
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013

46

Manuscript received January 5, 2013
Manuscript revised January 20, 2013

Intent Based Security Challenges in Android-An Analysis &
Recommendation

Janaki Sivakumar
†
, Ammar Yassir

††
, P.Saravanan

†††

†
Research Scholar, PRIST University, Tanjore, TamilNadu.

††
Research Scholar, CMJ University, Shillong, India

†††
 Research Scholar, Manonmanium Sundaranar University, Trinelveli, India

Abstract
Recent years have witnessed a meteoric increase in the adoption
of smart phones. The number of Android based smart phones is
growing rapidly. They are increasingly used for security critical
private and business applications, such as online banking or to
access corporate networks. This makes them a very valuable
target for an adversary. To manage such information and features,
Android provides a permission-based security model that
requires each application to explicitly request permissions before
it can be installed to run. Several privileged permissions are
unsafely exposed to other applications, which do not need to
request them for the actual use. Up to date, significant or large-
scale attacks have failed, but attacks are becoming more
sophisticated and successful. Thus, security is of paramount
importance for both private and corporate users. This paper gives
a short, yet comprehensive overview of the major Android
security mechanisms.
Keywords
Android OS, Seepage, Manifest file, Smart phone infections,
Android APPs, Broadcast receiver, Security tools.

1. INTRODUCTION

According to data from IDC [1], smart phone
manufacturers shipped 100.9 million units in the fourth
quarter of 2010, compared to 92.1 million units of PCs
shipped worldwide. For the first time in history, smart
phones are outselling personal computers. Their popularity
can be partially attributed to the incredible functionality
and convenience smart phones offered to end-users.
In fact, existing mobile phones are not simply devices for
making phone calls and receiving SMS messages, but
powerful communication and entertainment platforms for
web surfing, social networking, GPS navigation, and
online banking. The popularity of smart phones smart
phones is also spurred by the proliferation of feature-rich
devices as well as compelling mobile applications
(or simply apps). In particular, these mobile apps can be
readily accessed and downloaded to run on smart phones
from various app stores. For example, it has been reported
[2] that Google’s Android Market already hosts 150,000
apps as of February 2011 and the number of available apps
has tripled in less than 9 months. Not surprisingly, mobile

users are increasingly relying on smart phones to store and
handle personal data. Inside the phone, we can find current
(or past) geo-location information smart phones about the
user, phone call logs of placed and received calls, an
address book with various contact information, as well as
cached emails and photos taken with the built-in camera.
The type and the volume of information kept in the phone
naturally lead to various concerns [3, 4, 5, 6] about the
safety of this private information, including the way it is
managed and accessed. Smart phones In this paper, we
give an overview of the current state of the art of android
security with the widespread use of smart phones both in
private and work related areas, securing these devices has
become of paramount importance.
Owners use their smart phones to perform tasks ranging
from every day communication with friends and family to
the management of banking accounts and accessing
sensitive work related data.

Android versions distributed as of May 2012[7]

2. ANDROID AN OVERVIEW

Android is a software stack for mobile devices that
includes an operating system, middleware and key
applications. There is a business alliance (Open Handset
Alliance-OHA) which consists of 47 companies to develop

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013

47

open standards for mobile devices. Figure 1: shows the
Android software stack Architecture.

Figure 1: Android Architecture [8]

Android provides a set of core applications, which are
written in Java Language:

 Email Client
 SMS Program
 Calendar
 Maps
 Browser
 Contacts

Android software stack includes a set of C/C++ libraries
used by components of the Android system. Various
libraries enable apps to implement graphics, encrypted
communication or databases easily. The standard Library
(“bionic”) is a BSD derived library for embedded devices.
Android Software stack is developed in Java, executed in a
virtual machine, called Dalvik VM and relying on Linux
kernel 2.6 for core system services like memory and
processor management, network stack, Driver model and
Security.
There are many features related to Android software stack

Features Role

View system
Used to build an application,

including lists, grids, text boxes,
buttons, and embedded web browser

Content Provider
Enabling applications to access data
from other applications or to share

their own data

Resource
Manager

Providing access to non-code
resources (localized strings, graphics,

and layout files)
Notification

Manager

Enabling all applications to display
customer alerts in the status bar

Activity Manager
Managing the lifecycle of

applications and providing a
common navigation backstack

3. INTENTS

Android provides a sophisticated message passing system,
in which Intents are used to link applications. Intent is a
message that declares a recipient and optionally includes
data; an Intent can be thought of as a self-contained
object that specifies a remote procedure to invoke and
includes the associated arguments [9]. Applications use
Intents for both inter-application communication and intra-
application communication. Intents can be sent between
three of the four Android components: Activities, Services,
and Broadcast Receivers. Intents can be used to start
Activities; start, stop, and bind Services; and broadcast
information to Broadcast Receivers.
Intents can be used both for explicit or implicit
communication.

3.1 Explicit Intent

An explicit Intent specifies that it should be delivered to a
particular application specified by the Intent. An explicit
Intent identifies the intended recipient by name.

3.2 Implicit Intent

An implicit Intent requests delivery to any application that
supports a desired operation. An implicit Intent leaves it up
to the Android platform to determine which application(s)
should receive the Intent

For example, consider an application that deals Client’s
Email information. When the user clicks on a sender’s
contact address, the Email application needs to ask another
application to display a map of that location. To achieve
this, the Email application could send an explicit Intent
directly to Google Maps, or it could send an implicit Intent
that would be delivered to any application that says it
provides mapping functionality (e.g., Yahoo! Maps or
Bing Maps). Using an explicit Intent guarantees that the
Intent is delivered to the intended recipient, whereas
implicit Intents allow for late runtime binding between
different applications.

4. ANDROID COMPONENTS

Intents are delivered to application components, which are
logical application building blocks. Android defines four
types of components:
4.1 Activities: provide user interfaces. Activities are
started with Intents, and they can return data to their
invoking components upon completion [10]. All visible
portions of applications are Activities.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013

48

4.2 Services: run in the background and do not interact
with the user. Downloading a file or decompressing an
archive are examples of operations that may take place in a
Service [10]. Other components can bind to a Service,
which lets the binder invoke methods that are declared in
the target Service's interface. Intents are used to start and
bind to Services.

4.3 Broadcast Receivers: receive Intents sent to multiple
applications. Receivers are triggered by the receipt of an
appropriate Intent and then run in the back- ground to
handle the event. Receivers are typically short-lived; they
often relay messages to Activities or Services [10].
Operating system sends

Intents to applications as event notifications. Some of these
event notifications are system-wide events that can only be
sent by the operating system. We call these messages
system broadcast Intents.

There are three types of broadcast Intents:

a) Normal
b) Sticky
c) Ordered

a) Normal broadcasts are sent to all registered Receivers

at once, and then they disappear.

b) Ordered broadcasts are delivered to one Receiver at a

time; also, any Receiver in the delivery chain of an
ordered broadcast can stop its propagation. Broadcast
Receivers have the ability to set their priority level for
receiving ordered broadcasts.

c) Sticky broadcasts remain accessible after they have

been delivered and are re-broadcasting to future
Receivers.

4.4 Content Providers: are databases addressable by their
application-defined URIs. They are used for both persistent
internal data storage and as a mechanism for sharing
information between applications.

5. ANDROID SECURITY

Android's security model differs significantly from the
standard desktop security model. Android applications are
treated as mutually distrusting principals; they are isolated
from each other and do not have access to each other’s
private data. We focus on Android because it has the most
sophisticated application communication system. The
complexity of Android's message passing system implies it

has the largest attack surface. To provide theoretical
background, we give a short explanation of fundamental
Android security measures provides an overview of current
and emerging threat scenarios on smart phones both for
private and corporate targets.

5.1 Manifest File

On installation, the user is presented with a dialog listing
all permissions requested by the app to be installed. These
permission requests are defined in the Manifest File
AndroidManifest.xml

This system has a few flaws:
• All or none policy: A user cannot decide to grant single
permissions, while denying others. Many users, although
an app might request a suspicious permission among much
seemingly legitimate permission, will still confirm the
installation.

• Cannot judge the appropriateness of permissions: Often,
users cannot judge the appropriateness of permissions for
the application in question. In some cases it may be
obvious, for example when a game
app requests the privilege to reboot the smartphone or to
send text messages. In many cases, however, users will
simply be incapable of assessing permission
appropriateness.

• Circumvention: Functionality, which is supposed to be
executable only given the appropriate permissions, can still
be accessed with less permission or even with none at all.

5.2 Security Holes

Multiple security holes have been found in different
components of the Android operating system. Up until now,
they have primarily served to grant device owners
administrative privileges on their devices. Only recently
malware authors have begun utilizing such holes and
publicly available exploits for malicious code.

5.4 Broadcast scenarios

For mobile malware, current broadcast scenarios
significantly differ from those of desktop malware. Direct
self-spreading mechanisms over primary communication
networks known from desktop environments are very
unlikely.
However, different approaches exist, which utilize existing
infrastructure such as the Android Market and websites.
Threat Broadcast scenarios may vary like

 Seepage through Logging Service.
 Seepage through Online Banking.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013

49

 Seepage through Contact Information, Location
Data, Credentials and Private Details.

 Seepage through GSM based Pivot Attacks.

5.5 Types of infections

1.Wicked applications; are the most common infection
channel and are comparable to Trojan programs on
desktop platforms .Wicked code can be packaged and
redistributed with popular applications. Furthermore, users
can choose to allow installation from websites, which can
also be exploited by hackers
2.Infection via Personal Computers: Technically, desktop
computer malware have to implement the Android Debug
Bridge’s protocol to install arbitrary software on any
device with USB debugging activated.
3.Rooting; one’s smartphone may introduce higher risks of
successful wicked infection Application markets
preconfigured for rooted or modified operating systems are
not well monitored and contain many Trojan programs.
Thus, rooting a smartphone may pose a high security risk.

3.1 Device to Device Infection; with Android versions
3.1 and 4.0, two major changes have been introduced
which may serve for device to device propagation:

 USB host mode (Android 3.1)-an Android smartphone

may use the Android Debug Bridge to push and install
malicious apps to other devices with USB debugging
enabled. This may happen both intentionally or
unintentionally.

 Android Beam (Android 4.0)-it requires user
interaction for installation. For example, a web like to
a malicious app can be sent to another Android 4
device via Android Beam, but the user still has to click
the link and confirm it. The limited physical distance
reduces malware infection risks even further.

4. Infection via Rogue: Wireless Networks users logging
into the rogue wireless network may be presented with a
fake website displaying a “critical update” to an app
installed on nearly all devices such as Google Search.

5.6 Tools to avoid Seepage

1. ComDroid: To detect potential vulnerabilities in
Android applications. ComDroid can be used by
developers to analyze their own applications before
release, by application reviewers to analyze
applications in the Android Market, and by end
users.

2. Wood Pecker: To identify leaked permissions or
capabilities in Android applications. Woodpecker
employs inter procedural data flow analysis

techniques to systematically expose possible
capability leaks where an untrusted app can obtain
unauthorized access to sensitive data or privileged
actions data.

5.7 Recommendation to avoid Seepage

 Android based smart phones should prohibit the
execution of any native code added after shipping
completely. Prohibiting non vendor native code is the only
way to contain exploits against system security flaws.
 The privilege of setting the executable bit for files may
be limited to the root user and to the Android Market app.
Any file added to the file system later on, i.e. not during
the installation process, cannot be declared as executable.
SEAndroid has proven very effective for this objective.
 Code signing of native code may also be an option.
Prohibiting execution of non-signed binaries could also
prevent usage of exploits in usual apps.
 Customers should get Awareness on security a risk on
mobile platforms seems significantly lower than on
desktop platforms. Identical or even more caution should
be applied for mobile devices
Finally, Google. Of course, device manufacturers should
be responsible to supply their customers with security
patches

6. CONCLUSION

While the Android message passing system promotes the
creation of rich, collaborative applications, it also
introduces the potential for attack if developers do not take
precautions. Outgoing communication can put an
application at risk of Broadcast theft (including
eavesdropping and denial of service), data theft, result
modification, and Activity and Service hijacking. Incoming
communication can put an application at risk of malicious
Activity and Service launches and Broadcast injection.

REFERENCES
[1] IDC. Android Rises, Symbian 3 and Windows Phone 7

Launch as Worldwide Smartphone Shipments Increase
87.2% Year Over Year.
http://www.idc.com/about/viewpressrelease.jsp?

[2] J. Hildenbrand. 150,000 apps in Android Market, tripled in
9 months. http://www.androidcentral.com/150k-apps-
android-market-tripled-9-months.

[3] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In

[4] Proceedings of the 18th Annual Network and Distributed
System Security Symposium, NDSS ’11, February 2011.

[5] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proceedings of the 9th USENIX

http://www.idc.com/about/viewpressrelease.jsp
http://www.androidcentral.com/150k-apps-android-market-tripled-9-months
http://www.androidcentral.com/150k-apps-android-market-tripled-9-months

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013

50

Symposium on Operating Systems Design and
Implementation, OSDI ’10, February 2010.

[6] K. Mahaffey and J. Hering. App Attack-Surviving the
Explosive Growth of Mobile Apps. https://media.
blackhat.com/bh-us-
10/presentations/Mahaffey_Hering/Blackhat-USA-2010-
Mahaffey-Hering-Lookout-App-Genomeslides. Pdf

[7] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Taming
Information-Stealing Smartphone Applications (on
Android).In Proceedings of the 4th International Conference
on Trust and Trustworthy Computing, TRUST ’11, June
2011.

[8] Android Team, “Platform Versions,” February 2012.
http://developer.android.com/resources/dashboard/platformv
ersions.html.

[9] Android Team, “What is the NDK?,” January
2012.http://developer.android.com/sdk/ndk/overview.html.

[10] Android Team, “What is Android?,” Feburary 2012.
http://developer.android.com/guide/basics/whatisandroid.ht
ml.

[11] “Analyzing Inter-Application Communication in Android
“ Erika Chin Adrienne Porter Felt Kate Greenwood David
Wagner University of California, Berkeley , USA

Janaki Sivakumar received
M.C.A degree in 2002 from
Bharathidasan University and
M.Phil (C.Sc) from Mother Teresa
University Kodaikanal in
2004.Currently she is a research
scholar in Computer Science,
PRIST University, Tanjore, India.
Her main area of interest is in
Image and Signal Processing. She

has published papers in 3 International Journals & attended 2
International Conferences.

Ammar Yassir received the B.Sc.
degree with Honors in Computer
Science in the year 2002 from
Future University, Sudan & Master
in Business Administration and IT
from SMU, India in 2006 &
currently a Ph.D. candidate in IT,
CMJ University, Shillong, India.
He has published International
papers in several Journals.

P.Saravanan has received M.Tech
(Computer Science & Data
Processing) from IIT, India in 1995.
He graduated M.Sc (Applied
Mathematics) from Anna
University, India in 1987 and
M.phil from Madras University
1992. Currently he is working as a
senior lecturer in Muscat College,
Oman. He is doing research in

Image processing. He published papers in two international
journals.

https://media/
http://developer.android.com/resources/dashboard/platformversions.html
http://developer.android.com/resources/dashboard/platformversions.html

	References

