
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

129

Manuscript received December 5, 2012
Manuscript revised December 20, 2012

Creation of Estelle Specifications Using Predicate Logic

Germanas Budnikas, Tadeuš Lozovski and Miroslav Šeibak

Faculty of Economics and Informatics in Vilnius, University of Bialystok, Lithuania

Summary
This paper presents an approach showing how first order
predicate logic sentences can be used creating Estelle
specifications. Some knowledge based techniques for creation of
specifications are briefly introduced. Knowledge about Estelle
specifications and its application are given too. An approach for
application of first order predicate logic formulas to construct
Estelle specifications is discussed — predicates and relations
used to describe elements of an extended finite state machine and
the specification language are described in detail. A mapping
between predicate logic formulas and specification language
constructs is defined for the use during specification construction
process. In order to illustrate the approach explained in the paper,
an alternating bit protocol model is used.
Key words:
Estelle specification, first order predicates, alternating bit
protocol.

1. Introduction

There exist methods and software tools based on
knowledge engineering techniques intended for the
creation of formal specifications or programs. Their
examples could be a suggested method that uses graphical
and textual notations for the creation of formal
specifications in logic from problem domain description
[1]; Knowledge Based Software Assistant tool [2] that
produces formal executable specifications; Acquisition of
Requirements and Incremental Evolution of Specifications
tool [3]; a system that translates semi-formal specifications
to VDM [4].
Formal specification languages such as Estelle, Promela
and SDL are widely used designing distributed
information processing systems [5]. In this paper it is
shown how predicate logic formulas can be used to gather
knowledge about a problem domain together with Estelle
specification elements as well as how they could be
applied for creation of the specification in Estelle language.
Next, an introduction to Estelle specifications is given.
Estelle specification language [6] is based on a model of
an extended finite state machine [7]. For extending the last
a programming language Pascal is used. The specification
in Estelle language describes hierarchically structured
system of non-deterministic components that interact using
messages through bi-directional links between ports (so
called interaction points). Each component is an entity of
the module. The module is defined by a header and a body

which is connected to that header. Interaction points of the
module entities are connected with bi-directional channels.
Each of such points has an associated to it an unlimited
FIFO queue, which saves all messages sent to the module
entity through this interaction point. A module body
consists of the following sections: descriptions of
initializations and descriptions of transitions. A description
of constants, parameter types, variables, procedures and
functions using a usual Pascal-style without any order
make a description part. Description of a channel includes
enumeration of all possible messages that can be
transmitted through a given channel as well as types of
parameters for each messages and name of roles that is
assigned to each side of the channel, for example "sender"
and "receiver" of messages. The initialization section
defines initial values for some module variables. The
transition section defines actions of a module. An internal
behaviour of a module is characterized in terms of system
states. The initial state is defined in the initialization
section. Each transition contains a condition for a state
change as well as a transition action. The transition
condition consists of one or several statements of the form
from (a transition from one state to another), when (when
an input signal arrives), provided (a logical condition for
state change) and a delay (when a timer expires). A
transition action consists of operator to and a transition
block, which in its turn, consists of Pascal operators with
some restrictions and special Estelle operators.
Estelle specification languages likewise other popular
languages — Lotos and SDL, which is considered as
standard [8], is mainly used for specification and analysis
of distributed system, for example — telecommunication
protocols.
The creation of Estelle specification consists of the
following phases. Concepts and relations that characterise
specification elements are elicited from a conceptual
description. These main elements are modules, their
interaction points, links, signals, states, variables. The first
order predicate logic is used to describe these concepts and
relations. The specification is constructed in two steps —
during the first one, its structural part is defined; during the
second one — the specification structure is filled with a
behavioural description of how modules are interacting
using defined mapping between described predicate logic
sentences and specification language elements. The
approach described in the paper is illustrated by creating
Estelle specification of an alternating bit protocol using

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

130

first order predicate logic as a formalisation step towards
the specification.
The paper is structured as follows. Section 2 presents a
definition of predicate logic sentences that describe
elements of an extended finite state machine and Estelle
specification constructs. These predicates and logical
formulas are used to construct a structural part of the
specification and are given in section 3. An approach is
explored using well known illustrative example of an
alternating bit protocol in section 4. Section 5 describes
relation of the proposed approach to the closest
investigations in the field. Conclusion sums up the paper.

2. Definition of Predicate Logic Sentences for
Estelle Specification

Since a predicate logic sentences will be used for a
creation of Estelle specifications, it has to contain
knowledge about a specification structure and a related
model to that specification — extended finite state
machine. This model will be used as a framework
according which knowledge will be extracted from an
analysed system conceptual description. First order
predicate logic can be used as a knowledge representation
mean.
Knowledge acquired in several stages. At the first one,
targets of a developed predicate logic description are
identified. They are the following: the first order predicate
sentences will be used as an intermediate step to produce
Estelle formal specification; knowledge about an analysed
system as well as about the formal model related to the
specification will be used. During the next stage, both the
concepts and relations will be characterised. They are the
following:
• Concepts:

a) Modules; their interaction points; links and their
end points;

b) Input and output signals, and their parameters;
states, timers, variables.

• Relations are:
a) Interconnection between modules;
b) Transition relations defining state changes;

During the last stage the first order predicate logic is used
for the description of concepts and relations, which were
defined in the previous stage. The following main parts are
introduced.

1. Set of functions, which consists of arithmetic and
logical operators: +, –, /, ×, not, =, <>. These
operators are used for the description of state
change.

2. Predicates, which describe relations between
variables.

2.1. Predicates, which describe elements of some Estelle
specification language constructs:

• An identification of a system module — Module
()iem , where emi – the i-th module ni ,1= , n –
number of modules in a system;

• A description of the interaction point j
iiip of the

module emi - Ip (),, j
ii iipem where ,,1,,1 ljni ==

l – the number of interaction points in the i-th
module.

• A description of the elementary link lni and its
end points 1

iep and 2
iep Link ()21,, iii epepln , where

ki ,1= , k - the number of elementary links in a
system, 21, ii epep .

• A description of an interconnection of two
modules

21
, ii emem , which are connected through

their interaction points 1

1

j
iiip and 2

2

j
iiip -

Connect ()2
22

1
11

,,, j
ii

j
ii iipemiipem ,

where ljrjkinii ,1,,1,,1,,1, 21321 ==== .
• A description of the j-th timer of the i-th module -

Timer ()jemi , .

2.2. Predicates that describe elements of an extended
finite state machine:

• A predicate, which describes a module emi input

signal j
isn and its components

j
icc

jj scvscv ,,1 

that arrives at the interaction point j
iiip , has the

following view:

 InputSignal 




 j

icc
jj

j
i

j
ii scvscvsniipem ,,,,, 1  ,

where ni ,1= , j
icctlj ,1,,1 == .

• Output signals and it components are described in
the same way:

 OutputSignal 




 j

occ
jj

j
i

j
ii scvscvsniipem ,,,,, 1  ,

where ni ,1= , j
occtrj ,1,,1 == .

• State related variables are described using the
predicate

Variables 




 i

dcc
ii

j
ii dcvdcvccvem ,,,, 1  ,

where ni ,1= , j
iccv corresponds to the j-th

symbolic state label of the module emi and
i
dcc

ii dcvdcv ,,1  are variables.
• A set of states of the module emi is described by

the predicates:

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

131

 StateSet ()t
i

s
ii ccvccvem ,, ,

 CurrentState ()s
ii ccvem ,

where t
i

s
i ccvccv , correspond to symbolic labels of

source and target states. Using the predicates of
the form StateSet a set of all states together
with their transitions are described, while
predicate CurrentState defines current module
state and obviously can be only one for a certain
module.

• An initial system module state is described using
the logical formula:

 Init ()iem →

 CurrentState ()s
ii ccvem , ∧

 Variables 




 i

dcc
ii

s
ii dcvdcvccvem ,,,, 1  .

Additional predicate has to be introduced for the
description of dependencies of state change. Gating
predicate that defines supplementary conditions for state
changes can be written using predicate Gate, which truth
depends on the truth of logical conditions

mpLCLC ,,1 

that check values of state components:

 Gate
m

i
dc

p
c
iii LCLCdcvdcvem ∧∧≡





  1

1 ,,, ,

where −= mpni ,,1 the number of logical conditions for
the m-th formula that describes a state change. The number
of Gate predicates used to describe a supplementary
condition, when characterising a dependency, may be
increased if the condition is written in the disjunctive
normal form. Then predicate Gate will represent parts of
the original condition written in the conjunctive normal
form. This will cause an appearance of several formulas
describing the same gating predicate but with different
supplementary conditions.

• Transition relations:

Logical formula that describes the transition
relation that depends on an input signal arrival
and when an output signal is sent out is as
follows:
CurrentState ()s

ii ccvem , ∧ StateSet

()t
i

s
ii ccvccvem ,, ∧

InputSignal 




 j

icc
jj

j
i

j
ii scvscvsniipem ,,,,, 1  ∧

Variables 




 i

dcc
ii

s
ii dcvdcvccvem ,,,, 1  ∧

Gate →




 i

dcc
iii dcvdcvem ,,, 1 

Variables 




 ′′

i
dcc

ii
t
ii vdcvdcccvem ,,,, 1  ∧

OutputSigna)*,,*,*,*,(1 z
occ

zz
z
i

z
ii scvscvsniipem 

 ∧ CurrentState ()t
ii ccvem ,

where variables marked with ‘*’ sign represent
new values, ,,1,,1 ljni == []rz ,1∈ .

Other transition relations like state changes and a
signal is not sent out is described in the same way
although without corresponding predicates
InputSignal and OutputSignal.

• A logical formula that describes a signal

transmission between two modules:
Connect ()∧t

kk
j

ii iipemoipem ,,,
1

OutputSignal →




 j

occ
jj

j
i

j
ii scvscvsnoipem ,,,,, 1 

InputSignal 




 j

occ
jj

t
k

t
kk scvscvsniipem ,,,,, 1  ,

where [] [] [] []ltrjnkni ,1,,1,,1,,1 ∈=∈∈ .

Next section describes how the defined first order logic
predicates and logical formulas are used for the creation of
Estelle specifications.

3 Creation of structural and behavioural
descriptions of Estelle specification

A creation of Estelle specifications can be comprised into
two steps. At the first one — a structural part of Estelle
specification is defined (see Fig. 1). It contains definitions
of

• channels "channel", its interaction points
"by ..." and lists of transferred data;

• modules "module" and its interaction points
"ip";

• blocks with definitions of
- states and its variables "state", "var";
- initial states "initialize";
- transition relations "trans";
- module interconnection "Connect".

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

132

specification abstract_ABP;

channel CONN(Role1,Role2);
 by Role1:
 Packet(data: integer;
 ack_bit: integer);
 by Role2:
 Ack(ack_bit: integer);

module Sender activity;
 ip iip: CONN(Role1)
 individual queue;
end;

body SenderBody for Sender;

 state S1, S2, S3;
 var ...;

 initialize to Si
 begin
 ...
 end;
 trans
 from S2 to S3
 begin
 output iip.Packet();
 end;
 trans
 from S3 to S1 when iip.ACK
 provided (...)
 begin
 ...
 end;

end; { SenderBody }

modvar
 S: Sender;
 C: Canal;

 initialize
 begin
 init S with SenderBody;
 connect S.iip to C.iip1;
 ...
 end;
end.

Fig. 1 Example of structural part of Estelle specification.
Source: made by author.

While defining specification structural part, knowledge,
which is stored in the following predicates

Module(),
Ip(),
Link(),
Connect(),
StateSet(),
Init, CurrentState()

is used.
During the second stage of the specification creation, a
behavioural description of the specification is defined
using the predicates

InputSignal(),
OutputSignal(),
Gate(),

and the formulas, which define state transitions. See the
following table (table 1) for a detailed mapping.

Table 1: Mapping between first order predicates and Estelle
specification language constructs.

Predicates Estelle specification
language construct

Module(), Ip() module, ip
Link() channel, by
Connect() connect
StateSet() state
Variables() var
Init,
CurrentState(Si)

initialize to Si

Gate() provided
InputSignal() when
OutputSignal() output
Source: made by authors.

4 Alternating Bit Protocol Example

In this section an illustration of the proposed approach is
given. In the first subsection first order predicate logic
description to be used for creation of Estelle specification
is constructed. In the second subsection of this chapter, a
constructed Estelle specification using previously defined
predicates and logical formulas is presented.

4.1 Creation of the First Order Predicate Logic
Description of Alternating Bit Protocol

Conceptual description of alternating bit protocol

Protocol describes information transmission between two
protocol entities – Sender and Receiver. Sender, after
sending its package, starts a timer and waits for an
acknowledgement. After timer expiration, Sender’s packet
is re-sent. It is considered that packet transmission cycle is
over when an acknowledgement is got. Each transmitted
packet additionally has a number, which can be 0 or 1 (it
defines the protocol name). Receiver sends an
acknowledgement when gets a packet. It is considered that
packets may be lost during their transmission.

Predicate logic description

Identified concepts and relations that were described
earlier are suitable without changes. Knowledge defined in
these stages is common for any domain because its
predicates and logical formulas, in our case, are used for
the solution of the same task—the creation of Estelle
specification.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

133

Predicates and formulas that were defined during the last
knowledge acquisition stage (see section 2) that describe
the considered example are presented below. Module
Sender will only be presented here (module Channel will
be used too where it is necessary to show a connection to
the module Sender).

Concepts and relations
Predicatates and logical formulas

System modules:
Module (Sender), Module (Channel)

Interaction points of modules:
Ip (Sender, iip), Ip (Channel, iip1),

Ip (Channel, iip2)
Elementary links:

Link (CONN, Role1, Role2)
Interconnection of modules:

Connect (Sender, iip, Channel, iip1),
Connect (Channel, iip1, Sender, iip).

Input signals:
InputSignal (Sender, iip, ACK, ack_bit).

InputSignal (Channel, iip1, PACKET, pck_bit).
Output signals:

OutputSignal (Sender, iip, PACKET, pck_bit),
State related variables:

Variables(Sender, S2, data, pck_bit)
Set of states:

StateSet(S1, S2), StateSet(S2, S3),
StateSet(S3, S1), StateSet(S3, S2),

CurrentState(S2).
Initial system module state:

Init(Sender) →
pck_bit *= 0 ∧ CurrentState(S2) ∧
Variables(Sender, S2, data, pck_bit).

Transition relations:
CurrentState(s) ∧ StateSet(S1, S2) →

CurrentState(S2).
S2→ S3

CurrentState(s) ∧ StateSet(S2, S3) ∧
Variables(Sender, s, data, pck_bit)→

OutputSignal (Sender, iip1, PACKET, data,pck_bit) ∧
Variables(Sender, S3, data, pck_bit) ∧

CurrentState(S3).
S3→ S1

CurrentState(s) ∧ StateSet(S3, S1) ∧
InputSignal (Sender, iip, ACK, ack_bit) ∧

Variables (Sender, s, data, pck_bit) ∧
ack_bit = pck_bit →

pck_bit*= 1–pck_bit ∧
Variables (Sender, S1, data, pck_bit) ∧

CurrentState(S1).
S3→ S2

CurrentState(s) ∧ StateSet(S3, S2) ∧

InputSignal (Sender, iip, ACK, ack_bit) ∧
Variables (Sender, s, data, pck_bit) ∧

ack_bit <> pck_bit →
Variables (Sender, S2, data, pck_bit) ∧

CurrentState(S2).
S3→ S2

CurrentState(s) ∧ StateSet(S3, S2) ∧
Timer (Sender) ∧

Variables (Sender, s, data, pck_bit) →
Variables (Sender, S2, data, pck_bit) ∧

CurrentState(S2).
Logical formula that describes signal passing between two
modules:

Connect (Sender, iip, Channel, iip1) ∧
OutputSignal (Sender, iip1, PACKET, data, pck_bit)→

InputSignal (Channel, iip1, PACKET, pck_bit).

4.2 Creation of the Behaviour Description for
Alternating Bit Protocol Specification

Presented in the previous section predicates and logical
formulas are used to define Estelle specification structure
as well as supplementing the structure with the
behavioural description. Resulted fragment of the
specification is presented below.
specification ABP;

channel CONN(Role1,Role2);
 by Role1:
 Packet(data: integer;
 pck_bit: integer);
 by Role2:
 Ack(ack_bit: integer);

module Sender activity;
 ip iip: CONN(Role1) individual queue;
end;

body SenderBody for Sender;

 state S1, S2, S3;
 var data, pck_bit: integer;

 initialize to S2
 begin
 pck_bit := 0
 end;
 trans
 from S1 to S2
 begin
 { next message generating }
 end;
 trans
 from S2 to S3
 begin
 output iip.Packet(m,pck_bit);
 end;
 trans
 from S3 to S1 when iip.ACK

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

134

 provided (pck_ack = pck_bit)
 begin
 pck_bit:=1-pck_bit;
 end;
 trans
 from S3 to S2 when iip.ACK
 provided (ack_bit <> pck_bit)
 begin end;
 trans
 from S3 to S2 delay(tmout)
 begin end;

end; { SenderBody }

modvar
 S: Sender;
 C: Canal;

 initialize
 begin
 init S with SenderBody;
 connect S.iip to C.iip1;
 ...
 end;
end.

Resulted specification of the protocol can be used for
verification experiment execution. A possible system for
that is Verics [9].

5 Related Works

The approach proposed in the paper is very close to the
one, presented by Budnikas [10]. Budinikas uses
production rule representation in order to create Estelle/Ag
specifications that are based on piece-linear aggregate
formalism [11]. Estelle/Ag specifications are mainly based
on Estelle specification syntax with the distinction that
description of states and states transitions differ. In
Estelle/Ag specifications states are defined using
continuous and discrete state components. Continuous
state components correspond to operations of an aggregate
(analogy of a module in Estelle); state changes in the
aggregate model (hence in Estelle/Ag specifications) are
possible due to external events that are related to arrival of
input signals (the same transition relation presents in
Estelle) and due to internal events that are related to end of
operations or timers (a change of state due to timer
expiration is possible in Estelle too). Estelle/Ag
specifications additionally contains definition of
controlling sequences that permit to perform both
simulation and verification tasks based on a single
Estelle/Ag specification. Budnikas’ approach suggests
performing validation experiments before creating
Estelle/Ag specifications — the following general protocol
properties are checked: completeness, boundedness,
absence of static deadlocks and reachability.

An approach of transformation of a piece-linear aggregate
mathematical model to the first order predicate logic is
presented in [12]. There, a description of an analysed
system was done in terms of the piece-linear aggregate
model using predicates and logical formulas. These
formulas were compiled in Prolog in order to perform
correctness analysis. The following properties were
checked — completeness, boundedness, absence of static
and dynamic deadlocks, reachability and customisable
invariant properties.

Conclusion

The paper showed a possibility to create Estelle
specifications using first order predicate logic. Predicate
logic joined with extended finite state machine model can
be considered as a formalisation step used to create formal
Estelle specification. Analysis of the related work in the
field let us formulate the succeeding investigations — to
make an analysis of the constructed first order predicate
description as it was done in [10, 12].

References

[1] Fuchs, N, Robertson, D.: Declarative Specification.
Knowledge Engineering Review (special issue on Logic
Engineering), Vol. 11(4), (1996) 317–331

[2] White, D.A.: The Knowledge Based Software Assistant: a
Program Summary. In: Knowledge Based Software
Engineering Proceedings (1991) 2–6

[3] Johnson, W.L., Feather, M.S., Harris, D.R.: The KBSA
Requirements/Specification Facet: ARIES. In: Knowledge
Based Software Engineering Proceedings (1991) 48–56

[4] d'Alameida, J., Achuthan, R., Radhakrishnam, T., Alagar,
V.S.: Transformation of Semi–Formal Specifications to
VDM. In: Knowledge Based Software Engineering '92
Proceedings (1992) 40–49

[5] Paweł Rychwalski, Jacek Wytrębowicz. Unix streams
generation from a formal specification, 1-14 // Proc. of the
23rd IFIP WG 6.1 International Conference "Formal
Techniques for Networked and Distributed Systems -
FORTE2003", H.Konig, M.Heiner, A.Wolisz (Eds.)
Springer (2003)

[6] Budkowski S., Dembinski P. An Introduction to Estelle: a
specification language for distributed systems // Computer
networks and ISDN Systems. - 1988, - Vol. 14, N.1 p.3-23

[7] G.J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003, ISBN
0321228626.

[8] Information Processing Systems - Open Systems Interaction
- ESTELLE: A Formal Description Technique based on an
Extended State Transition Model: International standard.
ISO 9074, 1989.

[9] P. Dembinski, A. Janowska, P. Janowski, W. Penczek, A.
Półrola, B. Woźna, M. Szreter, A. Zbrzezny: Verics: A Tool
for Verifying Timed Automata and Estelle Specifications.
Proc. of the 9th Int. Conf. on Tools and Algorithms for

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

135

Construction and Analysis of Systems. LNCS, vol. 2619,
278-283, Springer-Verlag, 2003.

[10] G. Budnikas. Application of knowledge-based techniques
for creation of ESTELLE/AG specifications. In proc. of the
International Conference Modelling and Simulation of
Business Systems, Eds. H. Pranevicius, E. Zavadskas, B.
Rapp. Kaunas, ,,Technologija” , 2003: pp. 172-176. (ISI
Proceedings) ISBN 9955-09-420-6.

[11] Pranevicius, H., Pilkauskas, V., Chmieliauskas, A.:
Aggregate Approach for Specification and Analysis of
Computer Network Protocols. Technologija, Kaunas (1994).

[12] H. Pranevicius, R. Ceponyte. Application of logic
programming based for validation of computers network
protocols aggregate specifications. Automatic and
computing technique. 1992, No.2, p.22-27.

Germanas Budnikas received the B.S.,
M.S. and Ph.D. degrees in Informatics
from Kaunas University of Technology in
1994, 1996 and 2004 respectively. His
research interests include artificial
intelligence, formal specifications, and
their static and dynamic analyses.

Tadeuš Lozovski received the M.E.
degrees, from Kaunas Technical University
in 1967. He received the Dr. Eng. degree
from Kaunas Technical University in 1985.
After working as a research assistant and
assistant professor (from 1991) in the Dept
of Solid State Electronics, Vilnius
University, and an associate professor
(from 1999) he received the Dr. Sc. degree

from Wroclaw Technical University (Poland) in 2001, he has
been a professor at Bialystok University since 2007. His research
interest includes nondestructive method research surface
potential thin semiconductor and dielectric layer. He is a member
of STIPL and SNPL Lithuania.

Miroslav Šeibak received the M.Sc.
degree from Vilnius University in
1986. He received the Ph.D. degree from
Vilnius University in 1993. After
working as a research assistant in the
Department of Differential Equations and
Numerical Analysis at Faculty of
Mathematics and Informatics, Vilnius
University, he has been an assistant

professor at the Faculty of Economics and Informatics of the
University of Bialystok in Vilnius since 2007. His research
interest includes numerical analysis.

