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Abstract 
Deep packet Inspection is an advanced method of packet 
filtering that functions at the Application layer of the OSI 
reference model. Deep Packet Inspection is a form of 
computer network packet filtering that examines the data 
part of a packet as it passes an inspection point, searching 
for protocol ,viruses  ,spam, intrusions or predefined 
criteria to decide if the packet can pass or it needs to be 
routed to a different destination, or for the purpose of 
collecting statistical information. Deterministic finite 
automata (DFAs), use large set of rules need a memory 
amount that turns out to be too large for practical 
implementation we have presented a new compressed 
representation for deterministic finite automata, called 
Delta Finite Automata. The algorithm considerably 
reduces the number of states and transitions, and it is 
based on the observation that most adjacent states share 
several common transitions, so it is convenient to store 
only the differences between them. In this paper we have 
presented an improvement to δFA that exploits the Nth-
order dependence between states and further reduces the 
number of transitions by adopting the concept of 
temporary transition. This schema named as δnFA. Both 
the schemes are orthogonal to most of the previous 
solutions, thus allowing for higher compression rates. A 
new encoding scheme for states has been also 
proposed(which we refer to as char state), which exploits 
the association of many states with a few input chars. 
Such a compression scheme can be efficiently integrated 
into δFA and δnFA, allowing a further memory reduction 
with a negligible increase in the state lookup time. The 
experimental runs have shown remarkable results in terms 
of lookup speed as well as the issue of excessive memory 
consumption. 
Index Terms 
Deep packet inspection, differential encoding, finite 
automata (FAs), pattern matching, regular expressions. 
 

I. INTRODUCTION 

Regular expressions are used in Modern Deep Packet 
Inspection to define the various patterns of interested data 
streams in the Network. Deterministic Finite Automata 
(DFA) is used to parse the regular expressions. Though 
DFA technique is faster, it consumes large memory space 
for pattern arising. Traditional DFA table slightly reduces 
the memory required and access to memory per character. 
Further improvement on regular expressions such as 
NFAs and Delayed Input DFAs (D2FA) reduces memory 
consumption by sacrificing the throughput. 
With respect to [5], the concept of “Temporary transition” 
is used to improve regular expressions called δFA. Instead 
of specifying transition set of a state with respect to its 
direct parents, adopting N-step “ancestors” increases the 
chances of compression. The best approach to exploit this 
Nth-order dependence is to define the state transitions 
between ancestors and child as “temporary.” 
Experimental rule set results show that simple approach 
meets the optimal construction (Memory or transition 
reduction). As it is an extension to δFA, the method is 
named as δnFA. 
Content Addressed Delayed Input DFA (CD2FA) provides 
a compact representation of regular expressions which 
matches the throughput of traditional uncompressed DFAs. 
Instead of using “content less” identifier, CD2FA uses 
their content to address successive states of a D2FA. By 
this selected information will be available earlier in the 
state traversal process. It avoids unnecessary memory 
access. Based on this content addressing, compact 
automata can be obtained with high throughput. 
CD2FAs matches the throughput of an uncompressed 
DFA by using as little as 10% of the space required by 
conventional DFA. Many network services are processing 
the packets based on the payload content. As the Deep 
packet inspection compares the packet to a set of strings, 
forwarding the packet based on the content requires new 
level of support in networking devices. New systems are 
using regular expressions instead of string sets. Cisco has 
even the regular expression based on content inspection 
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capabilities into its operating system (IOS [21]). Regular 
expressions can be used in Linux OS to filter the content 
at Application Layer. Regular expressions are limited in 
networking context as it requires substantial amount of 
memory. 
A new technique Deterministic Finite Automata (D2FA) 
uses delayed input for parsing Regular expressions and 
default transitions to reduce the memory requirements. A 
default transition is followed whenever the current input 
character does not match any of the labeled transitions 
leaving the current state. If two states have a large number 
of “next states” in common, the common transitions are 
replaced leaving one of the states with a default transition 
to the other. Every state will have only one default 
transition, so that the amount of memory needed to 
represent the parsing automata will be reduced 
dramatically. Default transitions also reduces throughput, 
since no input is consumed when a default transition is 
followed, however memory has to be accessed to retrieve 
the next state. 
The remainder of the paper is organized as follows. In 
Section II, related works about DFAs are discussed. 
Section III accurately describes construction and analysis 
of DFA, by starting from a motivating example, Section 
IV presents the optimization of ∂FA, and Section V 
proves the integration of the proposed schemes with the 
previous ones. Finally, Section VI presents the 
experimental results. 
 

II. RELATED WORK 
 
Traditionally, DFA and NFA are used to search for 
regexes (Regular expressions). But DFAs have large 
memory consumption and fixed memory references per 
character. Although NFAs consumes lower memory, it 
requires several memory transitions per symbol for all 
states at a given time. NFAs are used in hardware 
platforms such as FPGAs while DFA are used in 
software-based systems such as network processors. In 
industry, DFA are used to represent regular expression 
especially for parallel system. As the overall performance 
of packet processing is affected by the slowest 
component’s processing time. Therefore, industries are 
adopting for pattern-matching deterministic solutions as 
DFAs. Large memory consumption of DFA is due to the 
encoding and state explosion. 
DFA encoding introduces the delayed input DFA (D2FA). 
The drawback of D2FA is the traversal of multiple states 
when processing a single input character, which entails a 
memory bandwidth increase to evaluate regular 
expressions. The number of default transitions taken by a 
single character is defined as bound B. Larger values of B 
indicate higher compression. 
An improved algorithm called Bec-Cro is implemented in 
[5] for large number of access per char in D2FA. 

Experimental results proved that it reduces bounds on 
memory bandwidth. It is based on the inspection of all 
regex evaluations starts at a single initial state, and the 
majority of transitions among states, back either to the 
initial state or its closest neighbors. The memory 
compression of D2FA is shown as by accessing a single 
memory per character. 
The nonequivalent states can be combined. Combined  
states with common destinations despite of characters 
which lead those transitions (unlike D2FA),it  create for 
more merging and thus  we achieve higher memory 
reduction. Bitmaps for compression purposes which 
increase the cost by requiring two subsequent memory 
accesses  
CD2FA is used to increase the speed of D2FAs by storing 
a large amount of information (on subsequent reachable 
transitions) on the edges. It reduces the cost of D2FAs and 
requires a construction based on perfect hash functions 
that may be time-consuming. The idea of storing more 
information on the edges appears to be a general trend in 
the literature, and it is implemented in following ways: In 
[4], transitions carry data on the next reachable nodes; 
edges have different labels; in [6], a sort of history buffer 
(i.e., a small and fast cache) stores additional information 
in order to efficiently follow multiple partially matching 
signatures, thus yielding the state blow-up; in [5], a finite 
scratch memory is used to remember various types of 
information relevant to the progress of signature matching 
(e.g., counters of characters) in order to keep the transition 
history and reduce the number of states. 
NFAs can improve the memory problem, but it lead to a 
large bandwidth requirement, in [10] a hybrid DFA-NFA 
solution is proposed. When constructing the hybrid-DFA, 
any nodes that would contribute to state explosion retain 
an NFA encoding, while the remaining nodes are 
transformed into DFA nodes. Its aim is to reduce size 
almost equal to NFA, with small memory bandwidth 
requirements of a DFA. 
 
MEMORY PACKING 
 
When CD2FA was introduced, there was an assumption of 
existence of hash function which maps content labels to 
the original state numbers. There are algorithms to devise 
such mapping. While associating state numbers to content 
labels, unique numbers can be directly used as an index 
into the memory. Thus unique memory address has to be 
associated to the content label of each state, so that the list 
of content labels for all labeled transitions leaving the 
state will be stored at that address. This requires a single 
memory access per input character. In this section, state 
numbers are referred as memory address where it is stored 
and storing a state means storing the content labels for its 
labeled transitions. As root states are simply stored as a 
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two dimensional table, attention to be focused on storing 
non-root states. 
The size of the list of content labels for a state depends 
both upon the number of labeled transitions leaving the 
state as well as length of their content labels (1 or 2 
words). Traditional table compression schemes [11] may 
be applied to associate a unique address to each state’s 
content label, however these schemes are known to be 
NP-hard, and they also incur sizeable overheads as they 
require i) additional pointer per state, and ii) a marker for 
every content label. They also require an additional 
memory access per character, which may reduce the 
throughput. 
A novel method is presented which enables, i) an optimal 
memory utilization with zero space overhead, and ii) 
single memory access per input character. It is based on 
classical bipartite graph matching, with running time of 
O(n3 / 2), where n is the number of states. This method 
proceeds by forming groups of states, so that states with 
identical memory requirement belong to the same group. 
Since a non root state is allowed to have at most 5 labeled 
transitions, the memory requirement of a non-root state 
can vary from one word to up to ten words; hence there 
can be up to 10 groups of states. Afterwards, memory is 
partitioned in 10 regions and states of each group are 
stored in different regions. In CD2FA, states can be easily 
associated to their memory regions as the memory 
requirements of a state can be directly inferred from the 
states’ content label. 
 
PACKING PROBLEM FORMULATION 
 
Let there are n states in a group and each state requires 
memory words to store its labeled outgoing transitions. 
Clearly, the group’s memory region must contain at least 
ns words. We consider a slight memory over-provisioning, 
so the memory region consists of ms words (where m = 
n+Δ, and Δ/n is the over-provisioning). Content label of 
all states of the group needs to be uniquely mapped to one 
of the m memory locations (which become the content 
labels’ state number). We apply a hash function (with co 
domain = [1, m]) to the content labels to compute this 
mapping. As traditional hashing is subject to collisions, 
multiple content labels may be mapped to a single state 
number. Collision resolution policies can be applied 
however they are likely to degrade the performance by 
requiring additional memory accesses. They will also 
incur space overheads by unnecessarily storing the 
content labels (as the hash keys). 
 
 

        

 

Fig 1 Storing list of content labels for state 9 in memory 

This algorithm eliminates both these deficiencies by 
enabling a collision free hashing, i.e. content labels are 
mapped to unique state number. This is achieved by 
exploiting the possibility of renaming a content label, 
without changing its meaning, thus effectively changing 
its hash value. There are three ways to rename content 
labels without changing their meanings. a) The simplest 
way is to modify the value of discriminator. b) An 
alternative is to change the order in which characters 
appear in the content label; thus a content label with t 
characters can have factorial t different possible names. c) 
In fixed size word length restricted content labels, yet 
another possibility is to pad label shorts by repeating 
some characters already present in the content label, or by 
modifying the unused bits. With these facilities to modify 
the name of a content label without changing its meaning, 
a naive mapping may arbitrarily rename them whenever a 
collision occurs. Systematic approach to be developed to 
select the appropriate names.  
The approach progresses by evaluating all possible names 
(called candidate names) that can be assigned to a content 
label by employing the three mentioned methods. A hash 
is then applied to the candidate names, and the result is a 
set of candidate state numbers for the content label. Once 
all candidate state numbers are known, a bipartite graph G 
= (V1+V2, E) is constructed, where vertex set V1 
corresponds to the n content labels and V2 the m state 
numbers. Edge set E contains all edges (u, v) such that u ∈ 
V1, v ∈ V2 and v is a candidate state number for u. 
After constructing the bipartite graph G, the next step is to 
seek a perfect matching, i.e. match each content label to a 
unique state number. It is likely that no perfect matching 
exists. A maximum matching M in G, which is the largest 
set of pair wise non-adjacent edges, may not contain n 
edges, in which case some content labels will not be 
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assigned any state number. However using theoretical 
analysis, we show that, when the number of candidate 
names per content label is O(log n), then a perfect 
matching will exist with high probability, even if Δ = 0. 
As Δ increases slightly, probability of perfect matching 
grows very quickly, which guarantees that little over-
provisioning will always result in a perfect matching. 
Once a perfect matching is found, for each content label, 
we fix its name to the one, for which its state number 
corresponds to a matching edge. These content labels are 
guaranteed to enable a collision free hashing during 
lookup. 
 
AN ILLUSTRATING EXAMPLE 
 
A simple example is considered to illustrate the basic 
ideas. There are 9 states, and the content labels of labeled 
transitions entering these states are shown in Figure 2a. 
There are 7 non-root states. States 3 and 7 do not require 
any memory, as they do not have any labeled outgoing 
transition (their content labels, however, may be stored at 
other states, from where a labeled transition enters these 
states). State 9 is the only state in its group, thus its 
packing is trivial. States 2, 4, 5 and 6, as shown in Figure 
2b, each requires one word; therefore these are packed in 
a memory region containing 4 or more words. 
 

 

Figure 2. a) Content labels of states of the CD2FA  b) Non-root states 
requiring one word to store the content labels associated with their 

labeled transitions. c) Candidate content labels (using 1-bit 
discriminators) and the resulting candidate state numbers. d) 

Corresponding bipartite graph. 

First, we consider no memory over-provisioning (m = n = 
4), and a single bit discriminator. We limit ourselves to 
using discriminators to rename content labels and do not 
use other methods. Thus, there are two candidate names 
for each state’s content label, and the candidate state 
numbers by applying hash over these are shown in Figure 
2c. The resulting bipartite graph is shown in Figure 2d; 
there are two perfect matching in this graph, one 
containing edges, 4-2, 2-1, 5-4 and 6-3 and another 
containing edges, 4-4, 2- 2, 5-1 and 6-3. Either of these 
will suffice in mapping unique state numbers to the 

content labels. Note that, in this case, we have not used 
memory over-provisioning; indeed, we find that, we can 
generally avoid memory over provisioning and also avoid 
discriminators because the other two methods of renaming 
content labels creates enough edges in the bipartite graph 
so that a perfect matching most likely exists Analysis of 
the packing problem 
The possibility of an optimal packing depends on the 
likelihood of finding a perfect matching on the above 
bipartite graph. A necessary and sufficient condition that a 
perfect matching exists is due to Hall’s Matching 
Theorem . 
Hall’s Matching Theorem: Given a set of n items, and a 
set of identifiers for each item (called its candidate set), 
each item can be assigned a unique identifier from its 
candidate set if, and only if, for every k ∈ [1, n], the union 
of candidate sets of any k items, contains at least k 
identifiers. 
Thus, we have to show that, for every k content labels, the 
union of their candidate state numbers contains k or more 
distinct numbers. For k=1, this is obvious, as candidate set 
of any content label is non-empty. For k>1, Hall’s 
theorem can be unsatisfied. This is due to the use of 
hashing in determining the state numbers. Even though a 
content label can have many (say l) names, its candidate 
set may still contain a single state number, due to 
collisions. In general, k content labels will have a total of 
kl random state numbers in the union of their candidate set. 
Thus, in order to compute the likelihood of a perfect 
matching, we compute the probability with which a set of 
kl randomly chosen numbers ∈ [1, m] contains k or more 
distinct numbers. 

 
 
The problem of finding perfect matching in such bipartite 
graphs is well studied. In [12], Motwani shows that a 
perfect matching in a symmetric bipartite graph with n left 
and right vertices and with random edges, exists with high 
probability when the number of edges are O(n log n). In 
fact, this threshold is sharp, which means that the 
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probability of perfect matching increases very quickly, as 
we add slightly more edges after threshold. In an 
asymmetric case, (when m > n), that the probability of a 
perfect matching again increases quickly, as m is greater 
than n. For instance, when m/n = 1.01, (implies 1% 
memory over provisioning), a perfect matching exists 
with high probability, if there are more than 7n edges in 
the bipartite graph.  
 
With these results we can conclude that if we have 
flexibility to assign O(log n) different names to each 
content label, then we will most likely find a perfect 
matching without any memory over-provisioning. O(log 
n) corresponds to approximately 16 choices of names for 
each content label in a 64K state CD2FA; this can be 
easily achieved even without using discriminators. As 
expected, in our experiments, we found a perfect 
matching in all CD2FAs without using memory over-
provisioning or employing the discriminators. 
 

III. CONSTRUCTION AND ANALAYSIS 
 

Deep packet inspection consists of processing the entire 
packet payload and identifying a set of predefined patterns. 
But now we use regular expressions, due to their greater 
expressive power and flexibility [17]. Regular expressions 
are searched through DFAs, which have attractive features, 
such as one transition for each character, which means a 
fixed  number of memory accesses. DFAs have large set 
of regular expressions can blow up in space, and many 
recent works have been presented with the aim of 
reducing their memory. 
 

 
Figure 3. The DFA for (a+), (b+c) and (c∗d+). 

 

In [15], Kumar et al. introduce the Delayed Input DFA 
(D2FA), a new representation which reduces space 
requirements. Since many states have similar sets of 
outgoing transitions, redundant transitions can be replaced 
with a single default one, this way obtaining a reduction 
of more than 95%. The drawback is travelling  of multiple 
states when processing a single input character, which 
entails a memory bandwidth increase to evaluate regular 
expressions. However, a bound B on the number of 
default transitions to be taken by a single character in 
D2FA can be defined: generally, larger values of B (hence 
many memory accesses per byte) correspond to higher 
memory compression. 
The analysis of DFA shows that it is infeasible as it uses a 
large set of regular expressions. Although NFAs improve 
the memory storage problem, it requires large memory 
bandwidth. It is due to the multiple NFA states which are 
active and each input character can trigger multiple 
transitions. Therefore a hybrid DFA-NFA solution is 
required to combine the advantages of both automata: 
When constructing the automaton, any nodes that 
contribute to state explosion retain an NFA encoding, 
while the others are transformed into DFA nodes. 
Kumar et al. [16] also showed how to increase the speed 
of D2FAs by storing more information on the edges. This 
appears to be a general trend in the literature even if it has 
been proposed in different ways: in [16] transitions carry 
data on the next reachable nodes, in [2] edges have 
different labels, and even in [14] transitions are no more 
simple pointers but a sort of “instructions”. 
In a further comprehensive work [14], Kumar et al. 
analyze three main limitations of the traditional DFAs. 
First, DFAs do not take advantage of the fact that normal 
data streams rarely match more than a few initial symbols 
of any signature; its propose is to split signatures such that 
only one portion needs to remain active, while the 
remaining portions can be “put to sleep” (in an external 
memory) under normal conditions. Second, the DFAs are 
extremely inefficient in following multiple partially 
matching signatures and this yields the so-called state 
blow-up: a new improved Finite State Machine is 
proposed in order to solve this problem. The idea is to 
construct a machine which remembers more information, 
such as encountering a closure, by storing them in a small 
and fast cache which represents a sort of history buffer. 
This class of machines is called History-based Finite 
Automaton (H-FA) and shows a space reduction close to 
95%. Third, DFAs are incapable of keeping track of the 
occurrences of certain sub-expressions, thus resulting in a 
blow-up in the number of state: Introducing some 
extensions to address this issue in the History-based 
counting Finite Automata (H-cFA). 
The idea of adding some information to transitions, 
consequently reduced the number of states, has been 
retrieved, where another scheme, named extended FA 
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(XFA), is proposed. In more details, XFA augments 
traditional finite automata with a finite scratch memory 
used to remember various types of information relevant to 
the progress of signature matching (e.g., counters of 
characters and other instructions attached to edges and 
states). Experiments performed with a large class of NIDS 
signatures showed time complexity similar to DFAs and 
space complexity similar to or better than NFAs. 
 

IV     DELTA FINITE AUTOMATON: δFA 
 

A. A motivating example 
 

In this section we introduce the principles of δFA [18] by 
analyzing the same example brought by Kumar et al. in 
[8]: the fig. 3 represents a standard DFA on the alphabet 
{a, b, c, d}that recognizes the regexes (a+),(b+c) and 
(c∗d+). In fig. 4 the D2FA for the same set of regular 
expressions is shown, where the memory footprint of 
states is reduced by storing only a limited number of 
transitions for each state and by taking a default transition 
for all input chars for which a transition is not defined. 
The total number of transitions was reduced to 9 (less than 
half of the equivalent DFA which has 20 edges), thus 
achieving a remarkable compression.  

 

 
                             Figure 4. D2FA 

     However, observing the graph in fig. 3, it is evident 
that most transitions for a given input lead to the same 
state, regardless of the starting state; in particular, 
adjacent states share the majority of the next-states 
associated with the same input chars. Then if we jump 
from state 1 to state 2 and we “remember” (in a local 
memory) the entire transition set of 1, we will already 
know all the transitions defined in 2 (because for each 
character they lead to the same set of states as 1). This 
means that state 2 can be described with a very small 
amount of bits. The result of what we have just described 
is depicted in fig.5 (except for the local transition set), 
which is the δFA equivalent to the DFA in fig. 3. We have 
8 edges in the graph (as opposed to the 20 of a full DFA) 
and every input char requires a single state traversal 
(unlike D2FA). 

 
 

Figure  5. δFA for 
Automata recognizing (a+), (b+c) and (c∗d+) 

                                 
B. The main idea of δFA 
 
The idea of δFA comes from the following observations:  
• a state is defined by its transition set and by a small 
value signaling if it is an accepting state; 
 
• in a DFA, most transitions for a given input char are 
directed to the same state. 
 
By elaborating upon the last observation, it becomes 
evident that most adjacent states share a large part of the 
same transitions. adjacent (or, better, “parent-child”1) 
states  This requires, however, the addition of a 
supplementary structure that locally stores the transition 
set of the current state. The idea is to let this local 
transition set evolve as a new state is reached: if there is 
no difference with the previous state for a given character, 
then the corresponding transition defined in the local 
memory is taken. Otherwise, the transition stored in the 
state is chosen. In all cases, as a new state is read, the 
local transition set is updated with all the stored 
transitions of the state. The δFA in fig. 5 only stores the 
transitions that must be defined for each state in the 
original DFA. 
In [18] we also proposed a new encoding scheme for 
transitions  (named Char-State compression), which 
exploits the association of many states with a few input 
characters. Such a compression scheme can be efficiently 
integrated into the δFA algorithm, allowing a further 
memory reduction with a negligible increase in the lookup 
time. 
 
C. Lookup 
 
In the first step of the lookup process, the current state 
must be read with its whole transition set. Then it is used 
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to update the local transition set: for each transition 
defined in the set read from the state, we update the 
corresponding entry in the local storage. Finally, the next 
state is computed by simply observing the proper entry in 
the local storage. As obvious, the algorithm relies on wide 
memory accesses which are very common in DRAMs 
nowadays. The lookup algorithm requires a maximum of 
C elementary operations (such as shifts and logic AND or 
pop counts), one for each entry to update. However, in our 
experiments, the number of updates per state is around 10. 
Even if the actual processing delay strictly depends on 
many factors (such as clock speed and instruction set), in 
most cases, the computational delay is negligible with 
respect to the memory access latency. 
In fig. 6(a) we show the transitions taken by the δFA in 
fig. 5 on the input string abc: a block represents a state 
and its internals include the transition set and a bitmap. 
The bitmap and the transition set have been defined 
during construction. We start Therefore we can store only 
the differences between(t = 0) in state 1 that has a fully-
specified transition set. This is copied into the local 
transition set (below). Then we read the input char a and 
move (t = 1) to state 2, that specifies a single transition 
toward state 1 on input char c. This is also an accepting 
state (underlined in figure). Then we read b and move to 
state 3. Note that the transition to be taken now is not 
specified within state 2 but it is in our local transition set. 
Again state 3 has a single transition specified, that this 
time changes the corresponding one in the local transition 
set. As we read c we move to state 5 which is again 
accepting. 
 

 
(a) δFA  internals 

 
                                   (b) (δnFA)* 

Figure 6. Automata internals: a lookup example 
 

V.  DELTA FINITE AUTOMATON: (δnFA)* 
 
In the following section we describe (δnFA)* main idea, 
the lookup process and its construction. 

A. Main idea 
 
The extension of δFA can be explained by using same 
DFA [15],[18] shown in fig 3.From fig 5 the number  of 
transition are reduced but it have some limits in 
compression. In example ,all the transitions for character c 
are specified (and hence stored) for all the 5 states, 
because of a single state 3 that defines a different 
transition. Because of strict  rules in δFA the transition set 
of a state is stored as the difference with respect to all its 
direct parents. 
 
D2FA have long default-transitions paths compresses 
better than a bounded D2FA with B=2 [15], by definition 
of “parents” to “grandparents” (i.e., 2-N step neighbor 
nodes) the effectiveness of the δFA approach increases 
because of the larger number of possibilities.  
 

 
Figure 7. ( δnFA)* 

This concept does not provide better results in δFA: for 
example, in fig. 5 defining the transitions for c as 
difference with respect to all the “grandparents” still 
would not allow to eliminate any new transition. 
Moreover this scheme would require to store 2 local 
transition sets (doubling the local memory needed).In fig 
7 the state A can send char a to B and state B send char b 
to state A also we indicate loop as a.b in both states . 
 
Lookup 

 
The way to handle temporary transitions in(δnFA)* have 
some slight variation here temporary transitions are valid 
within their state but they are not stored in the local 
transition set. Fig. 6(b) shows an example of the lookup 
process for a (δnFA)*: the whole transition set of state 1 
(where we start at time t = 0) is copied into the local 
transition set. Then by char a, we move (t = 1) to state 2 
which does not specify any transition. When we read b (t 
= 2), we move to state 3, where a temporary transition 
(dashed box) is specified: this transition is valid only 
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within state 3. Finally (t = 3) we read c, take the 
temporary transition, and end up in state 5. 
 
Algorithm Pseudo-code for the creation of the 
transition table of a δnFA from the transition table t of 
a δFA 

1:  t2t 

2: for all states s in δnFA do 

3:     for all char c do 

4:        if t[s,c] ≠ LOCAL_ TX then 

5:         S4{parents of s} 

6:         if t[sj,c]  ∀ sj ∈ S4 are equal and specified  
then 

7:  S1{children of s} 

8:  if Ǝ s j ∈S1 s.t t[sj,c]==LOCAL_TX  
then 

9.  break 

10.            if Ǝ  s j ∈ S1 s.t t[sj,c]== t[S4,c] then 

11.            S2 { parents of sj }  \ s 

12.         if  t[S2,c]==t[sj,c]= =t[S4,c]≠t[s,c] then 

13.   t2[s,c] TEMP_TX 

14.  delete   t2[sj,c] 

15.        else 

16.  Ǝ sj ∈ S1 s.t  t[sj,c]== t[S4,c] 

17.      return 0; 

 
 C. Construction 
 
The construction process of  (δnFA)* use δFA to be 
constructed before and it is used as input. It work is based 
on the subsets of nodes where a transition for a given 
character can be defined as temporary. In fig 8 nodes are 
shown as divided into sets according to their parent-child 
relationships and their transitions. 
 
The nodes have the same transition for a given char x 
share the same color ,sets S1, S2 and S4 all provide the 
same transition for char x, while S3 defines a different 
next state for x. If we set all the transitions for x in S3 as 
temporary, we can avoid storing the transition for x in S1. 
 
 

 
Figure 8.  Schematic view of the problem. Same color means same 

properties. If the properties of S3 are set temporary, the ones in S1 can 
be avoided. 

 
Table 2 Simple VS. Optimal Approach: Ratio of deleted 

and Temporary Transitions. 

 
In a real implementation, in order to recognize the nodes 
where a transition for a given character can be defined as 
temporary, for each char x of each state s, if the 
corresponding transition t[s, x] in the δFA is stored (i.e., it 
is different from that t[p, x] of all its parents) the 
following steps are required: 
 
• a search is performed in all the children of s: whenever 
at least a child has the same transition t[p, x] of its 
“grandparents”, the second step follows; 
• check all the other parents (except for s) of such a subset 
of children in order to check if they have the same 
transition t[p, x]; 
• in this case, the transition t[s, x] in s can be set as 
temporary and the process ends. 
 
A few remarks (which ultimately result in constraints in 
the construction process) can be explained by referring to 
fig. 8(where the transitions for x in S3 are set temporary): 
 
1) no state in S4 can have a temporary transition for x. 
The reason is simple: a temporary transition for x in the 
parents S4 means that such a transition does not modify 
the local transition table and therefore we have no way to 
“remember” the next-state when (after some hops) we 
reach the children S1 
 
2) all children states in S1 must have specified transitions 
for x, because if the transitions in S3 are temporary and an 
un-specified transition exists in a state sj  S1, the ultimate 
result is that t[sj, x] = t[S4, x] while sj was meant to inherit 
t[S3, x]. 
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Hence, this process introduces some constraints and, as 
usual when dealing with constraints on graphs, this 
creates new problems: as described above, when setting a 
subset y of transitions as temporary, we must rely on some 
other transitions (the grandparents of y) to be non-
temporary. This can be classified as a graph-coloring 
problem which is known to be NP-hard. 
 
Oblivious construction: we construct the (δnFA)* in a 
single run by observing all the transitions and setting all 
the transitions that satisfy the above-mentioned 
constraints as temporary. This solution is very fast 
because it does not explore the whole solution domain and 
simply gives up the idea of optimality. While this may 
appear unusual and is certainly non-optimal, it is however 
motivated by a number of experimental results (reported 
in the following section), where this approach does not 
differ significantly from the optimal setting (if ever 
reachable) in terms of transitions reduction. Moreover, 
notice that the optimal construction would require an 
exhaustive search of all the solution domain, thus 
questioning the advantages of the optimal setting. 
 
     VI.   EXPERIMENTAL RESULTS 

 
Regular Expression sets from IDS/IPS (Intrusion 
Detection System / Intrusion Prevention System) are 
taken from the real-world security devices of Snort, BRO 
and Cisco networks. These experimental results are 
reported. 
The experiment is conducted to reduce the number of 
transitions as in δFA. The comparison between the δFA 
and (δnFA)* are expressed in terms of deleted transitions. 
Tabular Column 2 shows the ratio of maximum number of 
deleted and temporary transitions. The values in the table 
shows that our (δnFA)* approach is effective as it is 
reaching the maximum number of deleted transitions 
almost in all cases. 
The comparison among δFA and (δnFA)* (which include 
also the Char-State encoding scheme for further memory 
compression, as explained in [18]) and the most efficient 
previous solutions based on the performance is shown in 
Tabular column 3. For D2FA and BEC-CRO, the code of 
regex-tool [10] is used, which builds a standard DFA. 
Different algorithms are used to reduce states and 
transitions. In D2FA, the code runs with two different 
values of the bound B (i.e., 2 and ∞), which is a parameter 
that affects the structure size and the average number of 
state-traversals per character [15]. 
Tabular column 3(a) shows the memory compression, 
which is expressed as the ratio of number of deleted 
transitions and the original ones. Tabular column 3(b) 
shows the memory compression, which is expressed by 
considering the overall memory consumption, different 
structures and state sizes. Our algorithms achieve a degree 

of compression and it is comparable to that of D2FA and 
BEC-CRO, while allowing for a higher lookup speed by 
preserving one transition per character. This is the main 
strength of our scheme, as it reduces lookup time by 
exploiting the adoption of wide memory accesses which 
are very common in DRAMs. The results shows that 
(δnFA)* provides an improvement to δFA, since it 
requires a minimal change in the lookup algorithm.  
. 

 
(a) Transitions reduction (%) 

 
(b)Memory compression (%) 

Table 3 Compression of different Algorithms. In (B) the Results For 
∂FA And δ2FA include char-state compression 

 

 
Figure 8. Mean number of memory Accesses 

 
Fig. 8 shows the average number of memory accesses 
required to perform pattern matching through the 
compared algorithms. It is worth noticing that, while 
(δnFA)* (just as δFA) needs about < 1.05 accesses (more 
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than 1 because of the integration with the Char-State 
scheme), the other algorithms require more accesses, thus 
increasing the lookup time. 
 
VII.    CONCLUSIONS AND FUTURE WORK 
         
In this paper, we have presented an extension to δFA, a 
compressed representation for DFA. It takes an advantage 
of the second order dependence between states in a DFA, 
hence it is named as (δnFA)*. Also it reduces the number 
of transitions. As the adjacent (and 2-step neighbors) 
states are sharing common transitions, memory usage is 
reduced. It is achieved by simply storing the differences 
between them. Furthermore, it is orthogonal to previous 
solutions and allows higher compression rates. Since the 
(δnFA)* requires a state transition per character only (as 
DFAs), fast string matching is allowed. The experimental 
results shows that (δnFA)* is an effective and simple 
improvement to δFA both in terms of memory 
consumption and lookup speed. The future experiment 
can be performed on (δ(δnFA)*)* to reduce the memory 
consumption and time taken for transitions. 
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