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Summary 
FCM-type cluster validation is a technique for searching for the 
optimal fuzzy partition, in which the number of clusters is 
evaluated by considering the degree of overlapping of fuzzy 
memberships, cluster compactness or cluster separation. In this 
paper, a new approach for FCM-type cluster validation in fuzzy 
co-clustering is proposed. Because fuzzy co-clustering does not 
use cluster prototypes, cluster separation is evaluated without 
using the distances between cluster prototypes. In numerical 
experiment, the applicability of the new validity measure to 
collaborative filtering task is studied using a purchase history 
data.  
Key words: 
Fuzzy clustering, Co-clustering, Cluster validation, 
Collaborative filtering. 

1. Introduction 

Fuzzy c-Means (FCM) [1] is a basic model of 
unsupervised classification, in which each cluster is 
represented by a point-type cluster prototype and a pre-
defined number of clusters are estimated by an iterative 
algorithm. In order to search for the optimal fuzzy partition, 
the FCM algorithm is performed many times using 
different numbers of clusters and the best one is selected 
considering a cluster validity measure.  
Cluster validation has been widely studied in the FCM 
clustering context. First, the quality of fuzzy partitions was 
measure by the degree of crispness of fuzzy memberships 
such as Partition Coefficient (PC) [1] and Partition 
Entropy (PE) [2]. Second, the geometric feature of fuzzy 
partitions was employed for measuring the partition quality 
of prototype-based fuzzy clustering. Xie and Beni [3] 
considered the compactness and separateness of FCM-type 
clusters and proposed a cluster validity measure of the 
ratio of compactness and separateness. Several 
modifications of Xie-Beni index have been proposed [4-6]. 
Third, the cluster overlapping degree such as inter-cluster 
proximity [7] was adopted, which can be applied to 
unbalanced cluster densities by using fuzzy memberships 
only. We have still many other validation indices [8].  
Co-clustering (or Bi-clustering) is the technique for 
clustering of two-way data sets such as co-occurrence 
matrix. For example, such data sets are common in 

document-keyword co-occurrence information in 
document clustering, user-item purchase history in 
personalized recommendation problem, machining tool-
products relation in factory automation, and so on.  
Fuzzy clustering for categorical multivariate data (FCCM) 
[9] is an FCM-type co-clustering model, in which fuzzy 
partition of both users and items are estimated based on the 
FCM-like concept. The clustering criterion is given by the 
degree of aggregation to be maximized while different 
constraints are forced to the two memberships of users and 
items. Object memberships are forced to be exclusive in a 
similar manner with FCM, in which the sum of 
memberships w.r.t. clusters are 1 for each user. On the 
other hand, the sum of item memberships w.r.t. items are 
forced to be 1 in each cluster. So, item memberships only 
play a role for evaluating the relative responsibility of 
items in each cluster. This type of co-clustering model was 
proved to be useful in collaborative filtering tasks [10-12], 
in which several popular items can be shared by multiple 
clusters [13,14].  
In this paper, the cluster validation problem is studied in 
the FCM-type co-clustering context. First, the degree of 
crispness of fuzzy memberships such as PC and PE is 
directly applied to fuzzy co-cluster memberships. Second, 
a new compactness/separateness index is proposed so as to 
evaluate the pseudo-geometric feature of prototype-less 
fuzzy co-cluster partitions. The applicability of the new 
index is demonstrated with several artificial data sets 
followed by a numerical experiment of a collaborative 
filtering task. 
The remainder of this paper is organized as follows: 
Section 2 gives a brief review on the conventional FCM-
type cluster validity indices and co-clustering model. 
Section 3 discusses the applicability of the FCM-type 
validity indices and proposes a new validity index for 
FCCM. Section 4 presents several experimental results to 
demonstrate the characteristic features of the proposed 
index. Section 5 summarizes the conclusions of this paper. 
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2. FCM-type Cluster Validity Indices and 
Fuzzy Co-clustering Model 

2.1 FCM and Cluster Validity Indices 

FCM [1] tries to partition n samples (objects) ix , 
ni ,,1= into C fuzzy clusters, in which each instance is 

presented by multi-dimensional observation vector. 

Clusters are represented by prototypical centroids cb , 
Cc ,,1=  and the clustering criterion is given by the 

distance between samples and centroids in the multi-
dimensional space:  
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where ciu is the fuzzy membership of sample i in cluster c  
and θ is an exponential weight for fuzzification. The sum 
of ciu w.r.t. c  is constrained to be 1. Other fuzzification 
approaches such as entropy-based [15] and K-L 
information-based [16,17] have been also proposed.  
In order to select the optimal fuzzy partitions with 
plausible cluster numbers, many cluster validity indices 
have been proposed. Partition Coefficient (PC) [1] and 
Partition Entropy (PE) [2] measure the crispness of fuzzy 
memberships:  
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PC (PE) becomes smaller (larger) as fuzzy memberships 
become very fuzzy (ambiguous). So, the optimal partition 
can be the one having large PC (or small PE). Although the 
indices can directly measure the partition quality, the 
selected partition sometimes does not suit our human sense 
because they lack geometric feelings.  
Considering the geometric features, Xie and Beni [3] 
proposed a measure for evaluating both the compactness 
and separateness of fuzzy clusters:  
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where the numerator is the FCM objective function with 
2=θ and measures the compactness of clusters while the 

denominator measures the separateness of clusters. The 

optimal compact/separate cluster can be found by 
minimizing the Xie-Beni index.  

2.2 FCM-type Co-clustering 

Co-clustering is a technique for capturing the intrinsic 
cluster structures from co-occurrence information among 
objects and items. Assume that we have a similarity (co-
occurrence) matrix { }ijrR =  on objects ni ,,1=  and 

items mi ,,1= , and each element [ ]1,0∈ijr shows the 
similarity degree among user i and item j . Oh et al. [9] 
proposed FCCM, in which the objective function is 
defined by considering the aggregation degree of each 
cluster: 
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{ }ciuU =  and { }cjwW =  are the fuzzy memberships of 
object i  and item j  to cluster c , respectively. The 
entropy terms are the fuzzification penalty in the entropy-
based fuzzification approach [15]. In order to extract co-
clusters having high aggregation degrees, ciu  and cjw  are 

iteratively optimized so that ciu  and cjw  become large if 
object i  and item j  are highly relevant.  
The sum of ciu  is constrained to be 1 in a similar manner 
to FCM. On the other hand, cjw  is estimated under a 

different constraint of  1
1

=∑ =

m

j cjw  in order to avoid 

trivial solutions where all objects and items are assigned to 
a solo cluster. So, cjw  represents the relative responsibility 
of item j  in cluster c  and item assignment is not 
necessarily exclusive, i.e., items can be shared (or rejected) 
by multiple (all) clusters. 

3. Cluster Validation in FCM-type Co-
clustering 

First, the applicability of the conventional FCM-type 
validity indices is discussed in the context of prototype-
less fuzzy co-clustering. In order to evaluate the partition 
quality of fuzzy partitions, PC and PE can be applied with 
two different types of fuzzy memberships. The 
conventional PC and PE of Eqs.(2) and (3) can be directly 
used for measuring the degree of crispness of user 
memberships ciu while they should be slightly modified for 
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measuring the quality of item partitions. Equations (2) or 
(3) are monotonically increasing or decreasing as 
n becomes larger because the sum of ciu is 1 for every C . 
On the other hand, cjw  have the sum-to-one condition in 

each cluster and the total sum of cjw  is equal to C . In this 

sense, PC or PE for cjw should be normalized by C  
instead of n in the conventional ones.  
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In the numerical experiments of the next section, the above 
formulations are adopted in a hybrid manner.  
Because FCCM is a prototype-less clustering method, the 
geometric feature of prototypes is not available, i.e., Xie-
Beni index or its variants cannot directly be adopted. So, in 
this paper, a new concept of measuring the intra-cluster 
compactness and the inter-cluster similarity is proposed. 
Although the clustering criterion of Eq.(5) measures the 
aggregation degree for capturing a dense mass of users and 
items, it does not necessarily measure the compactness of 
the cluster. A compact cluster should reject the user-item 
pairs having small ijr . So, a compactness measure is 
defined as:  
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Next, two clusters k and l are separated if users of k are 
not familiar to cluster l , i.e., the users are not familiar to 
items of l . So, the total separateness is measured by  
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Then, a Xie-Beni-like validation measure for fuzzy co-
cluster partition coV is defined as:  
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4. Numerical Experiments 

4.1 Artificial Data Set 1: Dual Exclusive Situation 

In artificial data set 1 shown in Table 1 (a), 12 objects and 
10 items form three disjoint clusters, where each object 
and item belongs to a solo cluster. The data set 1-(a) has a 
noise-less boundary while the data set 1-(b) includes 10% 
noise, in which randomly selected 10% elements of data 
set 1-(a) was exchanged as “ 10 ⇔ ”.  

Table 1. Artificial cooccurrence matrix 1 
 

(a) noise-less boundary (b) 10% noise 
item 1 2 3 4 5 6 7 8 9 10  item 1 2 3 4 5 6 7 8 9 10 

ob
je

ct
 

1 1 1 1 0 0 0 0 0 0 0  

ob
je

ct
 

1 1 0 1 0 0 0 0 0 0 0 
2 1 1 1 0 0 0 0 0 0 0  2 1 1 1 1 0 0 0 0 0 0 
3 1 1 1 0 0 0 0 0 0 0  3 1 1 0 0 0 0 0 0 1 0 
4 1 1 1 0 0 0 0 0 0 0  4 1 1 1 1 0 0 0 0 0 0 
5 1 1 1 0 0 0 0 0 0 0  5 1 1 1 0 0 0 0 0 0 1 
6 0 0 0 1 1 1 1 0 0 0  6 0 0 0 1 1 1 1 0 0 1 
7 0 0 0 1 1 1 1 0 0 0  7 0 0 0 1 0 1 1 0 0 0 
8 0 0 0 1 1 1 1 0 0 0  8 0 0 0 1 0 1 1 0 0 0 
9 0 0 0 1 1 1 1 0 0 0  9 0 0 0 1 0 1 1 0 0 0 

10 0 0 0 0 0 0 0 1 1 1  10 0 0 0 0 0 0 0 1 0 1 
11 0 0 0 0 0 0 0 1 1 1  11 0 1 0 0 0 0 0 1 1 1 
12 0 0 0 0 0 0 0 1 1 1  12 0 0 0 0 0 0 0 1 1 0 

 

Table 2. Comparison of validation indices (data set 1: noise-less) 
 uPC  wPC  wu PCPC ×  uPE  wPE  wu PEPE ×  coV  

2 0.893 0.259 0.231 0.155 1.487 0.231 23.93 
3 0.999 0.276 0.276 0.002 1.411 0.003 35.15 
4 0.995 0.232 0.231 0.017 1.634 0.028 7.07 
5 0.991 0.206 0.204 0.033 1.769 0.058 5.04 
6 0.987 0.188 0.185 0.048 1.859 0.089 4.29 

        
 

Table 3. Comparison of validation indices (data set 1: 10% noise) 
C uPC  wPC  wu PCPC ×  uPE  wPE  wu PEPE ×  coV  

2 0.908 0.281 0.255 0.135 1.440 0.195 5.04 

3 0.997 0.306 0.305 0.012 1.419 0.017 7.48 

4 0.985 0.253 0.249 0.046 1.645 0.075 4.17 

5 0.973 0.221 0.215 0.081 1.780 0.144 3.38 

6 0.961 0.200 0.192 0.118 1.871 0.220 3.01 

        
The FCCM algorithm was applied to the data set with 
various cluster numbers { }6,5,4,3,2=C . The fuzzification 
weights were set as 1.0=uλ  and 0.1=wλ . Tables 2 and 3 
compare the values of several validity indices and the 
selected cluster numbers whose index values are given by 
bold and italic. In the tables, the result of the proposed 
method is compared not only with each of PC and PE for 
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objects and items but also the products of them. When both 
objects and items are exclusively partitioned, not only the 
proposed method but also PC and PE for both objects and 
items could successfully select the optimal cluster number 
of 3=C . This result implies that dual exclusive situations 
can be handled by the conventional FCM-type validity 
approaches. 

4.2 Artificial Data Set 2: Partially Sharing Situation 

In artificial data set 2 shown in Table 4 (a), 12 objects 
form three disjoint clusters while some of 11 items were 
shared by multiple clusters. Item 4 and Item 7 were shared 
by two clusters and Item 11 was shared by all three clusters. 
This kind of sharing situation is common in collaborative 
filtering tasks, where some popular items are preferred by 
many persons having different preference characteristics. 
In the same manner with Sec. 4.1, the data set 2-(a) has a 
noise-less boundary while the data set 2-(b) includes 10% 
noise.  

Table 4. Artificial cooccurrence matrix 2 
(a) noise-less boundary  (b) 10% noise 

item 1 2 3 4 5 6 7 8 9 10 11  item 1 2 3 4 5 6 7 8 9 10 11 

ob
je

ct
 

1 1 1 1 1 0 0 0 0 0 0 1  

ob
je

ct
 

1 1 0 1 1 0 0 0 0 0 0 0 
2 1 1 1 1 0 0 0 0 0 0 1  2 1 1 1 0 0 0 0 0 0 0 1 
3 1 1 1 1 0 0 0 0 0 0 1  3 1 1 1 1 0 0 0 0 1 0 1 
4 1 1 1 1 0 0 0 0 0 0 1  4 1 1 1 0 0 0 0 0 0 0 1 
5 1 1 1 1 0 0 0 0 0 0 1  5 1 1 1 1 0 0 0 0 0 1 1 
6 0 0 0 1 1 1 1 0 0 0 1  6 0 0 0 1 1 1 1 0 0 1 1 
7 0 0 0 1 1 1 1 0 0 0 1  7 0 0 0 1 0 1 1 0 0 0 1 
8 0 0 0 1 1 1 1 0 0 0 1  8 0 0 0 1 1 1 0 0 0 0 1 
9 0 0 0 1 1 1 1 0 0 0 1  9 0 0 0 1 1 1 1 0 0 0 0 

10 0 0 0 0 0 0 1 1 1 1 1  10 0 0 0 0 0 0 1 1 0 1 1 
11 0 0 0 0 0 0 1 1 1 1 1  11 0 1 0 0 0 0 1 1 1 1 1 
12 0 0 0 0 0 0 1 1 1 1 1  12 0 0 0 0 0 0 1 1 1 0 1 

                           

The FCCM algorithm was applied with { }6,5,4,3,2=C . 

The fuzzification weights were set as 1.0=uλ  and 
0.1=wλ . Tables 5 and 6 compare the values of several 

validity indices and the selected cluster numbers whose 
index values are given by bold and italic. The tables show 
that PC and PE could not find the optimal cluster number 
of 3=C but selected 2=C as the best one because of the 
influence of the shared items. On the other hand, the 

proposed validity measure of coV  could still find the 
optimal one even if some items were shared by multiple 
clusters.  

The reason why the proposed coV  works well in such 
sharing situations is that the proposed compactness and 
separateness measures fairly calculate the partition quality 
even if fuzzy memberships for the shared items become 
more ambiguous than dual exclusive situations. This result 
implies that the proposed cluster validation index for fuzzy 

co-clustering is useful for selecting the optimal fuzzy co-
cluster structures.  

Table 5. Comparison of validation indices (data set 2: noise-less) 
C uPC  wPC  wu PCPC ×  uPE  wPE  wu PEPE ×  coV  

2 0.992 0.321 0.319 0.025 1.364 0.034 2.63 
3 0.990 0.189 0.187 0.033 1.739 0.058 2.73 
4 0.979 0.164 0.161 0.069 1.905 0.131 2.44 
5 0.967 0.149 0.145 0.104 2.005 0.209 2.31 
6 0.956 0.139 0.133 0.139 2.072 0.289 2.22 
        

Table 6. Comparison of validation indices (data set 2: 10% noise) 
C uPC  wPC  wu PCPC ×  uPE  wPE  wu PEPE ×  coV  

2 0.989 0.302 0.299 0.031 1.439 0.045 2.67 
3 0.978 0.229 0.224 0.059 1.682 0.100 2.75 
4 0.957 0.193 0.185 0.117 1.187 0.218 2.29 
5 0.936 0.172 0.161 0.175 1.977 0.346 2.09 
6 0.916 0.158 0.144 0.234 2.051 0.480 1.97 
        

4.3 Applicability to Collaborative Filtering Task 

Finally, the applicability of the proposed co-cluster validity 
measure to collaborative filtering task is studied. A 
purchase history data set collected by Nikkei Inc. in 2000 
is used in a collaborative filtering task. The data set was 
used in the previous works of [13,14] and includes the 
purchase history of 996 users ( 996=n ) on 18 items 
( 18=m ). The element ijr  of 996 × 18 relational data 

matrix { }ijrR =  is 1 if user i  has item j  while otherwise 
0. Randomly selected 1,000 elements were used as a test 
data set for validating the recommendation ability, and the 
applicability of the proposed model to collaborative 
filtering task was evaluated by predicting the test elements 
based on co-clustering results. The FCCM algorithm was 
applied with various cluster numbers of { }10,9,,3,2 =C  
and the recommendation ability was evaluated in 
conjunction with the proposed fuzzy co-cluster validity 
measure.  
In the co-clustering-based prediction procedure, each user 
cluster is first estimated by maximum membership 
assignment, and then, the membership of each item in the 
user cluster is drawn from co-clustering results. If the item 
has a large membership in the user cluster, the item is 
recommended to the user. The recommendation ability is 
assessed by ROC sensitivity [18]. The ROC curve is a true 
positive rate vs. false positive rate plots drawn by changing 
the threshold of the applicability level in recommendation, 
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and the lower area of the curve becomes large as the 
recommendation ability is higher. 

Figure 1 compares the ROC curves for various cluster 
numbers and indicates that the recommendation model 
with 5=C has the best recommendation ability.  

   
(a) C=2: ROC=0.821           (b) C=3: ROC=0.820 

   
(c) C=4: ROC=0.821           (d) C=5: ROC=0.835 

   
(e) C=6: ROC=0.829           (f) C=7: ROC=0.822 

   
(g) C=8: ROC=0.825           (h) C=9: ROC=0.825 

 
(i) C=10: ROC=0.822 

Fig. 1 Comparison of ROC curves 

Next, the optimal co-cluster partition is validated from the 
view point of cluster validation. Table 7 compares the 
proposed fuzzy co-cluster validity measure coV  and ROC 
sensitivity. The table indicates that the best 

recommendation ability was achieved in the clustering 
model with the best coV  index value. This result implies 
that the fuzzy co-cluster partition selected by the proposed 
fuzzy co-cluster validation index is also useful in 
collaborative filtering for achieving a high 
recommendation ability.  

Table 7. Comparison of V_co and ROC 
 C coV  ROC  
 2 1.001 0.821  
 3 1.090 0.820  
 4 1.110 0.821  
 5 1.112 0.835  
 6 1.109 0.829  
 7 1.100 0.822  
 8 1.089 0.825  
 9 1.077 0.825  
 10 1.063 0.822  
     

5. Conclusions 

In this paper, the applicability of the conventional FCM-
type cluster validity indices to fuzzy co-clustering tasks 
was discussed. First, several modifications of the measures 
for partition quality such as Partition Coefficient and 
Partition Entropy were considered and several 
experimental results implied that such indices are only 
applicable for dual exclusive situations, where both each of 
objects and items is exclusively assigned to a solo cluster.  

Second, a new fuzzy co-cluster validation index of coV  was 
proposed, which is a co-clustering version of the 
conventional Xie-Beni index for FCM clustering. 
Compactness and Separateness considered in Xie-Beni 
index were newly re-defined in the context of fuzzy co-
clustering, which is a prototype-less clustering model and 
geometrical features  cannot constructed from prototypes. 
Several experimental results implied that the proposed 
index works well not only in dual exclusive situations but 
also in item sharing situations, which is common in 
collaborative filtering tasks.  
Finally, the applicability of the proposed index was studied 
in a collaborative filtering problem. It was proved that the 
optimal fuzzy co-cluster partition selected by the proposed 
index is also useful in co-cluster-based recommendation 
tasks.  
Possible future works include the development of the co-
cluster version of other FCM-type validation indices and 
the comparative study in other co-cluster applications such 
as document analysis and product management.  
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