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Summary 
Preparation for stereoscopic 3D image shooting is tedious 
and time-consuming. Unsuccessful preparational setup 
prior to actual stereoscopic shooting can result in some 
“bad” disparities such as vertical, scale, rotational 
differences in left and right images. The ideal case would 
be where we have zero disparities except the horizontal 
one, which is expensive and time-consuming to realize. In 
this paper, we investigated the margins of allowable 
stereoscopic geometry errors. In our experiments, subjects 
were asked to adjust the three kinds of disparities (vertical, 
scale, rotation), looking at images with “bad” disparities, 
until they think it is comfortable to watch. We made 
Gaussian distribution over the experimental data and 
performed parameter estimation, including Maximum 
Likelihood Estimation and EM algorithm. From 
experimental result, rotational disparity showed the 
narrowest “allowable” margin, while scale and vertical 
disparities showed some variabilities. 
Key words: 
Geometry error, Maximum likelihood estimator, Gaussian 
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1. Introduction 

Stereoscopic 3D is a result of attempting to creating or 
controlling the “feeling of depth” in an image by means of 
binocular disparity. Binocular disparity is natural and 
inevitable since human eyes are approximately 6.5cm 
apart, which is called interocular distance, and the images 
for left and right eyes are slightly different. The fusion 
process within human brain plus with binocular disparity 
create the feeling of depth. When shooting a 3D image, 
two cameras, which are separated at roughly human eye 
interocular distance, are used to take separate images from 
slightly different angles to get binocular disparity. This 
separation is horizontal and produces a binocular disparity. 
 
When shooting stereoscopic 3D images, some errors can 
happen, which are main causes of visual discomfort when 
watching stereoscopic 3D images. These errors include 
vertical misalignment, rotational error, scale mismatch, 
color mismatch, reversed left and right images, retinal 
rivalry, ghosting, focus mismatch, keystone and edge 
violation. Specifically, vertical alignment, rotational error 

and scale mismatch between left and right images are of 
main concern in this paper. Vertical misalignment occurs 
when the vertical alignment of left and right images are 
different, thus human eyes have to move vertically to fuse 
the images, which is very uncomfortable for our eyes. 
Rotational error can happen usually in combinations of 
pitch, yaw and roll elements. One of primary reasons for 
scale mismatch between left and right images is that two 
cameras are at different focal lengths. 
In [1], they showed how distortions caused by camera 
convergence or toed-in affects the ability to fuse and 
perceive stereoscopic images. In [2], they suggested 
comfortable depth budget as a form of guideline. In [3], 
they tried to determine the discomfort ranges for the kinds 
of natural image that people are likely to take with 3D 
cameras rather than the artificial line and dot stimuli 
typically used for laboratory studies. They assessed visual 
discomfort on a five-point scale for artificial misalignment 
disparities applied to a set of full-resolution images. They 
modeled the data with a second-order hyperbolic 
compression function incorporating a term for the basic 
discomfort of the 3D display in the absence of any 
misalignments through a Minkowski norm.  

2. Backgrounds 

2.1 Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is a method by 
which a set of parameters can be computed for a given 
probabilistic model and data set. MLE, originally 
developed by R. A. Fisher in his seminal paper [4], states 
that the desirable probability model is the one which 
renders the observed data “most likely” in terms of data 
generation viewpoint. In other words, the output of MLE is 
the point estimation of parameter(s) for which the 
likelihood of observed data set is at its maximum. Suppose 
we have a data set  of  independent and identically 
distributed (iid) observations nxx ,1  which is 
assumed to be generated from an unknown probability 
density function  where is a set of 
parameter(s) for the corresponding probability density. 
Generally, one makes an assumption about the functional 
form of the probability density function. For an independent 
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and identically distributed data points nxx ,1  and , 
the joint density is written as follows: 
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By taking a perspective that the joint density is a function 
of , not of “fixed” observed data nxx ,1 , 

)|,,( 1 θnxxf   is called likelihood and written as 
follows: 
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Usually, it is often convenient to take logarithm of the 
likelihood function and it is called the log-likelihood: 
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Maximum likelihood estimator is defined as: 
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For the normal distribution ),( 2σ)N , the probability 
density function is: 
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For a set of n  independent and identically distributed 
normal random variables, the likelihood is given as; 
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Since Gaussian distribution has two parameters, we need 
to maximize the likelihood with regard to two parameters:  
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which is solved by 
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which is solved by 
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The logarithm is a continuous and strictly increasing, 
values maximizing the likelihood will maximize the 
logarithm. 

2.2 Expectation Maximization (EM) Algorithm 

EM algorithm is an iterative method for finding maximum 
likelihood estimates of parameters of concern[5]. In E-step, 
it updates a function of expectation of the log likelihood 
and in M-step, it updates parameters maximizing the 
function of expectation of the log likelihood found on the 
E-step. EM algorithm is useful when maximum likelihood 
estimates can’t be solved analytically. Generally, when 
applying EM algorithm, one assumes the existence of 
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latent variable in addition to unknown parameters and 
observed data. 
 
A representative application of EM algorithm is density 
estimation problem. Given a set of N  data points 

( )NxxX ,1=  in D  dimensions, one finds 

probability density f that is most likely to have generated 
the given points. For example, the probability density is 
form of Gaussian mixtures and it has following form: 
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Where kπ  is the mixing coefficient. EM iterates the 
following computations until convergence to a local 
maximum of the likelihood function: 
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3. Experiment 

3.1 Procedure 

The purpose of experiment was to find out the “allowable” 
margins of each of geometric errors (vertical misalignment, 
rotation error, scale mismatch) within which subjects 
didn’t feel visual fatigue. We used two dslr cameras 
(Canon 5D Mark III) to take left and right images. These 
images were saved as JPEG file, which were imported by 

Assimilate Scratch in order to convey left and right images 
to Sony MPE 200 in the form of SDI (Serial Digital 
Interface) signal. Leaving geometric values of right image 
unchanged, considerable amount of geometric errors were 
applied to left image, resulting in very uncomfortable 
viewing condition. 
 

 

Fig. 1 SpaceMouse™ from 3DCONNEXION 

 
SpaceMouse™ in figure 1 is a prodcut from 
3DCONNEXION. It has jog-like dial on it. It was 
connected to Sony MPE 200 and when subjects turned the 
dial-like button on the device, Sony MPE 200 updated and 
displayed the left image according to changed geometric 
values (vertical alignment, rotational degree, zoom scale) 
in real time. Subjects were asked to stop when they think it 
was comfortable to watch the stereoscopic image. 
 

 

Fig. 2 Test image 

 
Figure 2 show the test image used in the experiment. 
Experimental data set was collected using Cel-Scope 3D 
stereoscopic analyzer. Cel-Scope 3D is a software 
providing stereoscopic 3D monitoring and depth budget 
analysis. When subjects stopped turning the jog-like dial, 
we recorded the geometric difference between left and 
right images. Specifically we recorded vertical 
misalignment in pixel, scale mismatch in percentage and 
rotational error in degrees.  
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Fig. 3 Analysis of disparities 

3.2 Experimental Result  

We collected data from experiment. The minimum values 
were all 0s for vertical, scale and rotational cases. The 
maximum values were 39 pixel, 6.1% and 2 degrees in 
cases of vertical, scale and rotational experiment.  
The maximum likelihood estimates of mean and variance, 
under the assumption that the data points are i.i.d. sample 
from Gaussian distribution, is given in table 1. From the 
result, it can be said approximately that subjects showed 
more variability in adjusting vertical alignment, compared 
to rotational difference between left and right images. 

Table 1. Maximum Likelihood Estimates 
 mean variance 

vertical 12.7986 9.4583 
scale 1.6536 1.4356 

rotation 0.7071 0.43598 
Under the assumption that the data points has 
been"generated" by  2-component Gaussian mixture, EM 
algorithm was used to estimate those parameters. The result 
is given in table 2. In the case of rotational difference data, 
interesting was that the maximum likelihood estimates of 
mean was identical with the result of analysis under 
2-Gaussian mixture model assumption. The mixing 
coefficients were 0.5s and mean was same as 0.7071 for 
both components. In case of rotational experiment, 
experimental result was unimodal. 

Table 2. Parameters for 2-Gaussian mixture model 
 component 1 

mean(weight) 
component 2 
mean(weight) 

vertical 
in pixel 

22.6210 
(0.354912) 

7.3945 
(0.645088) 

scale 
in percentage 

1.0512 
(0.764275) 

3.6067 
(0.235725) 

rotation 
in degree 

0.7071 
(0.5) 

0.7071 
(0.5) 

In the case of vertical aignment data, the preference 
seemed to be at somewhere near 7.3945 rather than near 
22.6210, since the mixing weight was 0.645088 for the 
component 2. This can be said “compatible” with the 

maximum likelihood estimates which is 12.7986. However, 
it was not clear enough to conclude that subjects showed 
unimodal tendency in adjusting vertical alignment of left 
and right images. In the case of scale data, the preference 
seemed to be at somewhere near 1.0512 rather than at 
3.6067, since the mixing weight was 0.764275 for the 
component 1. Like vertical alignment data, this can be said 
“compatible” with the maximum likelihood estimates 
which is 1.6536. Compared to vertical alignment 
experimnet, subjects showed relatively strong unimodality. 
The figure 4 shows the histogram of scale alignment data. 
 

 

Fig. 4 Histogram of scale alignment data 

4. Conclusion 

Among some categories of stereoscopic errors, we chose 
so-called “geometric error” which includes vertical 
misalignment between left and right images, scale (or 
zoom) mismatch between left and right images and 
rotational error between left and right images for 
answering the question: what is the allowable margin or 
range of these errors in the context of visual comfort?  
We made Gaussian assumption for the experimental data 
and performed statistical analysis. From our experiment, 
subjects showed narrower margin for the scale differences 
when compared to margin for the vertical aignments. In 
the case of rotational error, there’s no difference between 
one-component and two-component mixture analysis 
which can be interpreted that subjects showed unified 
preference over margin of rotational errors. 
These experimental result can be used as a guideline for 
stereoscopic content production. Stereoscopic content 
producers can save time and effort for configuring the 
shooting environment. They manage to stay within 
margins of allowable stereoscopic errors. 
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