .  
•  A description of the j-th timer of the i-th module - 

Timer ( )jemi , . 

2.2. Predicates that describe elements of an extended 
finite state machine: 

• A predicate, which describes a module emi input 

signal j
isn  and its components 

j
icc

jj scvscv ,,1   

that arrives at the interaction point j
iiip , has the 

following view:  

 InputSignal 




 j

icc
jj

j
i

j
ii scvscvsniipem ,,,,, 1   , 

where ni ,1=  , j
icctlj ,1,,1 == .  

• Output signals and it components are described in 
the same way:  

 OutputSignal 




 j

occ
jj

j
i

j
ii scvscvsniipem ,,,,, 1   , 

where ni ,1= , j
occtrj ,1,,1 == .  

• State related variables are described using the 
predicate  

Variables 




 i

dcc
ii

j
ii dcvdcvccvem ,,,, 1   , 

where ni ,1= , j
iccv  corresponds to the j-th 

symbolic state label of the module emi  and 
i
dcc

ii dcvdcv ,,1  are variables. 
• A set of states of the module emi is described by 

the predicates: 
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 StateSet ( )t
i

s
ii ccvccvem ,, ,  

 CurrentState ( )s
ii ccvem ,  

where t
i

s
i ccvccv , correspond to symbolic labels of 

source and target states. Using the predicates of 
the form StateSet a set of all states together 
with their transitions are described, while 
predicate CurrentState defines current module 
state and obviously can be only one for a certain 
module.   

• An initial system module state is described using 
the logical formula:  

 Init ( )iem  →   

  CurrentState ( )s
ii ccvem ,  ∧   

  Variables 




 i

dcc
ii

s
ii dcvdcvccvem ,,,, 1  . 

Additional predicate has to be introduced for the 
description of dependencies of state change. Gating 
predicate that defines supplementary conditions for state 
changes can be written using predicate Gate, which truth 
depends on the truth of logical conditions 

mpLCLC ,,1 

that check values of state components: 

 Gate
m

i
dc

p
c
iii LCLCdcvdcvem ∧∧≡





  1

1 ,,, , 

where −= mpni ,,1 the number of logical conditions for 
the m-th formula that describes a state change. The number 
of Gate predicates used to describe a supplementary 
condition, when characterising a dependency, may be 
increased if the condition is written in the disjunctive 
normal form. Then predicate Gate will represent parts of 
the original condition written in the conjunctive normal 
form. This will cause an appearance of several formulas 
describing the same gating predicate but with different 
supplementary conditions. 

• Transition relations:  

Logical formula that describes the transition 
relation that depends on an input signal arrival 
and when an output signal is sent out is as 
follows:  
CurrentState ( )s

ii ccvem ,  ∧  StateSet 

( )t
i

s
ii ccvccvem ,,  ∧   

InputSignal 




 j

icc
jj

j
i

j
ii scvscvsniipem ,,,,, 1   ∧   

Variables 




 i

dcc
ii

s
ii dcvdcvccvem ,,,, 1   ∧   

Gate →




 i

dcc
iii dcvdcvem ,,, 1    

Variables 




 ′′

i
dcc

ii
t
ii vdcvdcccvem ,,,, 1   ∧  

OutputSigna )*,,*,*,*,( 1 z
occ

zz
z
i

z
ii scvscvsniipem   

 ∧   CurrentState ( )t
ii ccvem ,   

where variables marked with ‘*’ sign represent 
new values, ,,1,,1 ljni ==  [ ]rz ,1∈ .  
 
Other transition relations like state changes and a 
signal is not sent out is described in the same way 
although without corresponding predicates  
InputSignal  and  OutputSignal.  

 
• A logical formula that describes a signal 

transmission between two modules: 
Connect ( )∧t

kk
j

ii iipemoipem ,,,
1

 

OutputSignal →




 j

occ
jj

j
i

j
ii scvscvsnoipem ,,,,, 1   

InputSignal 




 j

occ
jj

t
k

t
kk scvscvsniipem ,,,,, 1  ,   

where [ ] [ ] [ ] [ ]ltrjnkni ,1,,1,,1,,1 ∈=∈∈  . 

Next section describes how the defined first order logic 
predicates and logical formulas are used for the creation of 
Estelle specifications.  

3  Creation of structural and behavioural 
descriptions of Estelle specification 

A creation of Estelle specifications can be comprised into 
two steps. At the first one — a structural part of Estelle 
specification is defined (see Fig. 1). It contains definitions 
of  

• channels "channel", its interaction points 
"by ..." and lists of transferred data; 

• modules "module" and its interaction points 
"ip";  

• blocks with definitions of 
- states and its variables "state", "var";  
- initial states "initialize";  
- transition relations "trans";  
- module interconnection "Connect". 
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specification abstract_ABP; 
 

channel CONN(Role1,Role2); 
  by Role1: 
    Packet(data: integer;  
        ack_bit: integer); 
  by Role2: 
    Ack(ack_bit: integer); 
 

module Sender activity; 
  ip iip: CONN(Role1)  
            individual queue; 
end; 
 

body SenderBody for Sender; 
 

  state S1, S2, S3; 
  var ...; 
 

  initialize to Si 
      begin 
        ... 
      end; 
  trans  
    from S2 to S3 
       begin 
 output iip.Packet(); 
       end; 
  trans  
    from S3 to S1 when iip.ACK  
      provided (...) 
        begin 
          ... 
        end;  
 

end; { SenderBody } 
 

modvar 
  S: Sender; 
  C: Canal; 
 

    initialize 
      begin 
        init S with SenderBody; 
        connect S.iip to C.iip1; 
        ... 
       end; 
end. 

Fig. 1 Example of structural part of Estelle specification.  
Source: made by author. 

While defining specification structural part, knowledge, 
which is stored in the following predicates  

Module(),  
Ip(),  
Link(),  
Connect(),  
StateSet(),  
Init, CurrentState()  

is used. 
During the second stage of the specification creation, a 
behavioural description of the specification is defined 
using the predicates  

InputSignal(), 
OutputSignal(), 
Gate(),  

and the formulas, which define state transitions. See the 
following table (table 1) for a detailed mapping. 

Table 1: Mapping between first order predicates and Estelle  
specification language constructs. 

Predicates Estelle specification 
language construct 

Module(), Ip() module, ip  
Link() channel, by  
Connect() connect   
StateSet() state  
Variables() var 
Init, 
CurrentState(Si) 

initialize to Si 

Gate() provided  
InputSignal() when  
OutputSignal() output 
Source:  made by authors. 

4  Alternating Bit Protocol Example 

In this section an illustration of the proposed approach is 
given. In the first subsection first order predicate logic 
description to be used for creation of Estelle specification 
is constructed. In the second subsection of this chapter, a 
constructed Estelle specification using previously defined 
predicates and logical formulas is presented.  

4.1 Creation of the First Order Predicate Logic 
Description of Alternating Bit Protocol  

Conceptual description of alternating bit protocol  

Protocol describes information transmission between two 
protocol entities – Sender and Receiver. Sender, after 
sending its package, starts a timer and waits for an 
acknowledgement. After timer expiration, Sender’s packet 
is re-sent. It is considered that packet transmission cycle is 
over when an acknowledgement is got. Each transmitted 
packet additionally has a number, which can be 0 or 1 (it 
defines the protocol name). Receiver sends an 
acknowledgement when gets a packet. It is considered that 
packets may be lost during their transmission. 

Predicate logic description 

Identified concepts and relations that were described 
earlier are suitable without changes. Knowledge defined in 
these stages is common for any domain because its 
predicates and logical formulas, in our case, are used for 
the solution of the same task—the creation of Estelle 
specification.  
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Predicates and formulas that were defined during the last 
knowledge acquisition stage (see section 2) that describe 
the considered example are presented below. Module 
Sender will only be presented here (module Channel will 
be used too where it is necessary to show a connection to 
the module Sender). 

Concepts and relations 
Predicatates and logical formulas 

System modules:  
Module (Sender), Module (Channel) 

Interaction points of modules:  
Ip (Sender, iip), Ip (Channel, iip1),  

Ip (Channel, iip2) 
Elementary links:  

Link (CONN, Role1, Role2) 
Interconnection of modules:  

Connect (Sender, iip, Channel, iip1),  
Connect (Channel, iip1, Sender, iip). 

Input signals: 
InputSignal (Sender, iip, ACK, ack_bit). 

InputSignal (Channel, iip1, PACKET, pck_bit). 
Output signals:  

OutputSignal (Sender, iip, PACKET, pck_bit), 
State related variables:  

Variables(Sender, S2, data, pck_bit) 
Set of states:  

StateSet(S1, S2), StateSet(S2, S3),  
StateSet(S3, S1), StateSet(S3, S2),  

CurrentState(S2). 
Initial system module state:  

Init(Sender) →   
pck_bit *= 0 ∧ CurrentState(S2) ∧  
Variables(Sender, S2, data, pck_bit). 

Transition relations: 
CurrentState(s) ∧  StateSet(S1, S2) →  

CurrentState(S2). 
S2→ S3 

CurrentState(s) ∧  StateSet(S2, S3) ∧  
Variables(Sender, s, data, pck_bit)→   

OutputSignal (Sender, iip1, PACKET, data,pck_bit)  ∧ 
Variables(Sender, S3, data, pck_bit) ∧ 

CurrentState(S3). 
S3→ S1 

CurrentState(s) ∧  StateSet(S3, S1) ∧  
InputSignal (Sender, iip, ACK, ack_bit) ∧  

Variables (Sender, s, data, pck_bit) ∧   
ack_bit = pck_bit →   

pck_bit*= 1–pck_bit  ∧  
Variables (Sender, S1, data, pck_bit) ∧  

CurrentState(S1). 
S3→ S2 

CurrentState(s) ∧  StateSet(S3, S2) ∧  

InputSignal (Sender, iip, ACK, ack_bit) ∧  
Variables (Sender, s, data, pck_bit) ∧   

ack_bit <> pck_bit →   
Variables (Sender, S2, data, pck_bit) ∧  

CurrentState(S2). 
S3→ S2 

CurrentState(s) ∧  StateSet(S3, S2) ∧  
Timer (Sender) ∧  

Variables (Sender, s, data, pck_bit) →   
Variables (Sender, S2, data, pck_bit) ∧  

CurrentState(S2). 
Logical formula that describes signal passing between two 
modules: 

Connect (Sender, iip, Channel, iip1) ∧   
OutputSignal (Sender, iip1, PACKET, data, pck_bit)→   

InputSignal (Channel, iip1, PACKET, pck_bit). 

4.2 Creation of the Behaviour Description for 
Alternating Bit Protocol Specification 

Presented in the previous section predicates and logical 
formulas are used to define Estelle specification structure 
as well as supplementing the structure with the 
behavioural description. Resulted fragment of the 
specification is presented below.  
specification ABP; 

channel CONN(Role1,Role2); 
  by Role1: 
    Packet(data: integer;  
        pck_bit: integer); 
  by Role2: 
    Ack(ack_bit: integer); 

module Sender activity; 
  ip iip: CONN(Role1) individual queue; 
end; 

body SenderBody for Sender; 

  state S1, S2, S3; 
  var data, pck_bit: integer; 

  initialize to S2 
      begin 
        pck_bit := 0 
      end; 
  trans  
    from S1 to S2 
      begin  
        { next message generating } 
      end; 
  trans 
    from S2 to S3 
       begin 
  output iip.Packet(m,pck_bit); 
       end; 
  trans  
    from S3 to S1 when iip.ACK  
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      provided (pck_ack = pck_bit) 
        begin 
          pck_bit:=1-pck_bit; 
        end;  
  trans  
    from S3 to S2 when iip.ACK  
      provided ( ack_bit <> pck_bit ) 
        begin end;  
  trans  
    from S3 to S2 delay(tmout) 
        begin end;  

end; { SenderBody } 

modvar 
  S: Sender; 
  C: Canal; 

    initialize 
      begin 
        init S with SenderBody; 
        connect S.iip to C.iip1; 
        ... 
       end; 
end. 

Resulted specification of the protocol can be used for 
verification experiment execution. A possible system for 
that is Verics [9]. 

5   Related Works 

The approach proposed in the paper is very close to the 
one, presented by Budnikas [10]. Budinikas uses 
production rule representation in order to create Estelle/Ag 
specifications that are based on piece-linear aggregate 
formalism  [11]. Estelle/Ag specifications are mainly based 
on Estelle specification syntax with the distinction that 
description of states and states transitions differ. In 
Estelle/Ag specifications states are defined using 
continuous and discrete state components. Continuous 
state components correspond to operations of an aggregate 
(analogy of a module in Estelle); state changes in the 
aggregate model (hence in Estelle/Ag specifications) are 
possible due to external events that are related to arrival of 
input signals (the same transition relation presents in 
Estelle) and due to internal events that are related to end of 
operations or timers (a change of state due to timer 
expiration is possible in Estelle too). Estelle/Ag 
specifications additionally contains definition of 
controlling sequences that permit to perform both 
simulation and verification tasks based on a single 
Estelle/Ag specification. Budnikas’ approach suggests 
performing validation experiments before creating 
Estelle/Ag specifications — the following general protocol 
properties are checked: completeness, boundedness, 
absence of static deadlocks and reachability.  

An approach of transformation of a piece-linear aggregate 
mathematical model to the first order predicate logic is 
presented in [12]. There, a description of an analysed 
system was done in terms of the piece-linear aggregate 
model using predicates and logical formulas. These 
formulas were compiled in Prolog in order to perform 
correctness analysis. The following properties were 
checked — completeness, boundedness, absence of static 
and dynamic deadlocks, reachability and customisable 
invariant properties.  

Conclusion 

The paper showed a possibility to create Estelle 
specifications using first order predicate logic. Predicate 
logic joined with extended finite state machine model can 
be considered as a formalisation step used to create formal 
Estelle specification. Analysis of the related work in the 
field let us formulate the succeeding investigations — to 
make an analysis of the constructed first order predicate 
description as it was done in [10, 12].  
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