
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

149

Manuscript received December 5, 2012
Manuscript revised December 20, 2012

Design of Stream Cipher for Text Encryption using Soft
Computing based Techniques

S.Santhanalakshmi 1 , Sangeeta K 1, G.K.Patra2
1 Dept.of CS&E,AmritaVishwa Vidyapeetham, School of Engineering, Bangalore Campus Bangalore, India

2Centre for Mathematical Modelling and Computer Simulations, Council of Scientific and

Industrial Research, Bangalore-560037

Abstract:
In cryptography, encryption is the process of
transforming information referred to as plaintext using
an algorithm (called a cipher) to make it unreadable to anyone
except those possessing special knowledge, usually referred to as
a key. The result of the process is information which is, referred
to as ciphertext. Stream ciphers are used to encrypt individual
bits. This is achieved by adding a bit from a key stream to a
plaintext bit.Generating the key stream is the therefore important.
In this paper a soft computing based approach is proposed for
generating keys to design a stream cipher for text encryption.
Optimal weights for the sender and receiver used for the
synchronization on the Tree Parity Machine(TPM) neural
network, are generated using a Genetic Algorithm(GA).
Keywords:
Key Generation, Stream Cipher, Genetic algorithm, Tree parity
machine.

1. Introduction

Neural cryptography creates a shared secret key based on
synchronization of Tree Parity Machines (TPM) by
mutual learning. Two neural networks trained on their
mutual output bits synchronize to a state with identical
time dependent weights. This has been used for creation of
a secure cryptographic secret key using a public channel.
A key stream is a group of characters denoting the keys
for text encryption. Once the key stream is generated an
XOR operation is performed with the keys and the
encoded plain text to obtain the encrypted text.
Stream cipher is a symmetric key encryption where each
bit of data is encrypted with each bit of key. The Crypto
key used for encryption is changed dynamically so that
the cipher text produced is secure and difficult to crack.
In synchronous Stream cipher the key stream is generated
independent of plain or cipher text. The simplest form
Synchronous stream cipher is called “One-time pad”,
sometimes called Vernam Cipher [1]. . An One-time pad
uses a key stream of completely random digits. Here one
bit of the key stream is XOR with a bit of the plain text to
get the cipher text for encryption . However, the key

stream must be of the same length as the plaintext and
generated from a truly random number generator. This
makes the system very cumbersome to implement in
practice and as a result the One-time pad has not been
widely used except for most critical applications.
The modern stream ciphers use much smaller and
convenient key (say 128 bits). Based on this key a
pseudorandom key stream is generated which can be
combined with plaintext digits in a similar fashion to the
One-time pad. Only disadvantage here is that the key
stream so obtained will be pseudorandom and not truly
random.
 Biham and Seberry [2] proposed a fast and secure sream
cipher for encryption. This method is based on a new kind
of primitive, called Rolling Arrays. It also includes
variable rotations and permutations. Sreelaja and Pai [3]
proposed an Ant Colony Optimization (ACO)[4] based
algorithm for key generation. The algorithm is based on
the distribution of characters in the plain text.
This paper proposes a soft computing based stream cipher
method to encrypt data messages sent in a network. This
approach makes use of GA and TPM to generate keys
needed for encryption. The paper is organized as follows.
Generation of secret keys using optimal weights is
described in Section 2. Section 3, describes the
implementation of Tree Parity Machine(TPM) network.
Section 4 describes the security attack followed by the
results in Section 5.

2. Generation of Secret Keys Using Optimal
Weights

Neural cryptography is based on synchronization of
TPM[4] by mutual learning. Here two identical dynamic
systems (Neural Network) starting from different initial
weights receive an identical input vector, generate an
output bit and are trained based on the output bit till they
synchronize to a state with identical time dependent
weights [5]. In this case the two parties A & B use their
identical weights as secret key needed for encryption. This

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/Ciphertext

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 150

has been used for creation of a secure cryptographic secret
key over a public channel.
In this paper, synchronization of tree parity machines by
mutual learning process is achieved using a genetic
approach. Here a best fit weight vector is found using a
genetic algorithm described in the next section.

2.1. Genetic Algorithm

A Genetic Algorithm (GA) is a population based,
probabilistic technique that operates to find a solution to a
problem from a population of a possible solutions[6, 7]. In
the evolution of the algorithm, the individuals of a given
population interchange their genotypes, according to their
fitness values and some probabilistic transition rules, in
order to produce a new generation. The individuals in the
new generation are then evaluated. based on their fitness
function provided by the programmer, higher the fitness,
higher the chance of being selected. These individuals
then "reproduce" to create one or more offspring, after
which the offspring are mutated randomly. This continues
until a suitable solution has been found or a certain
number of generations have passed, depending on the
needs of programmer. In this paper this algorithm has
been used to generate the input weights for the tree parity
machine.
The generation of optimal weights using genetic algorithm
comprises of the following steps-- initialization, selection,
reproduction and termination as illustrated in Fig 1. To
start with the initial population weight vector is taken
as set of random numbers in the range [-L, L]. The fitness
function f(x) is assumed to be parabolic and is defined as,

The fitness value for each string in the population is
calculated. Based on the fitness value, the most fitted
strings from the population are selected using Roulette
Wheel selection method. In roulette wheel selection,
individuals are given a probability of being selected which
is directly proportionate to their fitness. Two individuals
are then chosen randomly based on these probabilities and
produce offspring. On the selected string crossover and
mutation are performed based on the Crossover rate (Pc)
and Mutation rate (Pm) to generate new weights, which
become the input for a further run of the algorithm. This
completes one cycle of GA process. If the termination
condition is met, stop the iteration and the new population
generated will be considered as the optimal solution. Fig 1
shows the GA Cycle.

Figure 1: GA Cycle

3. Tree Parity Machine Implementation

Synchronization of the tree parity machine Figure 2. using
genetic algorithm is achieved as described below:

• Initialize weight values obtained from GA
process in range [-L, L]

• Execute these steps until the full synchronization
is achieved

o Generate random input vector (step 1)
o Compute the values of the hidden

neurons
o Compute the value of the output neuron

τ
o Compare the values τ of both tree parity

machines
(i) Outputs are different go to

step1
(ii) Outputs are same: one of the

following learning rules is
applied to the weights

 Hebbian learning rule:

 Random walk:

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012

151

In this case, only the hidden unit σ i which is
identical to τ changes its weights If this training
step pushes any component Wi out of the interval
[–L,+L] the component is replaced by +L or –L
correspondingly.

After the full synchronization is achieved , the
weights of both tree parity machines are
same) . These weights are used by networks A
and B as keys.

 Figure 2: Tree Parity Machine

3.1 Feed Back Mechanism

Feedback mechanism has been designed to vary the length
of the keystream generated as per user’s desire up to a
fixed number of iterations. Here the synchronized weights
of the previous iteration would become the input vectors

 which is defined as follows :

New set of optimal are now generated as described in
section 2. The TPM is synchronized for this new set of
inputs and weights and a fresh set of synchronized
weights is obtained which is appended to the previous set
of synchronized weights to obtain a key of larger length.
Thus, the process will terminate after generating the final
key stream. This feedback process of generating the
stream cipher of required length is depicted in Fig 3.

Figure3: Feed Back Mechanism

4. Security Attacks

A Secure Key exchange protocol should have the
following property: Any attacker E who knows all of the
details of the protocol and all of the information
exchanged between A and B should not have the
computational power to calculate the secret key. The main
problem of the attacker E is that the internal
representations of A’s and B’s Tree Parity Machines are
not known .As the movement of the weights depends on ,
it is important for a successful attack to guess the state of
the hidden units correctly. Of course, most of the known
attacks use this approach. More successful is the Flipping
Attack strategy[8], in which the attacker imitates one of
the parties, but in the step in which his output disagrees
with the imitated party’s output, he negates (”flips”) the
sign of one of his hidden units. The unit most likely to be
wrong is the one with the minimal absolute value of the
local field therefore that is the unit which is flipped.

5. Results

Generation of key and keystreams using the GA
algorithm are discussed now.

5.1. Generation of keys

The above algorithm was implemented for a random input
vector , of length 12, using random weights chosen
with L varying from 3 to 6. An optimal set of weights is
obtained from the GA process which leads to a
synchronized set of weights. Table 1. Compares the
average number of iterations to synchronize the
weightssing genetic approach with the random weight
approach. A considerable reduction in the number of
iterations is observed .[10]

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.12, December 2012 152

TABLE 1 : Average number of iterations with different weight range
using Random and Genetic weights obtained over 100 samples.

No. Of Iterations

For
Weight range

Using
Random
weights

Using Genetic
weights

3 350 150

4 547 263

5 923 300

6 1185 650

5.2 Generation of key stream

The above algorithm was implemented with the feed back
mechanism to generate the key stream of desired length.
The final key stream obtained is tested for randomness,
which is a probabilistic property.
Once the keystream generated passes all these random
tests, [11] it can be used for encryption purposes. If any of
the tests fail, process has to be repeated, until a random
sequence is obtained.

5.3. Security Analysis:

Here in this paper, it has been shown that flipping attack is
not successful when the keystream is generated using a
genetic algorithm. The result is shown in Fig 3. Here the
attacker’s success probability P is plotted as a function of
L for the Flipping attack by using Random weights and
Genetic weights. In case of weights generated from GA
the probability of success becomes very small as L
increases.

Figure 3: The attacker’s success probability P as a function of L, for the
Flipping attack using Random weights and Genetic weights averaged
over 100 samples.

6. Conclusions

The TPM’s were successfully synchronized and the
Feedback mechanism generated the required length of key
stream, as per user’s desire within the limited iterations.
Neural cryptography promises to revolutionize secure
communication by providing security based on the
fundamental laws of physics, instead of the current state of
mathematical algorithms or computing technology.
Therefore, genetic approach in neural cryptography for
generating a key stream may lead to novel applications in
the future.

REFERENCES
[1] Charles Pfleeger, Shari Lawrence Pfleeger, Security in

computing, Third Edition 2003, pp 48, Prentice Hall of
India Pvt Ltd, New Delhi.

[2] Biham E, Seberry, “A Fast and Secure Stream Cipher”,
EUROCRYPT’ 05, Rump Session at the Symmetric the
Key Encryption Workshop SKEW 2005), 26-27. May
2005.

[3] Sreelaja.N.K and G.A.Vijayalakshmi Pai,” Swarm
Intelligence based key generation for Text encryption
in Cellular Networks”. IEEE Proceedings the Third
International Conference on System Software and
Middleware and Workshops, 2008.COMSWARE 2008. 6-
10. Jan. 2008. pp: 622 – 629.

[4] I.Kanter, W.Kinzel, E.Kanter, “Secure Exchange of
Information by Synchronization of Neural Networks”,
Europhys Lett 57, 141-147 (2002).

[5] Pravin Revankar, Dilip Rathod , Neural Synchronization
with queries, International conference on Signal
Acquisition and Processing 2010.

[6] Goldberg, D.E., “Genetic Algorithms in Search,
Optimization and Machine Learning”, Addison- Wesley.

[7] Amit Konar.” Computational Intelligence.Principles,
Techniques and Applications,Springer-Verlag Berlin
Heidelberg 2005

[8] E.Klein, R Mislovathy, I Kanter, A.Ruttor ,W.Kinzel,
“Synchronization of Neural Networks by Mutual Learning
and its Application to Cryptography”, Advances in
Neural Information Processing Systems, Volume 17, PP
689-696, MIT Press, Cambridge, MA,2005.

[9] Sreelaja.N.K, G.A.Vijayalakshmi Pai,“Design of Stream
cipher for Text Encryption using Particle Swarm
Optimization based Key Generation”. Journal of
Information Assurance and Security 4, 30-41(2009).

[10] S .Santhanalakshmi,TSB Sudarshan,G K Patra , “ Neural
Synchronization by Mutual Learning Using Genetic
Approach for Secure Key Generation”, Recent Trends
In Computer Networks and Distributed System,CCIS
Volume 335, PP 422-430, Springer-Verlag,2012.

[11] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid,
Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel,
David Banks, Alan Heckert, James Dray, San Vo, A
Statistical test suite for random and pseudorandom number
generators for Cryptographic Applications.

