
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013

79

Manuscript received January 5, 2013
Manuscript revised January 20, 2013

A Novel Efficient Pattern Matching Packet Inspection by using
δnFA

1N.Kannaiya Raja
CSE Dept. Arulmigu Meenakshi Amman College of Engg, Thiruvannamalai Dt, near Kanchipuram

2K.Arulanandam

CSE Department Ganadipathy Tulsi’s Jain Engineering College, Vellore

3G. Ambika M.E
Arulmigu Meenakshi Amman College of Engg, Thiruvannamalai Dt,near Kanchipuram

Abstract
Deep packet Inspection is an advanced method of packet
filtering that functions at the Application layer of the OSI
reference model. Deep Packet Inspection is a form of
computer network packet filtering that examines the data
part of a packet as it passes an inspection point, searching
for protocol ,viruses ,spam, intrusions or predefined
criteria to decide if the packet can pass or it needs to be
routed to a different destination, or for the purpose of
collecting statistical information. Deterministic finite
automata (DFAs), use large set of rules need a memory
amount that turns out to be too large for practical
implementation we have presented a new compressed
representation for deterministic finite automata, called
Delta Finite Automata. The algorithm considerably
reduces the number of states and transitions, and it is
based on the observation that most adjacent states share
several common transitions, so it is convenient to store
only the differences between them. In this paper we have
presented an improvement to δFA that exploits the Nth-
order dependence between states and further reduces the
number of transitions by adopting the concept of
temporary transition. This schema named as δnFA. Both
the schemes are orthogonal to most of the previous
solutions, thus allowing for higher compression rates. A
new encoding scheme for states has been also
proposed(which we refer to as char state), which exploits
the association of many states with a few input chars.
Such a compression scheme can be efficiently integrated
into δFA and δnFA, allowing a further memory reduction
with a negligible increase in the state lookup time. The
experimental runs have shown remarkable results in terms
of lookup speed as well as the issue of excessive memory
consumption.
Index Terms
Deep packet inspection, differential encoding, finite
automata (FAs), pattern matching, regular expressions.

I. INTRODUCTION

Regular expressions are used in Modern Deep Packet
Inspection to define the various patterns of interested data
streams in the Network. Deterministic Finite Automata
(DFA) is used to parse the regular expressions. Though
DFA technique is faster, it consumes large memory space
for pattern arising. Traditional DFA table slightly reduces
the memory required and access to memory per character.
Further improvement on regular expressions such as
NFAs and Delayed Input DFAs (D2FA) reduces memory
consumption by sacrificing the throughput.
With respect to [5], the concept of “Temporary transition”
is used to improve regular expressions called δFA. Instead
of specifying transition set of a state with respect to its
direct parents, adopting N-step “ancestors” increases the
chances of compression. The best approach to exploit this
Nth-order dependence is to define the state transitions
between ancestors and child as “temporary.”
Experimental rule set results show that simple approach
meets the optimal construction (Memory or transition
reduction). As it is an extension to δFA, the method is
named as δnFA.
Content Addressed Delayed Input DFA (CD2FA) provides
a compact representation of regular expressions which
matches the throughput of traditional uncompressed DFAs.
Instead of using “content less” identifier, CD2FA uses
their content to address successive states of a D2FA. By
this selected information will be available earlier in the
state traversal process. It avoids unnecessary memory
access. Based on this content addressing, compact
automata can be obtained with high throughput.
CD2FAs matches the throughput of an uncompressed
DFA by using as little as 10% of the space required by
conventional DFA. Many network services are processing
the packets based on the payload content. As the Deep
packet inspection compares the packet to a set of strings,
forwarding the packet based on the content requires new
level of support in networking devices. New systems are
using regular expressions instead of string sets. Cisco has
even the regular expression based on content inspection

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 80

capabilities into its operating system (IOS [21]). Regular
expressions can be used in Linux OS to filter the content
at Application Layer. Regular expressions are limited in
networking context as it requires substantial amount of
memory.
A new technique Deterministic Finite Automata (D2FA)
uses delayed input for parsing Regular expressions and
default transitions to reduce the memory requirements. A
default transition is followed whenever the current input
character does not match any of the labeled transitions
leaving the current state. If two states have a large number
of “next states” in common, the common transitions are
replaced leaving one of the states with a default transition
to the other. Every state will have only one default
transition, so that the amount of memory needed to
represent the parsing automata will be reduced
dramatically. Default transitions also reduces throughput,
since no input is consumed when a default transition is
followed, however memory has to be accessed to retrieve
the next state.
The remainder of the paper is organized as follows. In
Section II, related works about DFAs are discussed.
Section III accurately describes construction and analysis
of DFA, by starting from a motivating example, Section
IV presents the optimization of ∂FA, and Section V
proves the integration of the proposed schemes with the
previous ones. Finally, Section VI presents the
experimental results.

II. RELATED WORK

Traditionally, DFA and NFA are used to search for
regexes (Regular expressions). But DFAs have large
memory consumption and fixed memory references per
character. Although NFAs consumes lower memory, it
requires several memory transitions per symbol for all
states at a given time. NFAs are used in hardware
platforms such as FPGAs while DFA are used in
software-based systems such as network processors. In
industry, DFA are used to represent regular expression
especially for parallel system. As the overall performance
of packet processing is affected by the slowest
component’s processing time. Therefore, industries are
adopting for pattern-matching deterministic solutions as
DFAs. Large memory consumption of DFA is due to the
encoding and state explosion.
DFA encoding introduces the delayed input DFA (D2FA).
The drawback of D2FA is the traversal of multiple states
when processing a single input character, which entails a
memory bandwidth increase to evaluate regular
expressions. The number of default transitions taken by a
single character is defined as bound B. Larger values of B
indicate higher compression.
An improved algorithm called Bec-Cro is implemented in
[5] for large number of access per char in D2FA.

Experimental results proved that it reduces bounds on
memory bandwidth. It is based on the inspection of all
regex evaluations starts at a single initial state, and the
majority of transitions among states, back either to the
initial state or its closest neighbors. The memory
compression of D2FA is shown as by accessing a single
memory per character.
The nonequivalent states can be combined. Combined
states with common destinations despite of characters
which lead those transitions (unlike D2FA),it create for
more merging and thus we achieve higher memory
reduction. Bitmaps for compression purposes which
increase the cost by requiring two subsequent memory
accesses
CD2FA is used to increase the speed of D2FAs by storing
a large amount of information (on subsequent reachable
transitions) on the edges. It reduces the cost of D2FAs and
requires a construction based on perfect hash functions
that may be time-consuming. The idea of storing more
information on the edges appears to be a general trend in
the literature, and it is implemented in following ways: In
[4], transitions carry data on the next reachable nodes;
edges have different labels; in [6], a sort of history buffer
(i.e., a small and fast cache) stores additional information
in order to efficiently follow multiple partially matching
signatures, thus yielding the state blow-up; in [5], a finite
scratch memory is used to remember various types of
information relevant to the progress of signature matching
(e.g., counters of characters) in order to keep the transition
history and reduce the number of states.
NFAs can improve the memory problem, but it lead to a
large bandwidth requirement, in [10] a hybrid DFA-NFA
solution is proposed. When constructing the hybrid-DFA,
any nodes that would contribute to state explosion retain
an NFA encoding, while the remaining nodes are
transformed into DFA nodes. Its aim is to reduce size
almost equal to NFA, with small memory bandwidth
requirements of a DFA.

MEMORY PACKING

When CD2FA was introduced, there was an assumption of
existence of hash function which maps content labels to
the original state numbers. There are algorithms to devise
such mapping. While associating state numbers to content
labels, unique numbers can be directly used as an index
into the memory. Thus unique memory address has to be
associated to the content label of each state, so that the list
of content labels for all labeled transitions leaving the
state will be stored at that address. This requires a single
memory access per input character. In this section, state
numbers are referred as memory address where it is stored
and storing a state means storing the content labels for its
labeled transitions. As root states are simply stored as a

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 81

two dimensional table, attention to be focused on storing
non-root states.
The size of the list of content labels for a state depends
both upon the number of labeled transitions leaving the
state as well as length of their content labels (1 or 2
words). Traditional table compression schemes [11] may
be applied to associate a unique address to each state’s
content label, however these schemes are known to be
NP-hard, and they also incur sizeable overheads as they
require i) additional pointer per state, and ii) a marker for
every content label. They also require an additional
memory access per character, which may reduce the
throughput.
A novel method is presented which enables, i) an optimal
memory utilization with zero space overhead, and ii)
single memory access per input character. It is based on
classical bipartite graph matching, with running time of
O(n3 / 2), where n is the number of states. This method
proceeds by forming groups of states, so that states with
identical memory requirement belong to the same group.
Since a non root state is allowed to have at most 5 labeled
transitions, the memory requirement of a non-root state
can vary from one word to up to ten words; hence there
can be up to 10 groups of states. Afterwards, memory is
partitioned in 10 regions and states of each group are
stored in different regions. In CD2FA, states can be easily
associated to their memory regions as the memory
requirements of a state can be directly inferred from the
states’ content label.

PACKING PROBLEM FORMULATION

Let there are n states in a group and each state requires
memory words to store its labeled outgoing transitions.
Clearly, the group’s memory region must contain at least
ns words. We consider a slight memory over-provisioning,
so the memory region consists of ms words (where m =
n+Δ, and Δ/n is the over-provisioning). Content label of
all states of the group needs to be uniquely mapped to one
of the m memory locations (which become the content
labels’ state number). We apply a hash function (with co
domain = [1, m]) to the content labels to compute this
mapping. As traditional hashing is subject to collisions,
multiple content labels may be mapped to a single state
number. Collision resolution policies can be applied
however they are likely to degrade the performance by
requiring additional memory accesses. They will also
incur space overheads by unnecessarily storing the
content labels (as the hash keys).

Fig 1 Storing list of content labels for state 9 in memory

This algorithm eliminates both these deficiencies by
enabling a collision free hashing, i.e. content labels are
mapped to unique state number. This is achieved by
exploiting the possibility of renaming a content label,
without changing its meaning, thus effectively changing
its hash value. There are three ways to rename content
labels without changing their meanings. a) The simplest
way is to modify the value of discriminator. b) An
alternative is to change the order in which characters
appear in the content label; thus a content label with t
characters can have factorial t different possible names. c)
In fixed size word length restricted content labels, yet
another possibility is to pad label shorts by repeating
some characters already present in the content label, or by
modifying the unused bits. With these facilities to modify
the name of a content label without changing its meaning,
a naive mapping may arbitrarily rename them whenever a
collision occurs. Systematic approach to be developed to
select the appropriate names.
The approach progresses by evaluating all possible names
(called candidate names) that can be assigned to a content
label by employing the three mentioned methods. A hash
is then applied to the candidate names, and the result is a
set of candidate state numbers for the content label. Once
all candidate state numbers are known, a bipartite graph G
= (V1+V2, E) is constructed, where vertex set V1
corresponds to the n content labels and V2 the m state
numbers. Edge set E contains all edges (u, v) such that u ∈
V1, v ∈ V2 and v is a candidate state number for u.
After constructing the bipartite graph G, the next step is to
seek a perfect matching, i.e. match each content label to a
unique state number. It is likely that no perfect matching
exists. A maximum matching M in G, which is the largest
set of pair wise non-adjacent edges, may not contain n
edges, in which case some content labels will not be

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 82

assigned any state number. However using theoretical
analysis, we show that, when the number of candidate
names per content label is O(log n), then a perfect
matching will exist with high probability, even if Δ = 0.
As Δ increases slightly, probability of perfect matching
grows very quickly, which guarantees that little over-
provisioning will always result in a perfect matching.
Once a perfect matching is found, for each content label,
we fix its name to the one, for which its state number
corresponds to a matching edge. These content labels are
guaranteed to enable a collision free hashing during
lookup.

AN ILLUSTRATING EXAMPLE

A simple example is considered to illustrate the basic
ideas. There are 9 states, and the content labels of labeled
transitions entering these states are shown in Figure 2a.
There are 7 non-root states. States 3 and 7 do not require
any memory, as they do not have any labeled outgoing
transition (their content labels, however, may be stored at
other states, from where a labeled transition enters these
states). State 9 is the only state in its group, thus its
packing is trivial. States 2, 4, 5 and 6, as shown in Figure
2b, each requires one word; therefore these are packed in
a memory region containing 4 or more words.

Figure 2. a) Content labels of states of the CD2FA b) Non-root states
requiring one word to store the content labels associated with their

labeled transitions. c) Candidate content labels (using 1-bit
discriminators) and the resulting candidate state numbers. d)

Corresponding bipartite graph.

First, we consider no memory over-provisioning (m = n =
4), and a single bit discriminator. We limit ourselves to
using discriminators to rename content labels and do not
use other methods. Thus, there are two candidate names
for each state’s content label, and the candidate state
numbers by applying hash over these are shown in Figure
2c. The resulting bipartite graph is shown in Figure 2d;
there are two perfect matching in this graph, one
containing edges, 4-2, 2-1, 5-4 and 6-3 and another
containing edges, 4-4, 2- 2, 5-1 and 6-3. Either of these
will suffice in mapping unique state numbers to the

content labels. Note that, in this case, we have not used
memory over-provisioning; indeed, we find that, we can
generally avoid memory over provisioning and also avoid
discriminators because the other two methods of renaming
content labels creates enough edges in the bipartite graph
so that a perfect matching most likely exists Analysis of
the packing problem
The possibility of an optimal packing depends on the
likelihood of finding a perfect matching on the above
bipartite graph. A necessary and sufficient condition that a
perfect matching exists is due to Hall’s Matching
Theorem .
Hall’s Matching Theorem: Given a set of n items, and a
set of identifiers for each item (called its candidate set),
each item can be assigned a unique identifier from its
candidate set if, and only if, for every k ∈ [1, n], the union
of candidate sets of any k items, contains at least k
identifiers.
Thus, we have to show that, for every k content labels, the
union of their candidate state numbers contains k or more
distinct numbers. For k=1, this is obvious, as candidate set
of any content label is non-empty. For k>1, Hall’s
theorem can be unsatisfied. This is due to the use of
hashing in determining the state numbers. Even though a
content label can have many (say l) names, its candidate
set may still contain a single state number, due to
collisions. In general, k content labels will have a total of
kl random state numbers in the union of their candidate set.
Thus, in order to compute the likelihood of a perfect
matching, we compute the probability with which a set of
kl randomly chosen numbers ∈ [1, m] contains k or more
distinct numbers.

The problem of finding perfect matching in such bipartite
graphs is well studied. In [12], Motwani shows that a
perfect matching in a symmetric bipartite graph with n left
and right vertices and with random edges, exists with high
probability when the number of edges are O(n log n). In
fact, this threshold is sharp, which means that the

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 83

probability of perfect matching increases very quickly, as
we add slightly more edges after threshold. In an
asymmetric case, (when m > n), that the probability of a
perfect matching again increases quickly, as m is greater
than n. For instance, when m/n = 1.01, (implies 1%
memory over provisioning), a perfect matching exists
with high probability, if there are more than 7n edges in
the bipartite graph.

With these results we can conclude that if we have
flexibility to assign O(log n) different names to each
content label, then we will most likely find a perfect
matching without any memory over-provisioning. O(log
n) corresponds to approximately 16 choices of names for
each content label in a 64K state CD2FA; this can be
easily achieved even without using discriminators. As
expected, in our experiments, we found a perfect
matching in all CD2FAs without using memory over-
provisioning or employing the discriminators.

III. CONSTRUCTION AND ANALAYSIS

Deep packet inspection consists of processing the entire
packet payload and identifying a set of predefined patterns.
But now we use regular expressions, due to their greater
expressive power and flexibility [17]. Regular expressions
are searched through DFAs, which have attractive features,
such as one transition for each character, which means a
fixed number of memory accesses. DFAs have large set
of regular expressions can blow up in space, and many
recent works have been presented with the aim of
reducing their memory.

Figure 3. The DFA for (a+), (b+c) and (c∗d+).

In [15], Kumar et al. introduce the Delayed Input DFA
(D2FA), a new representation which reduces space
requirements. Since many states have similar sets of
outgoing transitions, redundant transitions can be replaced
with a single default one, this way obtaining a reduction
of more than 95%. The drawback is travelling of multiple
states when processing a single input character, which
entails a memory bandwidth increase to evaluate regular
expressions. However, a bound B on the number of
default transitions to be taken by a single character in
D2FA can be defined: generally, larger values of B (hence
many memory accesses per byte) correspond to higher
memory compression.
The analysis of DFA shows that it is infeasible as it uses a
large set of regular expressions. Although NFAs improve
the memory storage problem, it requires large memory
bandwidth. It is due to the multiple NFA states which are
active and each input character can trigger multiple
transitions. Therefore a hybrid DFA-NFA solution is
required to combine the advantages of both automata:
When constructing the automaton, any nodes that
contribute to state explosion retain an NFA encoding,
while the others are transformed into DFA nodes.
Kumar et al. [16] also showed how to increase the speed
of D2FAs by storing more information on the edges. This
appears to be a general trend in the literature even if it has
been proposed in different ways: in [16] transitions carry
data on the next reachable nodes, in [2] edges have
different labels, and even in [14] transitions are no more
simple pointers but a sort of “instructions”.
In a further comprehensive work [14], Kumar et al.
analyze three main limitations of the traditional DFAs.
First, DFAs do not take advantage of the fact that normal
data streams rarely match more than a few initial symbols
of any signature; its propose is to split signatures such that
only one portion needs to remain active, while the
remaining portions can be “put to sleep” (in an external
memory) under normal conditions. Second, the DFAs are
extremely inefficient in following multiple partially
matching signatures and this yields the so-called state
blow-up: a new improved Finite State Machine is
proposed in order to solve this problem. The idea is to
construct a machine which remembers more information,
such as encountering a closure, by storing them in a small
and fast cache which represents a sort of history buffer.
This class of machines is called History-based Finite
Automaton (H-FA) and shows a space reduction close to
95%. Third, DFAs are incapable of keeping track of the
occurrences of certain sub-expressions, thus resulting in a
blow-up in the number of state: Introducing some
extensions to address this issue in the History-based
counting Finite Automata (H-cFA).
The idea of adding some information to transitions,
consequently reduced the number of states, has been
retrieved, where another scheme, named extended FA

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 84

(XFA), is proposed. In more details, XFA augments
traditional finite automata with a finite scratch memory
used to remember various types of information relevant to
the progress of signature matching (e.g., counters of
characters and other instructions attached to edges and
states). Experiments performed with a large class of NIDS
signatures showed time complexity similar to DFAs and
space complexity similar to or better than NFAs.

IV DELTA FINITE AUTOMATON: δFA

A. A motivating example

In this section we introduce the principles of δFA [18] by
analyzing the same example brought by Kumar et al. in
[8]: the fig. 3 represents a standard DFA on the alphabet
{a, b, c, d}that recognizes the regexes (a+),(b+c) and
(c∗d+). In fig. 4 the D2FA for the same set of regular
expressions is shown, where the memory footprint of
states is reduced by storing only a limited number of
transitions for each state and by taking a default transition
for all input chars for which a transition is not defined.
The total number of transitions was reduced to 9 (less than
half of the equivalent DFA which has 20 edges), thus
achieving a remarkable compression.

 Figure 4. D2FA

 However, observing the graph in fig. 3, it is evident
that most transitions for a given input lead to the same
state, regardless of the starting state; in particular,
adjacent states share the majority of the next-states
associated with the same input chars. Then if we jump
from state 1 to state 2 and we “remember” (in a local
memory) the entire transition set of 1, we will already
know all the transitions defined in 2 (because for each
character they lead to the same set of states as 1). This
means that state 2 can be described with a very small
amount of bits. The result of what we have just described
is depicted in fig.5 (except for the local transition set),
which is the δFA equivalent to the DFA in fig. 3. We have
8 edges in the graph (as opposed to the 20 of a full DFA)
and every input char requires a single state traversal
(unlike D2FA).

Figure 5. δFA for
Automata recognizing (a+), (b+c) and (c∗d+)

B. The main idea of δFA

The idea of δFA comes from the following observations:
• a state is defined by its transition set and by a small
value signaling if it is an accepting state;

• in a DFA, most transitions for a given input char are
directed to the same state.

By elaborating upon the last observation, it becomes
evident that most adjacent states share a large part of the
same transitions. adjacent (or, better, “parent-child”1)
states This requires, however, the addition of a
supplementary structure that locally stores the transition
set of the current state. The idea is to let this local
transition set evolve as a new state is reached: if there is
no difference with the previous state for a given character,
then the corresponding transition defined in the local
memory is taken. Otherwise, the transition stored in the
state is chosen. In all cases, as a new state is read, the
local transition set is updated with all the stored
transitions of the state. The δFA in fig. 5 only stores the
transitions that must be defined for each state in the
original DFA.
In [18] we also proposed a new encoding scheme for
transitions (named Char-State compression), which
exploits the association of many states with a few input
characters. Such a compression scheme can be efficiently
integrated into the δFA algorithm, allowing a further
memory reduction with a negligible increase in the lookup
time.

C. Lookup

In the first step of the lookup process, the current state
must be read with its whole transition set. Then it is used

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 85

to update the local transition set: for each transition
defined in the set read from the state, we update the
corresponding entry in the local storage. Finally, the next
state is computed by simply observing the proper entry in
the local storage. As obvious, the algorithm relies on wide
memory accesses which are very common in DRAMs
nowadays. The lookup algorithm requires a maximum of
C elementary operations (such as shifts and logic AND or
pop counts), one for each entry to update. However, in our
experiments, the number of updates per state is around 10.
Even if the actual processing delay strictly depends on
many factors (such as clock speed and instruction set), in
most cases, the computational delay is negligible with
respect to the memory access latency.
In fig. 6(a) we show the transitions taken by the δFA in
fig. 5 on the input string abc: a block represents a state
and its internals include the transition set and a bitmap.
The bitmap and the transition set have been defined
during construction. We start Therefore we can store only
the differences between(t = 0) in state 1 that has a fully-
specified transition set. This is copied into the local
transition set (below). Then we read the input char a and
move (t = 1) to state 2, that specifies a single transition
toward state 1 on input char c. This is also an accepting
state (underlined in figure). Then we read b and move to
state 3. Note that the transition to be taken now is not
specified within state 2 but it is in our local transition set.
Again state 3 has a single transition specified, that this
time changes the corresponding one in the local transition
set. As we read c we move to state 5 which is again
accepting.

(a) δFA internals

 (b) (δnFA)*

Figure 6. Automata internals: a lookup example

V. DELTA FINITE AUTOMATON: (δnFA)*

In the following section we describe (δnFA)* main idea,
the lookup process and its construction.

A. Main idea

The extension of δFA can be explained by using same
DFA [15],[18] shown in fig 3.From fig 5 the number of
transition are reduced but it have some limits in
compression. In example ,all the transitions for character c
are specified (and hence stored) for all the 5 states,
because of a single state 3 that defines a different
transition. Because of strict rules in δFA the transition set
of a state is stored as the difference with respect to all its
direct parents.

D2FA have long default-transitions paths compresses
better than a bounded D2FA with B=2 [15], by definition
of “parents” to “grandparents” (i.e., 2-N step neighbor
nodes) the effectiveness of the δFA approach increases
because of the larger number of possibilities.

Figure 7. (δnFA)*

This concept does not provide better results in δFA: for
example, in fig. 5 defining the transitions for c as
difference with respect to all the “grandparents” still
would not allow to eliminate any new transition.
Moreover this scheme would require to store 2 local
transition sets (doubling the local memory needed).In fig
7 the state A can send char a to B and state B send char b
to state A also we indicate loop as a.b in both states .

Lookup

The way to handle temporary transitions in(δnFA)* have
some slight variation here temporary transitions are valid
within their state but they are not stored in the local
transition set. Fig. 6(b) shows an example of the lookup
process for a (δnFA)*: the whole transition set of state 1
(where we start at time t = 0) is copied into the local
transition set. Then by char a, we move (t = 1) to state 2
which does not specify any transition. When we read b (t
= 2), we move to state 3, where a temporary transition
(dashed box) is specified: this transition is valid only

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 86

within state 3. Finally (t = 3) we read c, take the
temporary transition, and end up in state 5.

Algorithm Pseudo-code for the creation of the
transition table of a δnFA from the transition table t of
a δFA

1: t2t

2: for all states s in δnFA do

3: for all char c do

4: if t[s,c] ≠ LOCAL_ TX then

5: S4{parents of s}

6: if t[sj,c] ∀ sj ∈ S4 are equal and specified
then

7: S1{children of s}

8: if Ǝ s j ∈S1 s.t t[sj,c]==LOCAL_TX
then

9. break

10. if Ǝ s j ∈ S1 s.t t[sj,c]== t[S4,c] then

11. S2 { parents of sj } \ s

12. if t[S2,c]==t[sj,c]= =t[S4,c]≠t[s,c] then

13. t2[s,c] TEMP_TX

14. delete t2[sj,c]

15. else

16. Ǝ sj ∈ S1 s.t t[sj,c]== t[S4,c]

17. return 0;

 C. Construction

The construction process of (δnFA)* use δFA to be
constructed before and it is used as input. It work is based
on the subsets of nodes where a transition for a given
character can be defined as temporary. In fig 8 nodes are
shown as divided into sets according to their parent-child
relationships and their transitions.

The nodes have the same transition for a given char x
share the same color ,sets S1, S2 and S4 all provide the
same transition for char x, while S3 defines a different
next state for x. If we set all the transitions for x in S3 as
temporary, we can avoid storing the transition for x in S1.

Figure 8. Schematic view of the problem. Same color means same

properties. If the properties of S3 are set temporary, the ones in S1 can
be avoided.

Table 2 Simple VS. Optimal Approach: Ratio of deleted

and Temporary Transitions.

In a real implementation, in order to recognize the nodes
where a transition for a given character can be defined as
temporary, for each char x of each state s, if the
corresponding transition t[s, x] in the δFA is stored (i.e., it
is different from that t[p, x] of all its parents) the
following steps are required:

• a search is performed in all the children of s: whenever
at least a child has the same transition t[p, x] of its
“grandparents”, the second step follows;
• check all the other parents (except for s) of such a subset
of children in order to check if they have the same
transition t[p, x];
• in this case, the transition t[s, x] in s can be set as
temporary and the process ends.

A few remarks (which ultimately result in constraints in
the construction process) can be explained by referring to
fig. 8(where the transitions for x in S3 are set temporary):

1) no state in S4 can have a temporary transition for x.
The reason is simple: a temporary transition for x in the
parents S4 means that such a transition does not modify
the local transition table and therefore we have no way to
“remember” the next-state when (after some hops) we
reach the children S1

2) all children states in S1 must have specified transitions
for x, because if the transitions in S3 are temporary and an
un-specified transition exists in a state sj S1, the ultimate
result is that t[sj, x] = t[S4, x] while sj was meant to inherit
t[S3, x].

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 87

Hence, this process introduces some constraints and, as
usual when dealing with constraints on graphs, this
creates new problems: as described above, when setting a
subset y of transitions as temporary, we must rely on some
other transitions (the grandparents of y) to be non-
temporary. This can be classified as a graph-coloring
problem which is known to be NP-hard.

Oblivious construction: we construct the (δnFA)* in a
single run by observing all the transitions and setting all
the transitions that satisfy the above-mentioned
constraints as temporary. This solution is very fast
because it does not explore the whole solution domain and
simply gives up the idea of optimality. While this may
appear unusual and is certainly non-optimal, it is however
motivated by a number of experimental results (reported
in the following section), where this approach does not
differ significantly from the optimal setting (if ever
reachable) in terms of transitions reduction. Moreover,
notice that the optimal construction would require an
exhaustive search of all the solution domain, thus
questioning the advantages of the optimal setting.

 VI. EXPERIMENTAL RESULTS

Regular Expression sets from IDS/IPS (Intrusion
Detection System / Intrusion Prevention System) are
taken from the real-world security devices of Snort, BRO
and Cisco networks. These experimental results are
reported.
The experiment is conducted to reduce the number of
transitions as in δFA. The comparison between the δFA
and (δnFA)* are expressed in terms of deleted transitions.
Tabular Column 2 shows the ratio of maximum number of
deleted and temporary transitions. The values in the table
shows that our (δnFA)* approach is effective as it is
reaching the maximum number of deleted transitions
almost in all cases.
The comparison among δFA and (δnFA)* (which include
also the Char-State encoding scheme for further memory
compression, as explained in [18]) and the most efficient
previous solutions based on the performance is shown in
Tabular column 3. For D2FA and BEC-CRO, the code of
regex-tool [10] is used, which builds a standard DFA.
Different algorithms are used to reduce states and
transitions. In D2FA, the code runs with two different
values of the bound B (i.e., 2 and ∞), which is a parameter
that affects the structure size and the average number of
state-traversals per character [15].
Tabular column 3(a) shows the memory compression,
which is expressed as the ratio of number of deleted
transitions and the original ones. Tabular column 3(b)
shows the memory compression, which is expressed by
considering the overall memory consumption, different
structures and state sizes. Our algorithms achieve a degree

of compression and it is comparable to that of D2FA and
BEC-CRO, while allowing for a higher lookup speed by
preserving one transition per character. This is the main
strength of our scheme, as it reduces lookup time by
exploiting the adoption of wide memory accesses which
are very common in DRAMs. The results shows that
(δnFA)* provides an improvement to δFA, since it
requires a minimal change in the lookup algorithm.
.

(a) Transitions reduction (%)

(b)Memory compression (%)

Table 3 Compression of different Algorithms. In (B) the Results For
∂FA And δ2FA include char-state compression

Figure 8. Mean number of memory Accesses

Fig. 8 shows the average number of memory accesses
required to perform pattern matching through the
compared algorithms. It is worth noticing that, while
(δnFA)* (just as δFA) needs about < 1.05 accesses (more

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.1, January 2013 88

than 1 because of the integration with the Char-State
scheme), the other algorithms require more accesses, thus
increasing the lookup time.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an extension to δFA, a
compressed representation for DFA. It takes an advantage
of the second order dependence between states in a DFA,
hence it is named as (δnFA)*. Also it reduces the number
of transitions. As the adjacent (and 2-step neighbors)
states are sharing common transitions, memory usage is
reduced. It is achieved by simply storing the differences
between them. Furthermore, it is orthogonal to previous
solutions and allows higher compression rates. Since the
(δnFA)* requires a state transition per character only (as
DFAs), fast string matching is allowed. The experimental
results shows that (δnFA)* is an effective and simple
improvement to δFA both in terms of memory
consumption and lookup speed. The future experiment
can be performed on (δ(δnFA)*)* to reduce the memory
consumption and time taken for transitions.

REFERENCES
[1] R. Sommer and V. Paxson, “Enhancing byte-level network

intrusion detection signatures with context,” in Proc. ACM
CCS, 2003, pp. 262–271.

[2] “Snort: Lightweight intrusion detection for networks,”
Source fire, Inc., Columbia, MD [Online].
Available: http://www.snort.org/

[3] M. Becchi and S. Cadambi, “Memory-efficient regular
expression search using state merging,” in Proc. IEEE
INFOCOM, 2007, pp. 1064–1072.

[4] S. Kumar, J. Turner, and J. Williams, “Advanced
algorithms for fast and scalable deep packet inspection,” in
Proc. ANCS, 2006, pp. 81–92.

[5] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big
bang: Fast and scalable deep packet inspection with
extended finite automata,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 207–218, 2008.

[6] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese,
“Curing regular expressions matching algorithms from
insomnia, amnesia, and acalculia,” in Proc. ACM ANCS,
2007, pp. 155–164.

[7] A. V. Aho and M. J. Corasick, “Efficient string matching:
An aid to bibliographic search,” Commun. ACM, vol. 18, no.
6, pp. 333–340, 1975.

[8] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,
“Deterministic memory-efficient string matching
algorithms for intrusion detection,” in Proc. IEEE
INFOCOM, 2004, pp. 333–340.

[9] M. Becchi and P. Crowley, “An improved algorithm to
accelerate regular expression evaluation,” in Proc. ACM
ANCS, 2007, pp. 145–154.

[10] M. Becchi and P. Crowley, “A hybrid finite automaton for
practical deep packet inspection,” in Proc. ACM CoNEXT,
2007, pp. 1–12.

[11] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata
Theory, Languages, and Computation,” Addison Wesley,
1979

[12] R. Motwani, “Average-case analysis of algorithms for
matching and related problems,” J. of the ACM, 41:1329--
1356, 1994.

[13] M. Becchi and S. Cadambi. Memory-efficient regular
expression search using state merging. In Proc. of
INFOCOM 2007, May 2007.

[14] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese.
Curing regular expressions matching algorithms from
insomnia, amnesia, and acalculia. In Proc. of ANCS ’07,
pages 155–164. ACM.

[15] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.
Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In Proc.
of SIGCOMM ’06, pages 339–350. ACM.

[16] S. Kumar, J. Turner, and J. Williams. Advanced algorithms
for fast and scalable deep packet inspection. In Proc. of
ANCS ’06, pages 81–92. ACM.

[17] R. Sommer and V. Paxson. Enhancing byte-level network
intrusion detection signatures with context. In Proc. of
CCS ’03, pages 262–271.

[18] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi,
and A. DiPietro. An improved dfa for fast regular
expression matching. SIGCOMM Computer
Communication Review, 38(5), 2008.

N.Kannaiya Raja received degree MCA from
Alagappa University and ME from Anna
University Chennai in 2007 joined assistant
professor in various engineering colleges in
Tamil Nadu affiliated to Anna University and has
eight years teaching experience. His research

work in deep packet inspection. He has been session chair in
major conference and workshops in computer vision on
algorithm, network, mobile communication, image processing
papers and pattern recognition. His current primary areas of
research are packet inspection and network. He is interested to
conduct guest lecturer in various engineering in Tamil Nadu.

K Arulanandam received PhD doctorate degree
in 2010 from Vinayaka Missions University. He
has twelve years teaching experience in various
engineering colleges in Tamil Nadu which are
affiliated to Anna University and his research
experience network, mobile communication

tworks, image processing papers and algorithm papers.
Currently working in Ganadipathy Tulasi’s Jain Engineering
College Vellore .

G.Ambika received degree B.Tech Information
Technology from Anna University Chennai in
2008. Now pursuing ME Computer Science and
Engineering in Arulmigu Meenakshi Amman
College of Engineering Kanchipuram affiliated to
Anna University Chennai.

http://www.snort.org/

