
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013

80

Manuscript received February 5, 2013
Manuscript revised February 20, 2013

A Panoramic Approach On Software Quality Assurance Proposed
By CMM And XP

CH.V. Phani Krishna*1, G.Rama Krishna*2 and K.Rajasekhara Rao*3

1Associate professor, CSE Department, KL University, Guntur dt., India.

2professor, CSE Department, KL University, Guntur Dt., India
3Dean of student and faculty welfare, KL University, Guntur Dt., India.

Abstract
The main objective of this paper is to compare Capability
Maturity Model (CMM) and Extreme Programming (XP)
regarding their software quality support in terms of software
quality development. The main goal is to analyze or measure
how the code is framed for particular software, and apply
software to show the result.
Key words:
Sqa,Xp,Cmm.

1. Introduction:

The software quality engineering focuses on the
processes involved in the development and establishment
of software quality. Software quality engineering
includes software quality development and software
quality assurance. Software quality development consists
of requirements engineering, system and software design
and implementation. Software quality assurance consists
of software quality assurance, quality management and
verification and validation. Software quality is achieved
by three approaches: testing and static analysis and
development approaches. The integration of all three
approaches is the most desirable approach.
Different users think differently about the quality of
software. The end-user expects the software to help him
to do the job faster and easier with adequate help. The
buyer expects the software to meet the specifications
within the contract terms. The developer attempts to
trace defects and focuses faster development as well as
higher productivity. The maintainer expects software to
be understandable, testable, and modifiable, with all
documentation.
The characteristics of software quality in product
transition are reusability, portability and interoperability.
The characteristics of software quality in product
revision are maintainability, adaptability and
expandability. The characteristics of software quality in
product operation are usability, security, efficiency,
correctness and reliability. The attributes of software

quality are manageability, efficiency, safety,
expandability, reliability, flexibility and usability.
There are quantitative as well as qualitative benefits in
maintaining quality assurance. The Quantitative benefits
are reduced costs, greater efficiency, better performance,
less unplanned work and fewer disputes. The Qualitative
benefits are improved visibility and predictability, better
control over contracted products, improved customer
confidence, better quality, problems show up earlier and
reduced risk.

2. Software Quality Assurance Proposed by
CMM:

It is well known the CMM describes an evolutionary
improvement path to a mature disciplined process.
CMM defines key practices to improve the ability of the
organization to meet goals for cost, functionality and
quality. SQA activities are defined at level 2
According to CMM the purpose of software quality
assurance (SQA) is to provide the management with
appropriate visibility into the process being used by the
software project and of the products being built. It is
required that the project follows a return organizational
policy for implementing the SQA.

CMM defines eight activities to be performed as follows:

 A SQA plan is prepared for the software project
according to documented procedure.

 SQA’s group activities includes:
 Responsibilities and authority of SQA group
 Resource requirements of SQA group
 Schedule and funding of the project.
 Participation in establishing the software

development plan (SDD).
 Evaluations to be performed.
 Audits and reviews to be conducted.
 Projects standards and procedures forming basis for

SQA reviews.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 81

 Procedures for documenting and tracking non-
Compliance issues.

 Documentation to produce.
 Method and frequency to provide feedback to other

related group.
 The SQA group participates in the preparation and

review of the project’s software development plan,
standards and procedures and audit the software
project.

 The SQA group audits designated software work
products to verify compliance.

 The SQA group periodically reports the result of its
activities to the software engineering group.

 Deviations identified in the software activities and
software work products are documented and handled
according to documented procedure.

 The SQA group conducts periodic reviews of its
activity and findings with customers SQA personnel
as appropriate.

3. CMM levels key process areas and their
purpose:

3.1 Initial:

This is the starting point for use of a new or
undocumented, repeated process. Little documentation is
necessary if any processes and procedures take place.
Success is only achieved by the heroic actions of team
members.
When to use:
Used for a kind projects of very limited scope.

3.2 Repeatable:

The process is at least documented sufficiently such that
repeating the same steps may be exempted. Enough
documentation exists that the QA process is repeatable.
When to use:
This is used for any project that will be done again,
whether as an upgrade or a somewhat similar variation.

3.3 Defined:

The process is defined/confirmed as a standard business
process, and decomposed to levels 0, 1 and 2 (the latter
being Work Instructions).QA documentation and
processes & procedures are standardized. Templates
exist for all documentation and a QA "system" exists.
When to use:
This is critical for a QA department that must provide
QA for multiple projects. This avoids reinventing the
wheel for each project.

3.4 Managed:

The process is quantitatively managed in accordance
with agreed-upon metrics. The exact time & resources
required to provide adequate QA for each product is
known precisely so that timetables and quality levels are
met consistently.
When to use:
This requires an existing data set based on previous QA
projects. This level can only be achieved by well
documented experience.

3.5 Optimizing:

Process management includes deliberate process
optimization / improvement. QA processes and
procedures are understood well enough to be refined and
streamlined.
When to use:
This should be actually used in every stage. In Level 5,
this is the only thing left to work on.
It would be enlightening to conduct a CMM assessment
of a team successfully practicing XP. In fact, XP team
would achieve a maturity level 2 or better. CMM level 2
is about managing project requirements and schedules
effectively and repeatedly. XP claims to do just that,
using story cards and a planning game [4].
Thus, the software engineering goals are worthy and they
can even be implemented with lightweight
methodologies where appropriate. XP is compatible to
CMM as well. Software quality assurance consists of
Software quality assurance, quality management and
verification and validation [5]. Software quality is
achieved by three approaches: Testing, Static analysis
and development approach. The integration of all the
three approaches is the most desirable approach. A
different categorization of approaches towards software
quality regards four ways to establish software quality:
Software quality via better quality evaluation, better
measurement, better processes and better tools [6].
Large-scale quality models like Capability Maturity
Model (CMM) or ISO-9001 tend to form a SQA in terms
of a “process police”. [7] SQA takes care only that the
process requirements are met but does not consider the
quality of the process itself. Instead of SQA in terms of
CMM or ISO 9001 a better solution is to embed quality
evaluation in the development process.
 XP require certain adaptations in order to fulfill CMM
requirements specialized maturity models for XP are
introduced by combining Capability Maturity Model
(CMM) with Personal Software Process (PSP) [8, 3].
Therefore, instead of eliciting SQA in terms of CMM a
better solution can be embedded for quality evaluation in
XP [9, 10].

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 82

4. Software Quality Assurance Proposed by
XP:

4.1 Iterative Software Development:

To establish higher software quality, a software
development process has to use an iterative and
incremental development approach. By using iterative
approach a process can gain more flexibility in dealing
with changing requirements or scope. The Short Releases
of the product force early feedback from the customer as
well as stakeholders which is important for improvement
of overall quality of the software. XP builds on a very
strict iterative approach limiting the time needed to
encounter errors and forces developers to fix the problem
as soon as possible.

4.2 Quality as a Primary Objective:

XP software development process defines quality as a
major objective to improve the overall quality of the
software. Quality targets have to be defined by involving
project team members and customer (On-Site Customer).
Thus the quality goals become achievable and
measurable.

4.3 Continuous Verification of Quality:

This includes extensive testing. Besides internal unit
testing, external acceptance tests with the customer are
needed too, in order to verify that the product fulfills the
needs and requirements of the customer (Test-Driven
Development).

4.4 Customer Requirements:

The requirements of the customer who normally does not
have a deep technical knowledge have to be considered,
so that developers are able to build an application based
on that information. Thus it is necessary that the project
team understands the customer and his business.
Otherwise it is not possible to implement the customer
needs accurately. XP teams focuses on the customer
needs and requirements throughout the entire project by
means of communication and by framing user stories.

4.5 Architecture Driven:

Architecture of a system has a major impact on the
overall quality of the product. Using a simple well-
designed architecture allows easy integration and reuse
(Simple Design and Continuous Integration).

4.6 Focus on Teams:

Focusing on team work also effects the motivation of
project members. Seeing everyone as an equally
important part of the project leads to a high identification
of the team members with the product. Hence the project
code is not owned by any single programmer but owned
by the team collectively (Collective Code Ownership).

4.7 Pair Programming:

Better solutions are more likely with Pair Programming
since two persons most likely have different perspectives
of the same problem and therefore they complement each
other in solving it. This approach saves time and
minimizes the number of errors. This is an explicit
practice of XP.

4.8 Tailoring with Restrictions:

Software development process should rely on core
elements. Building on these core elements the process
should adapt practices (tailoring) according to the project
type and project size (eg. RDP)

4.9 Risk management:

Risk management enables early risk mitigation and the
possibility to act instead of to react to problems and risks.
A well-defined risk awareness and mitigation
management form together an effective risk management
and is a key factor in achieving high product quality.

5. Existing System

In the existing system, a large number of codes are
divided into only two modules. So in the existing system,
performance analysis takes more time and is also not
accurate.
As per Mancoridis et al., the earliest of software metrics
deal with the measurement of code complexity and its
maintainability. He measured the Modularization Quality
(MQ) which is the combination of coupling and cohesion.
Cohesion is measured as the ratio of the number of
internal function-call dependencies that actually exist, to
the maximum possible internal dependencies. Coupling
is measured as the ratio of the number of actual external
function-call dependencies between the two subsystems,
to the maximum possible number of such external
dependencies. The system level MQ is calculated as the
difference between the average cohesion and the average
coupling.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 83

6. Process of Proposed System:

In the proposed system, we have considered the leaf
nodes of the directory hierarchy of the original source
code to be the most fine-grained functional modules. All
the files (and functions within) inside a leaf level
directory are considered to belong to a single module,
with the module corresponding to the directory itself. In
this manner, all leaf level directories form the module set
for the software.
• A lot of work has been done in the past on automatic

approaches for code reorganization. There are
certain principles, which are most applicable to code
reorganization. Our current ongoing effort is
targeted on the reorganization of legacy software,
containing millions of lines of non-object oriented
code. This code was never modularized, or the
modularization was very poor. The problem could
be attributed as reorganization of millions of lines of
code into modules. This code could reside in
thousands of files, in hundreds of directories. Here,
each module is formed by grouping a set of entities
like files, functions, data structures and variables
into a logically interconnected unit.

• Modularization is based on certain design principles:
Principle1: Principles Related to Similarity of Purpose
A module is a cluster of a set of data structures and
functions that together offer a distinct purpose. To
rephrase, the structures used for representing knowledge
and any associated functions in the same module should
fit together on the basis of similarity-of-service as
opposed to, for instance, on the basis of function call
dependencies. Clearly, every service is related to a
specific purpose. The following principles are presented
as coming under the “Similarity of Purpose” rubric:
Maximization of Module Coherence on the Basis of
Similarity and Singularity of Purpose.
• Minimization of Purpose Dispersion
• Maximization of Module Coherence on the Basis of

Commonality of Goals
• Minimization of Goal Dispersion.

Principle 2: Principle Related to Module Compilability
• A universal basis of inter module compilation

dependency is that a file from one module needs,
through import or include declarations, one or more
files from a different module. As software systems
evolve and some modules seem like utilities to
developers, it is very easy for such
interdependencies to become circular. For apparent
reasons, these compilation inter-dependencies make
it difficult for modules to grow in parallel, and be
tested independently. Hence, as far as possible, it
must be possible to compile each module
independently of the other modules.

Principle 3: Principle Related to Module Extendibility

One of the most important reasons for object-oriented

software development is that the classes can be easily

extended whenever one wants a more specialized

functionality. Extending object-oriented software

through the idea of sub-class allows for a more ordered

approach to software development and maintenance,

since it makes code authorship and its responsibility easy

to identify. While module- level compartmentalization of

code does not follow the types of software extension

rules that are easy to implement in object-oriented

approaches, one nevertheless wants the modules to have

similar properties when it comes to code extension and

enhancement. The following principle takes into account

these aspects of code modularization:

• Maximization of the Stand-Alone Module
• Extendibility

Principle 4: Principle Related to Module Testability
Testing is a vital part of software development. At the
most, testing must make sure that software conforms to
the existing standards and protocols. This kind of testing
is mostly called requirements-based testing. But, most
important, testing must guarantee that the software code
must act as expected for a whole variety of inputs, both
correct and incorrect, and at multiple levels. These levels
constitute the level of program at the individual function,
and at module interactions level. Testing must account
for variety of competencies of all causes that interact
with the software. Testing procedures can encounter
combinatorial problems if the modules cannot be tested
independently. This means that if each module is tested
for X inputs, then two inter-dependent modules need to
be tested for X2 inputs. A modularization procedure
must adhere to accomplish the following principle:
• Maximization of the Stand-Alone Testability of

Modules

Principle 5: Principles Related to Module Size
When a new software development is started afresh, one
cannot have all the modules to be of the same size, and
equal to some pre-decided number. Nevertheless, when
the modularizing legacy code is completely unorganized,
it is essential to be able to bias a clustering algorithm to
produce modules of approximately the same size, and
whose value depend on considerations which are related
to software maintenance.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 84

Putting the whole code in a single module is theoretically
a correct modularization, though not a useful one. Hence,
we need metrics that can maneuver a modularization
algorithm away from making very large modules,
towards making modules in the same size, while at the
same time also ensure that other considerations are not
violated. The following two principles deal with this
necessity:
• Principle of Observance of Module Size Bounds
• Principle of Maximization of Module Size

FIG1. Result of Software Quality Assurance by CMM

FIG2. Result of Software Quality Assurance by XP

Conclusion:

Thus, Practices of XP support software quality
development as well as software quality assurance. XP
require certain adaptations in order to fulfill CMM
requirements specialized maturity models for XP are
introduced by combining Capability Maturity Model
(CMM) with Personal Software Process. However, much
software quality support is implicitly present in XP
principles.

References:

[1] B.W.Boehm. Software Engineering Economics. Prentice
Hall, Englewood Cliffs, NJ, 1981.

[2] Ward, W.A., and Venkataraman.B, Some observations on
Software quality, in proceedings of the 37th annual
southeast regional conference (CD-ROM), ACM, 1999,
Article No.2.

[3] Microsoft Cooperation: Microsoft Solutions Framework
White Paper, Microsoft Press, 1999.

[4] Huo, M., Verner, J., Zhu, L., Babar, M.A: Software
quality and agile methods. In proceedings of COMPSAC
04, IEEE Computer Soc., 2004, pp.520-25.

[5] Paulk, N.C: Extreme Programming from a CMM
Perspective. IEEE software, vol. 18, no.6, IEEE, Nov-
Dec.2001, pp.19-26.

[6] Nawrocki,J.,Walter, B.,and Wojciechowski, A.: Toward
maturity model for Extreme Programming: In proceedings
Euromicro Conference, 2001.IEEE,2001,pp. 233-9.

[7] Baker, E.B., Which way, SQA? .IEEE-Software, vol.18,
no.1; Jan.-Feb. 2001; pp. 16-18.

[8] ManZoni, L.V.; Price, R.T.: identifying extensions
required by RUP(Rational Unified Process) to comply
with CMM (Capability Maturity Model) level 2 and 3.
IEEE Transaction on Software Engineering, Vol 29, no.2,
IEEE, Feb.2003,pp.181-192.

[9] Pollice, G.: Using Rational Unified Process for small
Projects: Expanding Upon Extreme Programming. A
Rational Software White Paper, Rational, 2001.

[10] Runeson, P., Isacsson, P.:Software Quality Assurance
Concepts and Misconceptions, In Proceedings of the 24th
EUROMICRO Conference, IEEE Computer Soc, 1998,
pp.853-9.

[11] Osterweil, L.J.: Improving the quality of software quality
determination processes, In the Proceedings of the IFIP
TC2/WG2.5 Working Conference on Quality of
Numerical Software. Assessment and Enhancement,
Chapman & Hall, London, 1997, pp.90-105.

Ch.V.Phani Krishna is an Associate
Professor in Computer Science and
Engineering at KL University. Having
more than 10 years of teaching and
research experience, he is actively
engaged in the research related to Software
Engineering. He published 14
International journals. Having Life
Membership of ISTE, CSI, IACSIT.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 85

K.RAJASHEKARA RAO is a
Professor of Computer Science and
Engineering at KL University and
presently holding several key positions in
KL University, as Dean (Faculty &
Student Affairs) & Principal, KL College
of Engineering (Autonomous).Having
more than 25years of teaching and
research experience, Prof. Rao is actively
engaged in the research related to

Embedded Systems, Software Engineering and Knowledge
Management. He had obtained Ph.D in Computer Science &
Engineering from Acharya Nagarjuna University (ANU),
Guntur, Andhra Pradesh and produced 35 publications in the
International/National Journals and Conferences.
He has been adjudged as best teacher and has been honored
with “Best Teacher Award”, six times. Dr. Rao is a Fellow of
IETE, Life Member’s of IE, ISTE, ISCA & CSI (Computer
Society of India). He has been the past Chairman of the
Koneru Chapter of CSI. Presently, Prof. K.R.Rao is the CSI
State Student Coordinator of Andhra Pradesh.

