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Abstract: 
In cryptography, encryption is the process of 
transforming information referred to as plaintext using 
an algorithm (called a cipher) to make it unreadable to anyone 
except those possessing special knowledge, usually referred to as 
a key. The result of the process is information which is, referred 
to as ciphertext.  Stream ciphers are used to encrypt individual 
bits. This is achieved by adding a bit from a key stream to a 
plaintext bit.Generating the key stream is the therefore important. 
In this paper a soft computing based approach is proposed for 
generating keys to design a stream cipher for text encryption. 
Optimal weights for the sender and receiver used for the 
synchronization on the Tree Parity Machine(TPM)  neural 
network, are generated using a Genetic Algorithm(GA). 
Keywords:  
Key Generation, Stream Cipher, Genetic algorithm, Tree parity 
machine. 

1. Introduction 

Neural cryptography creates a  shared secret key based on 
synchronization of Tree Parity Machines (TPM) by 
mutual learning. Two neural networks trained on their 
mutual output bits synchronize to a state with identical 
time dependent weights. This has been used for creation of 
a secure cryptographic secret key using a public channel. 
A key stream is a group of characters denoting the keys 
for text encryption.  Once the key stream is generated an 
XOR operation is performed with the keys and the 
encoded plain text to obtain the encrypted text. 
Stream cipher is a symmetric key encryption where each 
bit of data is encrypted with each bit of key. The Crypto 
key used for encryption  is changed  dynamically  so that 
the cipher text produced is secure and difficult to crack.   
In synchronous Stream cipher the key stream is generated 
independent of plain or cipher text. The simplest form 
Synchronous stream cipher is called “One-time pad”, 
sometimes called Vernam Cipher [1]. . An One-time pad 
uses a key stream of completely random digits. Here one 
bit of the key stream is XOR with a bit of the plain text to 
get the cipher text for encryption . However, the key 

stream must be of the same length as the plaintext and 
generated from a truly random number generator.  This 
makes the system very cumbersome to implement in 
practice and as a result the One-time pad has not been 
widely used except for most critical applications.  
The modern stream ciphers use much smaller and 
convenient key (say 128 bits). Based on this key a   
pseudorandom key stream is generated which can be 
combined with plaintext digits in a similar fashion to the 
One-time pad. Only disadvantage here is that the key 
stream so obtained will be pseudorandom and not truly 
random. 
 Biham and Seberry [2]  proposed a fast and secure sream 
cipher for encryption. This method is based on a new kind 
of primitive, called Rolling Arrays. It also includes 
variable rotations and permutations. Sreelaja and Pai [3] 
proposed an Ant Colony Optimization (ACO)[4] based 
algorithm for key generation. The algorithm is based on 
the distribution of characters in the plain text.  
This paper proposes a soft computing based stream cipher 
method to encrypt data messages sent in a network. This 
approach makes use of GA and TPM to generate keys 
needed for encryption. The paper is organized as follows. 
Generation of secret keys using optimal weights is 
described in Section 2. Section 3, describes the 
implementation of Tree Parity Machine(TPM) network. 
Section 4 describes the security attack followed by the 
results in Section 5. 

2. Generation of Secret Keys Using Optimal 
Weights 

Neural cryptography is based on synchronization of 
TPM[4] by mutual learning. Here two identical dynamic 
systems (Neural Network) starting from different initial 
weights receive an identical input vector,  generate an 
output bit and are trained based on the output bit till they 
synchronize to a state with identical time dependent 
weights [5]. In this case the two parties A & B use their 
identical weights as secret key needed for encryption. This 
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has been used for creation of a secure cryptographic secret 
key over a public channel.  
In this paper, synchronization of tree parity machines by 
mutual learning process is achieved using a genetic 
approach. Here a best fit weight vector is found using a 
genetic algorithm described in the next section. 

2.1. Genetic Algorithm    

A Genetic Algorithm (GA) is a population based, 
probabilistic technique that operates to find a solution to a 
problem from a population of a possible solutions[6, 7]. In 
the evolution of the algorithm, the individuals of a given 
population interchange their genotypes, according to their 
fitness values and some probabilistic transition rules, in 
order to produce a new generation. The individuals in the 
new generation are then evaluated.  based on their fitness  
function  provided by the programmer, higher the fitness,  
higher the chance of being selected. These individuals 
then "reproduce" to create one or more offspring, after 
which the offspring are mutated randomly. This continues 
until a suitable solution has been found or a certain 
number of generations have passed, depending on the 
needs of programmer. In this paper  this algorithm has 
been used to generate the input weights for the tree parity 
machine. 
The generation of optimal weights using genetic algorithm 
comprises of the following steps-- initialization, selection, 
reproduction and termination as illustrated in Fig 1. To 
start with the initial population weight vector  is taken 
as set of random numbers in the range [-L, L]. The fitness 
function f(x) is assumed to be parabolic and is defined as, 
                 

 

 
The fitness value for each string in the population is 
calculated. Based on the fitness value, the most fitted 
strings from the population are selected using Roulette 
Wheel selection method. In roulette wheel selection, 
individuals are given a probability of being selected which 
is directly proportionate to their fitness. Two individuals 
are then chosen randomly based on these probabilities and 
produce offspring. On the selected string crossover and 
mutation are performed based on the Crossover rate (Pc) 
and Mutation rate (Pm) to generate new weights, which 
become the input for a further run of the algorithm.  This 
completes one cycle of GA process. If the termination 
condition is met, stop the iteration and the new population 
generated will be considered as the optimal solution. Fig 1 
shows the GA Cycle. 

 
Figure 1: GA Cycle 

3. Tree Parity Machine Implementation 

Synchronization of the tree parity machine Figure 2. using 
genetic algorithm  is achieved as described below: 

• Initialize  weight  values obtained from GA 
process  in range [-L, L] 

• Execute these steps until the full synchronization 
is achieved  

o Generate random input vector  (step 1) 
o Compute the values of the hidden 

neurons   
o Compute the value of the output neuron 

τ 
o Compare the values τ of both tree parity 

machines  
(i) Outputs are different go to 

step1  
(ii) Outputs are same: one of the 

following  learning rules is 
applied to the weights  

         
     Hebbian learning rule:  
 
                     

   Random walk:   
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In this case, only the hidden unit σ i which is 
identical to τ changes its weights If this training 
step pushes any component Wi out of the interval 
[–L,+L ] the component is replaced by +L or –L 
correspondingly. 

After the full synchronization is achieved , the 
weights  of both tree parity machines are 
same) . These weights  are used  by networks A 
and B as keys. 
                

 

           Figure 2: Tree Parity Machine 

3.1 Feed Back Mechanism 

Feedback mechanism has been designed to vary the length 
of the keystream generated as per user’s desire up to a 
fixed number of iterations. Here the synchronized weights 
of the previous iteration would become the input vectors 

 which is defined as follows : 

     

New set of optimal are now generated as described in 
section 2. The TPM is synchronized for this new set of 
inputs  and weights and a fresh set of synchronized 
weights is obtained which is appended to the previous  set 
of synchronized weights to obtain a key of larger length. 
Thus, the process will terminate after generating  the final 
key stream.  This feedback process of  generating the 
stream cipher of required length is depicted in Fig 3. 
 

   
Figure3: Feed Back Mechanism 

4. Security Attacks 

A Secure Key exchange protocol should have the 
following property: Any attacker E who knows all of the 
details of the protocol and all of the information 
exchanged between A and B should not have the 
computational power to calculate the secret key. The main 
problem of the attacker E is that the internal 
representations of A’s and B’s Tree Parity Machines are 
not known .As the movement of the weights depends on , 
it is important for a successful attack to guess the state of 
the hidden units correctly. Of course, most of the known 
attacks use this approach. More successful is the Flipping 
Attack strategy[8], in which the attacker imitates one of 
the parties, but in the step in which his output disagrees 
with the imitated party’s output, he negates (”flips”) the 
sign of one of his hidden units. The unit most likely to be 
wrong is the one with the minimal absolute value of the 
local field therefore that is the unit which is flipped.  

5. Results 

Generation of key and keystreams using the GA 
algorithm are discussed now. 

5.1. Generation of keys 

The above algorithm was implemented for a random input 
vector , of length 12, using random weights chosen  
with L  varying from 3 to 6. An optimal set of weights is 
obtained from the GA process which leads to a 
synchronized set of weights. Table 1. Compares the  
average number of iterations to synchronize the 
weightssing genetic approach with the random weight 
approach. A considerable reduction in the number of 
iterations is observed .[10] 
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TABLE 1 :   Average number of iterations with different weight range 
using Random and Genetic weights  obtained  over  100 samples. 

 

No. Of Iterations 

For  
Weight range 

Using 
Random 
weights 

Using Genetic 
weights 

3 350 150 

4 547 263 

5 923 300 

6 1185 650 

5.2 Generation of key stream 

The above algorithm  was implemented with the feed back 
mechanism to generate the key stream of desired length. 
The final key stream obtained is tested for randomness, 
which is  a probabilistic property. 
Once the keystream generated passes all these random 
tests, [11] it can be used for encryption purposes. If any of 
the tests fail, process has to be repeated, until a random 
sequence is obtained. 

5.3. Security Analysis:  

Here in this paper, it has been shown that flipping attack is 
not successful when the keystream is generated using a 
genetic algorithm. The result  is shown in Fig 3.  Here the 
attacker’s success probability  P is plotted as a function of 
L for the Flipping attack by using Random weights and 
Genetic weights.  In case of weights generated from GA 
the probability of success becomes very small as L 
increases. 

 
Figure 3: The attacker’s success probability P as a function of L, for the 
Flipping attack using Random weights and Genetic weights averaged 
over 100 samples. 
 

6.  Conclusions 

The TPM’s were successfully synchronized and the 
Feedback mechanism generated the required length of key 
stream, as per user’s desire within the limited iterations. 
Neural cryptography promises to revolutionize secure 
communication by providing security based on the 
fundamental laws of physics, instead of the current state of 
mathematical algorithms or computing technology. 
Therefore, genetic approach in neural cryptography for 
generating a key stream may lead to novel applications in 
the future. 
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