
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 
 

 
 

112 

Manuscript received February 5, 2013 
Manuscript revised February 20, 2013 

A Mapping Mechanism for Periodic Filters in a Conflict Detection 
System for Time-Based Firewall Policies 

1 Subana Thanasegaran, 2 Yuichiro Tateiwa, 3 Yoshiaki Katayama, 4 Naohisa Takahashi 
 

1,2,3,4 Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan 
 

Abstract 
Recently, time-based filters are introduced in several practical 
firewalls like CISCO ACLs and LINUX Iptables to control 
network traffic in time. It is very handy when a service is 
required to be available at certain times of a day or at certain 
days. However, network administrators struggle to maintain 
time-based firewall policies due to their high-complexity. 
Conflict is a misconfiguration that occurs when a packet matches 
two or more filters. It makes the filters either redundant or 
shadowed, and as a result the network does not reflect the actual 
configurations of the time-based firewall policies.  Even though, 
conflict detection techniques for time-based filters have been 
proposed, it takes huge computation time and memory when the 
conflict detection period is too long due to the enormous 
repetition of periodic time-based filters. To solve this problem, 
we have proposed a mapping mechanism to treat the periodic 
filters and remove the unnecessary repetitions of the periodic 
filters which reduces the huge computation time and memory. 
Furthermore, we have evaluated the feasibility and the usefulness 
of the proposed system by carrying out experiments with the 
available conflict detection systems with various time-based 
firewall policies, and have proved the effectiveness of the 
mapping mechanism.  
Keywords: 
time-based rules, periodic filters, mis-configuration, time 
scheduling  

1. Introduction 

A firewall protects the network from unauthorized access 
and provides a secure access to the outside world. The 
packet filtering technique in a firewall provides an initial 
level of security and operates on the network layer of the 
OSI model or at the IP layer of the TCP/IP model. It 
controls the network traffic with a predefined, ordered set 
of filters called a firewall policy, FP. Every filter, f, has a 
condition and an action. The condition consists of ‘n’ 
predicates and the action can be either accept or deny. 
Each predicate in the condition is written based on the 
values in each of the ‘n’ key fields of a packet header. A 
packet, P, matches a filter f if and only if the packet header 
satisfies all the predicates in the condition of the filter. In 
our research, we adopt the first matching filtering scheme, 
where the priority of the filter flows from top to bottom 
like IP firewall in FreeBSD and the action of the first 
matching filter is executed [1].  

The firewall policy management is a notoriously difficult 
task for any network administrator due to its dynamic and 
highly interactive filters. For example, while examining 37 
firewalls in production enterprise networks, Wool found 
that all the firewalls are misconfigured and vulnerable [2]. 
Among many misconfigurations, a conflict is a 
misconfiguration that frequently occurs in a firewall. It 
occurs in an FP when a packet matches multiple filters. 
Conflict is a very common misconfiguration, and Hamed 
et al. found that there is a high probability of creating 
conflicts even by expert system administrators [3]. The 
presence of conflicts in firewall policies either brings 
malicious traffic into the network or blocks some intended 
network packets. Therefore, it is necessary to reconfigure 
the filters to discard the conflicts in the FPs.  
Nowadays, time-based filters are widely in use to restrict 
the network traffic by time [3-20]. They are actively used 
in many applications like CISCO ACLs, Surf control web 
filters and Linux Iptables [21]. They are very handy when 
a service is required to be available only at certain times of 
a day or even certain days. For example, they can allow 
better QOS in the accounting department during last three 
days of a month and as well, can control certain 
unintended web services in business hours. A firewall 
policy with a time-field is called as Time-based Firewall 
Policy, TFP. The time-field specifies the time-constraint, 
which restricts the access of a filter at specific dates and 
times. A filter in a TFP can be either periodic or non-
periodic. A periodic filter repeats along its own period and 
the non-periodic filter never repeats. A periodic filter is 
either active on certain weekdays or certain times of a day 
and a non-periodic filter is active on certain dates. A 
packet P matches a time-based filter, f, if and only if the 
arrival time of the P satisfies the time-constraint of f and 
the values of the P’s key fields satisfy all the conditions of 
the f.   
    A conflict occurs in a TFP when a packet matches 
multiple time-based filters. Many techniques have been 
developed to detect conflicts in FPs [3-20]. We have 
proposed a conflict detection system which simultaneously 
analyzes the time field, ‘n’ key fields and computes the 
conflicts in simultaneous basis [5-6]. In the previous 
approach, initially the time-based filters are mapped in a 
Conflict Detection Period CDP predefined by the user. The 
mapped filters are analyzed and the conflicts are computed 



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 113 

for the given CDP. However when a user wants to detect 
conflicts for a longer CDP, the conflict detection system 
takes huge computation time and memory due to the 
innumerous repetition of periodic filters in the CDP. Let us 
demonstrate this problem with an example. Consider a 
policy TFP1 consisting of f0, f1, f2 where f0, f1 are 
periodic filters and f2 is a non-periodic filter. The filter f0 
is active on everyday from 09AM to 17PM, f1 is active on 
Monday from 09AM to 12PM and f2 is active on 
30/08/2012 from 09AM to 22PM. If a user wants to detect 
conflicts for a TFP during the year 2012, then the user 
defines the CDP to be CDP = [01/01/2012, 31/12/2012]. 
The filters are mapped over the CDP to detect conflicts in 
the TFPs. During mapping, the filter f0 repeats 366 times, 
f1 repeats 53 times and f2 never repeats. A same set of 
filters repeats innumerable times during the mapping and 
thereby it takes huge computation time and memory to 
detect conflicts. This problem gets even worse when the 
number of time-based filters in TFP is large. Therefore it is 
necessary to tackle the problem of huge computation and 
memory and by removing the unnecessary repetitions of 
the periodic filters.  
   To solve this problem, we have presented a preliminary 
version of a mapping mechanism to treats the periodic 
filters which removes the innumerable repetitions of the 
periodic filters [4]. It analyzes the time field initially and 
gets the conflicting filters sets of each interval and for each 
interval the ‘n’ key fields of the filters are analyzed in 
iterative basis. In this paper, we have extended the 
preliminary version and have provided detailed description 
of the algorithms of the mapping mechanism. Our main 
contributions in this paper are as follows: (1) A method to 
determine System Defined CDP which has minimal 
repetitions of periodic filters. (2) A complete 
implementation of mapping mechanism with detailed 
descriptions and examples. (3) A Comparative Analysis of 
the proposed system with the previous approaches [4-6] 
and proved the better performance systems.  
 The rest of the paper is organized as follows.  We first 
describe the formally designed TFP and its conflicts in 
section 2. In section 3, we present the method of 
determining the System Defined CDP. We discuss the 
implementation of mapping mechanism and its algorithms 
and functions in section 4. In section 5, we present the 
comparative analysis of various conflict detection systems 
and evaluate the better performance systems. In section 6, 
we survey the related work and in section 7, we give the 
conclusion and some future directions.  

2. Conflicts in Time-Based Firewall Policy  

2.1. Definition of a TFP 

We have formally designed a TFP that consists of an 
ordered set of ‘m’ filters, and expressed as follows: TFP: 
(f0, f1,…,fm-1). Consider the time-based filters fi and fj (i, j 
∈ [0, m-1], i<j), where the filter fi is placed before fj in 
TFP. We adopt the first matching filtering scheme where 
the priority of the filter decreases from f0 to fm-1. Each 
filter fi consists of a condition and an action. The condition 
consists of (n+1) predicates, (pi0, pi1,…,pin), and the fi is 
expressed as follows: 

fi : pi0, pi1,...,pin, action 
where pi0 to pin-1 are constraints for the values of the key 
fields to be used in packet filtering and pin is a predicate 
which specifies a time-constraint. The commonly used key 
fields are: source IP addresses (represented as SrcIP), 
destination IP addresses (DesIP), source port (SrcPort), 
destination port (DesPort), and protocol (Pro). 
Each predicate pik (i ∈ [0, m− 1], k ∈ [0, n-1]) can be 
represented as an exact value, a prefix, a range value or list 
in many firewall systems. However, in this paper, we use 
only the range value because of the simplicity and a filter 
with predicates in the other forms can be easily converted 
into one or multiple filters with the range values. Each 
predicate pik (i ∈ [0, m− 1], k ∈ [0, n-1]) is represented as 
aik ≤uk <bik, by using a uniform range value [aik, bik) and 
the value in the kth key field of the packet header, uk. The 
predicate pin is the time-constraint that the packet arrival 
time must satisfy to match the filter. It is represented as 
isActive(fi, T), which is defined as follows, by using a 
time-constraint which consists of a time range [tsi, tei), a 
date dj and a set of days of the week Si as well as  T = (t, 
de, dy) where t, de and dy are the time, the date and the 
day of the week when a packet arrives at the firewall. 

[isActive(fi, T)]  
  isActive(fi, T) = ((tsi≤t<tei) ∧ (de=di 

)) ˅ ((tsi ≤ t < tei) ∧ (dy ∈ Si)). 
Given a time and date T, we say that a filter fi is active if 
isActive(fi,T) is TRUE. We also say that a packet P 
satisfies the time-constraint of a filter f if P arrives at the 
firewall when the filter f is active. Now, we define a 
predicate isMatched(P, T, fi) which shows whether a 
packet with arrival time and date T matches a filter fi as 
follows. 

[isMatched(P, T, fi)] 
  isMatched(P, T, fi) = (ai0≤u0 < bi0)∧

…∧(ain-1≤ un-1 < bin-1)∧ isActive(fi,T). 
We represent a filter in a form, called an internal form, 
which includes range values instead of the predicates in 
(n+1) fields. Since we can use a date and days of the week 



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 114 

alternatively in the (n+1)th field, i.e. time-field, there are 
two types of forms to represent a filter as follows: 

 
(1) Type-1: periodic filter 

fi: [ai0, bi0), [ai1, bi1),...,[ain-1, bin – 1), ([tsi tei), Si), 
action, 
 

(2) Type-2: non-periodic filter 

 fi: [ai0, bi0), [ai1, bi1),...,[ain – 1, bin – 1), ([tsi tei), 
di), action 

 
The field of ([tsi tei), Si) in a type-1 filter and ([tsi tei), di) 
in a type-2 filter are called ActTIME in which the subfield, 
[tsi tei), is called TIME and the subfields, Si and di, are 
called DAY. The tsi and tei in the sub-field TIME 
represents the start and stop values, respectively. A time 
and a date are represented in 24 hours format, hh:mm and 
in DD/MM/YYYY, respectively. The days of the week is a 
subset of S = {Sun, Mon…Sat}. For example, Si = {Mon, 
Fri}. 

The Figure 1 shows an example TFP written in the 
internal form including the 0th field SrcIP, the 1st field 
DesIP and the time-field ActTIME. In this Figure, a 
hyphen in the DAY field shows the S, i.e. every day. We 
also represent the predicates and the action by fi.pname 
and fi.action where pname is a predicate name. For 
example, f3.ActTIME.TIME.start=08:00, and f1.action= 
Accept in a TFP shown in Figure 1. 

  

Figure 1. An internal form representation of a sample TFP 

      In the example given in Figure 1, f0 is periodic and 
becomes active from 08:00 to 18:00 on everyday and f2 is 
periodic and becomes active from 08:00 to 18:00 on every 
Monday and Friday while the default filter f5 is always 
active. The f3 is non-periodic and becomes active from 
16:00 to 22:00 on Sep 28, 2011. For example, when a 
packet P arrives on 15:00 Sep 28, 2011, the four filters f0, 
f2, f4, f5 becomes active. A packet matches a filter f from 
the above filters, if the filter has the values u0 and u1 in 
SrcIP and DesIP fields such that (f.ai0≤u0 <f.bi0) ∧ 
(f.ai1≤u1<f.bi1). The default filter, f5 has the lowest 

priority, which denies access to all the packets when no 
other filter matches the packet. 

2.2. Conflict in a TFP 

A conflict occurs in a TFP when a packet matches multiple 
time-based filters. When a condition of a filter overlaps 
with a condition of another filter, conflict occurs. For 
example, in Figure 1, we find that the predicate values of 
the filter f0 overlaps with the predicate values of the filter 
f3 on everyday from 08:00 to 18:00 hrs and therefore we 
can say that f1 conflicts with f2. We can broadly classify 
the conflicts into errors and warnings. If a filter fi 
completely overlaps with another filter fj, we can say that 
fi causes an error to fj and if fi partially overlaps with filter 
fj, we can say that fi creates a warning to fj.  

3.  Conflict Detection Period  

3.1. Definition of CDP 

Conflict Detection period is a period in which the time-
based filters are projected and the conflicts are computed 
for that particular period. In previous conflict detection 
systems [5-6], the user must define a range of dates for 
which the conflict detection is performed. For example, if 
a user wants to detect conflicts for the year 2012, then the 
user defined CDP is [01/01/2012, 31/12/2012]. The 
disadvantage is that when the user defined CDP is long, 
the periodic filters repeats innumerable times in the 
mapping process resulting in large number of filter sets 
that takes huge computation time and memory to detect the 
conflicts in the TFP. This problem becomes even worse 
when the number of filters in the TFP is large. Therefore, 
an effective treatment is necessary to handle the periodic 
filters and to remove the unnecessary repetitions. We have 
proposed a new method to detect CDP called System 
defined CDP, SCDP which removes the unnecessary 
repetitions of the periodic filters.  

3.2. System Defined CDP 

In this method, the system decides the SCDP with 
minimum repetitions of periodic filters. It is possible by 
finding a set of days from the input TFP in which the 
filters are mapped to detect conflicts in the TFP. In this 
paper, we have represented the three types of time-based 
filters as FE, FW and FD where FE is the set of filters 
which are active in every day, FW is the set of filters 
which are active in weekday and FD is the set of filters 
which are active in date. The default filter is not 
considered for conflict detection as it conflicts with all the 
remaining filters. For example, for Figure 1, FE = {f0, f3}, 
FW = {f2, f4} and FD = {f1}. The system defined CDP 
consists of three sets of days corresponding to each type of 

Src IP Des IP
ActTIME

ActionTIME DAY

f0 [0,3) [3,7) 08:00-18:00 - Accept

f1 [1,5) [1,5) 16:00-22:00 12/09/2012 Accept

f2 [3,5) [1,7) 08:00-18:00 Mon, Wed Deny

f3 [0,3) [3,7) 08:00-20:00 - Accept

f4 [3,5) [1,4) 08:00-12:00 Mon Deny

f5 [0, 232) [0, 232) 00:00-23:59 - Deny



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 115 

time-based filter. The addition of all the three set of days 
gives the length of SCDP and represented by NCDP. The 
SCDP consists of the following set of days: (1) A Set of 
weekdays. (2) A Common day. (3) A Set of dates. The 
first one corresponds to FW and the number of days is 
represented by N1, the second one corresponds to FE and 
the number of days is represented by N2 and the third one 
corresponds to FD and the number of days is represented 
by N3. NCDP is the addition of N1, N2 and N3.  For each 
set, its corresponding filters are mapped and the 
conflicting filter sets are computed. Sometimes the second 
set is not considered for the calculation of the SCDP when 
the input TFP consists of the filters which are active in all 
the seven weekdays.  The following steps show the 
computation of the system defined CDP.  
 
Step1:  Initialize SCDP = {}, NCDP=0, N1=0, N2=0, 
N3=0.  
Step2: Check the DAY field of the input TFP and add the 
weekdays to the SCDP.   
  For each weekday,  
   SCDP = SCDP ∪ {Weekday}. 
   N1=N1+1;    
Step3: If SCDP consists of all the seven weekdays, then 
go to step 4. Or otherwise, add a day to SCDP and make 
N2 to one.  
  If N1<7,  
   SCDP = SCDP ∪ {A Common day}.  
   N2=1;  
Step4: Check the DAY field in the input TFP and find the 
filters which are active in different dates.   For 
each date,  
   SCDP =SCDP ∪ {Date}.   
   N3=1;  
Step5: NCDP=N1+N2+N3;  
  For example, the computational steps for the 
example TFP given in Figure 1 is as follows. The Step1 
does the initialization and therefore SCDP = { }, NCDP = 
0, N1=0, N2=0, N3=0. The Step2 checks the DAY field 
and find that there are two weekdays Monday, Wednesday 
in the example TFP. Add those weekdays to the SCDP and 
therefore SCDP = {Monday, Wednesday}, N1 = 2. The 
Step 3 adds a day to SCDP as N1<7 and therefore SCDP = 
{Monday, Wednesday, A Common Day}, N2=1. The 
Step4 checks the DAY field in Figure 1 and adds the date 
to SCDP and therefore SCDP= {Monday, Wednesday, A 
Common Day, 12/09/2012}, N3=1, and in Step4, 
NCDP=4. We have found that the length of SCDP is only 
four and by mapping the filters in only four days, we can 
compute the conflicting filters of the TFP. The length of 
SCDP depends upon the input TFP and not the user.  
In this paper, we compute the system defined CDP and 
map the filters in the SCDP and compute the conflicting 
filters of the TFP. We have developed a mapping 

mechanism which maps the filters in the system defined 
CDP.  

4. Implementation of Mapping Mechanism 

The implementation of mapping mechanism is 
accomplished through time divisor. The main goal of the 
mapping mechanism is to extract the essential component 
of the time field – SFS (Set of filter sets). The set of filter 
sets SFS is computed by projecting the filters in the SCDP. 
The computational steps of the extraction of the essential 
components of the remaining ‘n’ fields are not explained 
in this paper as those steps are same as described in [5].   
We have introduced the following notations to be used in 
the implementation of the mapping mechanism. The 
notation FSCD represents the set of filters that should be 
mapped in A Common Day. FSWDAY represents the set of 
filters that should be mapped in a weekday WDAY in A 
Set of Weekdays. For example, FSSUN represents the 
filters that are active on Sunday; FSMON represents the set 
of filters that are active on Monday and so on. Likewise 
FSDT(j) represents the set of filters that should be mapped 
in some jth date in A Set of Dates. The variable ‘j’ 
represents the number of DATES in a TFP. For example, 
in Figure1, FSDT1 represents the filters that are active on 
some date 12/09/2012. The notation F (i) returns the ith 
filter of a filter set F. For example, FE (i) returns the first 
filter in FE and therefore returns f0. We have proposed two 
functions named MakeCDP and GetDay. The MakeCDP 
(TFP) function computes the system defined CDP, N1, N2, 
N3, and NCDP for the given input TFP. The GetDay (Date) 
function finds the day of the week for the given date. The 
computational steps of SFS are as follows:  
Step1: (SCDP, N1, N2, N3, NCDP) = MakeCDP (TFP);  
Step2: (for i=1, i<=N1, i++)  

{ 
    If (FW (i).ActTIME.DAY=SUN) 
  Append FE, FW (i) to FSSUN; 
                  If (FW (i).ActTIME.DAY=MON)  
  Append FE, FW (i) to FSMON; 
                   If (FW (i).ActTIME.DAY=TUE)  
  Append FE, FW (i) to FSTUE; 
                   If (FW (i).ActTIME.DAY=WED)  
  Append FE, FW (i) to FSWED; 
                   If (FW (i).ActTIME.DAY=THU)  
  Append FE, FW (i) to FSTHU; 
                   If (FW (i).ActTIME.DAY=FRI)  
  Append FE, FW (i) to FSFRI; 
                   If (FW (i).ActTIME.DAY=SAT)  
  Append FE, FW (i) to FSSAT; 
} 

Step3: If (N1<7) 
   add FE to FSCD; 

Step4: (for j=1, j<=N3, j++)  



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 116 

 { 
  if (FD (j).ActTIME.DAY=DATE)  
   Add FD  (j) to FSDT(j); 
   WDAY=GetDay(FAD 

(j).ActTIME.DAY); 
   Append FSWDAY to FSDT(j); 
 } 

Step5: Map each set of filters to its corresponding set of 
days in the system defined CDP according to the values in 
the time field of the filter, fi.ActTIME.start and 
fi.ActTIME.end.  
Step6: Decompose each filter in their boundaries mapped 
on the SCDP and the time intervals such as {I0, I1…} are 
created.  
Step7: Obtain a set of filters from each interval created in 
Step6 and makes SFS using the filter sets. In this step the 
repetitive filters sets are removed from SFS.  

 
 

Figure 2.  Mapping of filters in the System Defined CDP for the TFP in 
figure 1 

For example, the computational steps for the TFP shown 
in figure 1 are as follows: We have already discussed 
about the computation of the CDP where N1=2, N2=1, 
N3=1, NCDP=4. In Step2, it makes FSMON and FSWED and 
the remaining filter sets such as FSSUN FSTUE are null. In 
Step2, initially FE is added to FSMON and FSWED and the 
corresponding filters in FW are added and then FSMON = 
{f0, f3, f2, f4} and FSWED= {f0, f3, f2}. In Step3, as N1<7 
we found that FSCD= {f0, f3}. Initially in Step4 as N3=1, 
FSDT1 {f1} and then in step4, we found that WDAY of f1 is 
Wednesday from the GetDay function and therefore 
FSWED is added to FSDT1 and finally FSDT1 = {f1, f0, f3, f2}. 
The Step5 maps each set of filters on their corresponding 
set of days. Each filter mapped in the time field and the 
filters are decomposed in their boundaries and intervals, I0, 
I1 are created as shown in the Figure 2. The Step7 gets the 
set of filters in each interval and removes the repetitive 

filter sets and makes SFS. For example, the filter set {f0, f2, 
f3} repeats in I1, I3, I7, and therefore the repetitive filter 
sets are removed and therefore SFS = {{f0, f2, f3, f4}, {f0, 
f2, f3}, {f3}, {f0, f3}…}.  

5. Experimental Analysis 

5.1. Experiments 

We evaluate the feasibility and usefulness of the proposed 
system by comparative studies with the related works 
appeared in [4-6]. As we have discussed earlier, the 
conflict detection system appeared in [4] treats the 
periodic filters with mapping mechanism as it computes 
the System Defined CDP and detects the n-dimensional 
TR of the filters for each interval, Ii. For example, if there 
are p intervals, then the n-dimensional TR of the filters are 
computed for ‘p’ times as depicted in Figure 3. The 
disadvantage of the technique is that, the conflict detection 
results are confined to a single interval and it is necessary 
to summarize the results of all the intervals to compute the 
conflicts.  

 

Figure 3. A Conflict detection system through interval basis 

Figure 4. A conflict detection system through simultaneous analysis  
The disadvantage of the previous system [4] is 
overwhelmed by conflict detection system appeared in [5-
6]. It computes the conflicts for the whole TFP rather than 
intervals through its simultaneous approach by finding the 
n+1-dimensional TR of the filters as shown in Figure 4. It 
simultaneously analyzes the ‘n’ key fields and the time 

A Common day 

Monday

f0

f0

f2

f0

f3

Wednesday

f2

12/09/2012 
(Wednesday)

f0

f3

I0 I1 I2 I3 I4 I5 I7

f3f3

f4

I6

f1

I8 I9 I10

f2

A Set of Weekdays A Set of Dates

Time
Divisor

Network 
Administrator

Filter sets 
in Tp-1

Filter sets 
in T1

.

.

.

Conflict Detector 
and Classifier

Computation of 
conflicts through

BISCAL

.

.

.

Filter sets 
in T0

1.  Errors
2.  Warnings
3.  Non Conflicts

Conflict Detector 
and ClassifierTFP

1.  Errors
2.  Warnings
3.  Non Conflicts

1.  Errors
2.  Warnings
3.  Non Conflicts

Computation of 
conflicts through

BISCAL

Computation of 
conflicts through

BISCAL
Conflict Detector 

and Classifier

TRn

of the filter sets
for T0

TRn

of the filter sets
for T1

TRn

of the filter sets
for Tp-1

Spatial 
Divisor

Spatial 
Divisor

Computation 
of conflicts  

through
BISCAL

SFS0

Conflict 
Detector 

and 
Classifier

TRn+1 

of the
filters

1. Errors
2. Warnings
3. Non-conflicts

Network
Administrator

SFS1

SFSnTime
Divisor

.

.

.

TFP



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 117 

field and computes the conflicts for the whole TFP. But it 
detects conflicts for a user defined CDP. Therefore when 
the user defined CDP is longer, it suffers from the problem 
of huge computation time and memory due to the 
unnecessary repetitions of the periodic filters. 
As we know that, there are two different approaches to 
detect the conflicts of TFP and two different methods to 
find the CDP, therefore we construct four systems by 
making different combinations of the systems and the 
methods of CDPs are as follows: 

1. SystemA: A conflict detection system through 
interval basis by the user defined CDP.  

2. SystemB: A conflict detection system through 
interval basis by the system defined CDP.   

3. SystemC: A conflict detection system by 
finding the n+1-dimensional TR by the user 
defined CDP. 

4. System D: A conflict detection system by 
finding the n+1-dimenisonal TR by the 
system defined CDP.  

We compare the above four systems and finds the system 
that performs well in terms of computation time. To 
perform the comparative analysis, we have implemented 
the above systems in JAVA programming language and 
the experiments were performed on Intel (R) Core (TM) i5 
CPU 750 @ 2.67 GHz 2.67 GHz with 4.00GM RAM 
running on Windows 7 professional. Due to the 
unavailability of publicly used TFPs, we have synthesized 
ample number of policies, TFP (m) which was synthesized 
from FP (m), which has m filters as follows: 

 
 
 
 
 
 

 
 

 
(a) Case I                     (b)  Case II 

Figure 5 Time Charts 

(1) FP (m) 
We have synthesized a firewall policy without time-field, 
FP(m), by using a firewall policy of 100 filters without the 
time-field, FPL, which has five fields, SrcIP, DesIP, 
SrcPort, DesPort and Pro and is used in our laboratory, as 
follows: it is a first-m filters of the FPL in case m ≤100 
while it is a combination of the FPL and new filters which 
are synthesized by using a randomly selected filter from 
FPL in case m>100. 
(2) TFP (m) 
We have converted the FP (m) to TFP (m) by adding the 
values of TIME and DAY in the ActTIME field as 

follows: the kth filter in TFP (m) is a combination of the kth 
filter of FP (m) and generated values of TIME as given by 
the two time charts shown in figure 5. The time chart 
shown in Figure 5(a) is created based on controlling 
certain network services that can be used in industrial 
environments. The time chart shown in figure 5(b) is an 
example in which large number of filters conflicts with 
each other. 
We randomly generated different values of DAY 
controlled by two parameters, p1-the percentage of FE and 
p2- the percentage of FW. We varied the percentage of p1 
and p2 by maintaining the sum of p1 and p2 as 1. For 
example, if 20% of p1 filters is added then 80% of p2 
filters are added to make the sum as 100%.  

The SystemA and SystemC compute the user defined 
CDP and the system defined CDP is computed for 
SystemB and SystemD. We have conducted experiments 
with four different systems and have found the 
computation time to find the conflicts in TFP and plotted 
the graph where p1 is plotted in X-axis and the 
computation time is plotted in Y-axis. The graphs shown 
in figure 6(a) and (b) shows that the computation time of 
the all the four systems for case I and Case II respectively. 

 
(a) Case I 

 
(b) Case II 

Figure 5. Comparative Analysis of the different systems 

1

10

100

1000

10000

0 0.2 0.5 0.8 1

Co
m

pu
ta

tio
n t

im
e (

s)

p1
SystemA SystemB
SystemC SystemD

1

10

100

1000

10000

100000

0 0.2 0.5 0.8 1

C
om

pu
ta

tio
n 

tim
e (

s)

p1 
SystemA SystemB
SystemC SystemD

  Time intervals 
1. Business Hrs     10:00-17:00 
2. Morning       08:00-12:00 
3. Afternoon         12:00-17:00  
4. Lunch       12:00-13:00 
5. Full day       00:00-23:59 

 

  Time intervals 
1. 01:00 – 23:00 
2. 02:00 – 22:00 
3. 03:00 – 21:00 
4. 04:00 – 20:00 
5. 05:00 – 19:00 
6. 06:00 – 18:00 
7. 07:00 – 17:00 
8. 08:00 – 16:00 
9. 09:00 – 15:00 
10. 10:00 – 14:00 
11. 11:00 – 13:00 



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 118 

We can infer that from the graphs shown in Figure 5 that, 
when the ratio of p1 is between 0.5 and 0.8, computation 
time is comparatively higher due to the large number of 
conflicting filter sets. When the ratio of p1 is low, 
computation time is lower due to the small number of 
conflicting filter sets. When the ratio of p1 is between 0.8 
and 1, the computation time decreases gradually because 
of the lower number of days in the System Defined CDP, 
SCDP and therefore the number of intervals is lower even 
though the number of conflicting filters is large. When we 
analyze the graphs we found that SystemC outperforms 
SystemB when p1 is 1 and SystemB outperforms SystemC 
when p1 is between 0 and 0.8. Among all the 
performances, we have found that SystemD performs 
better the remaining systems. It is because of the 
advantage of the SCDP and the mapping mechanism and 
also the advantage of finding the n+1-dimensional TR of 
the filters. Therefore we conclude the SystemD is efficient 
among all the systems and it would be helpful for the 
system administrator to take decisions quickly for a TFP.  

6. Related Work 

In this section, we briefly discuss about the researches on 
the management of firewalls [2-20]. Hamed et al. 
proposed an algorithm to detect the conflicts caused 
between the filters in a firewall policy based on the 
relations between every two filters and the taxonomy of 
the different conflicts in a firewall policy [3]. Y. Yin et al. 
proposed a technique to detect the conflicts caused by a 
combination of filters by analyzing the filters in n-
dimensional space [7]. Both of them do not recommend 
how to handle time-based firewall policies.  
V. Capretta et al. proposed the formalization of conflict 
detection for firewalls; it defines conflicts for filters only if 
the actions of the filters are different [15], but they do not 
provide any methods to deal with TFPs. In this paper, we 
have explicitly classified the conflicts of the time-based 
filters for cases where the actions of the filters are same as 
well as different. Alex et al. developed a technique to 
compress the firewall policy by minimizing the number of 
filters [16]. M. Yoon et al. proposed a technique to 
minimize the firewall rule set in a multiple firewall 
environment [17]. These methods dealt with common 
headers like Source IP and Destination IP, but do not 
provide any suggestions for firewalls where a time field is 
included.  
Mayer et al. developed a firewall analysis tool Fang to 
perform customized queries on a set of filters and operate 
on a more understandable level of abstraction [11]. Wool 
et al. improved the usability of Fang [12]. G. Misherghi et 
al. proposed a general framework for rule-based firewall 
optimization [18]. These tools and methods help the 
administrators to verify the correctness of firewall policies 

manually. However, they have not analyzed the cases 
where time-based filters are present. K. Matsuda proposed 
a matrix decomposition model to analyze the filters in FPs 
with few compression methods [26]. In his work, for some 
reasons, an administrator can intentionally embed 
redundant filters, which will conflict with the other filters 
in a firewall policy. However, time-based firewall policies 
were not considered in this model. 
H. G. Verizon et al. proposed a fast and scalable method 
for resolving the anomalies in firewall policies [19] which 
can be useful for large-scale firewall policies. H. Hu et al. 
proposed a firewall anomaly management and resolution 
environment: FAME, and developed a grid-based 
visualization of the firewall policy [20]. However, both of 
the above techniques do not provide any methods to detect 
conflicts in TFPs. The above-discussed techniques provide 
different approaches to manage firewall policies, but none 
of the above techniques dealt with time-based firewall 
policies. 
We have proposed a conflict detection system for the TFPs 
which simultaneously analyzes the time field, ‘n’ key 
fields and computes the conflicts in simultaneous basis [5-
6]. However when the user defined CDP is long, the 
conflict detection system takes huge computation time and 
memory due to the innumerous repetition of periodic 
filters in the CDP. 
We have presented a preliminary version of a mapping 
mechanism to solve the unnecessary repetitions of the 
periodic filters appeared in [4]. The drawback of the 
previous paper is that the proposed system detects 
conflicts in iterative basis and the conflict detection results 
are confined only to certain time intervals. In this paper we 
have developed a conflict detection system which drives 
away the drawbacks of the previous versions [4-6] and 
proved the same in the experimental analysis. In this paper, 
we have solved the conflict detection problems in the time-
based filters which was not addressed in any of the related 
works discussed above. 

7. Conclusion and Future Work 

In this paper, we have provided methods to determine 
CDP with minimal number of repetitions and discussed the 
implementation of the mapping mechanism in detail. We 
have proved with our experimental analysis that the 
performance of SystemD is efficient among all the other 
systems. By adopting System D, the workload of the 
administrator is considerably reduced due to the effort to 
reconfigure the TFPs to discard conflicts is reduced. Our 
future research plan focuses on the detection of conflicts 
caused by combinations of filters for the TFPs.  



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.2, February 2013 119 

Acknowledgments  

This research was partially supported by JSPS KAKENHI 
23500085 and by the Hori Science and Art Foundation. 
 
References 

 
[1] The FreeBSD Documentation Project, Ipfw, 

http://freebsd.org/doc/enUS.ISO88591/books/handbook/fire
walls-ipfw.html 

[2] A. Wool, “A quantitative study of firewall configuration 
errors,” Computer, vol.37, pp.62-67, 2004. 

[3] H. Hamed, E. Al-Shaer, “Taxonomy of Conflicts in 
Network Security Policies,” IEEE Communication 
Magazine, vol.44, no.3, pp.134-141, 2006. 

[4] T. Subana, Y. Tateiwa, Y. Katayama, N. Takahashi, “An 
improved conflict detection system with periodic cycle 
treatment for time-based firewall policies”, Proc. of 19th 
IEEE ICCCN 2010, pp.1-8, Zurich, Swiss, Aug 2010.  

[5] T. Subana, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa 
Takahashi, "Design and Implementation of Conflict 
Detection System for Time-based Firewall Policies,” JNIT: 
International Journal of Next Generation Information 
Technology, Vol. 2, No. 4, pp. 24-39, Nov 2011. 

[6] T. Subana, Y. Yin, Y. Tateiwa, Y. Katayama, N. Takahashi, 
“Simultaneous analysis of time and space for conflict 
detection in time-based firewall policies,” Proc. of 10th 
IEEE International Conference on CIT, pp.1015-1021, 
Bradford, June 2010. 

[7] Y. Yin, Y. Katayama, N. Takahashi, “Detection of conflicts 
caused by a combinations of filters based on spatial 
relationships,” IPSJ Journal, vol.49, pp.3121-3135, Sep 
2008. 

[8] D. Eppstein, S. Muthukrishnan, “Internet packet filter 
management and rectangle geometry,” Proc. of 12th Annual 
ACM-SIAM SYM, Washington, pp.827-835, 2001. 

[9] K. Golnabi, R.K. Min, L. Khan, E. Al-Shaer, “Analysis of 
Firewall Policy Filters using Data Mining Techniques,” Proc. 
of  IEEE NOMS 2006, pp.305-315, Canada, April 2006.  

[10] L. Yuan, J. Mai, Z. Su, H. Chen, P. Mohapatra, 
“FIREMAN:a toolkit for firewall modeling and analysis,” 
Proc. of IEEE Symposium on Security and Privacy, pp.199-
213, Oakland, May 2006. 

[11] A. Mayer, A. Wool and E. Ziskind, “FANG: a firewall 
analysis engine,” Proc. of IEEE Symposium on Security and 
Privacy, pp. 177-187, Oakland, May 2000. 

[12] A. Wool, “Architecting the lumeta firewall analyzer,” Proc. 
of 10th Conf. USENIX Security SYM, pp.7-7, USA, Aug 
2001. 

[13] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, C. Pitcher, 
“Specifications of a high-level conflict-free firewall policy 
language for multi-domain networks,” Proc. of 
SACMAT’07, pp.185-194, Sophia Anti polis, France, June 
2007. 

[14] Hari. A, Suri. S and Parulkar. G, “Detecting and resolving 
packet filter conflicts,” Proc. of IEEE INFOCOM 2000, 
pp.1203-1212, Israel, Mar 2000. 

[15] V. Capretta, B. Stepien, A. Felty and S. Matwin, “Formal 
correctness of conflict detection for firewalls,” Proc. of 
ACM workshop on Formal Methods in Security 
Engineering, Virginia, pp.22-30, USA, Nov 2007. 

[16] Alex X. Liu, Eric Torng, Chad R. Meiners, “Firewall 
Compressor: An Algorithm for Minimizing Firewall 
Policies,” Proc. Of 27th IEEE INFOCOM, Phoenix, Arizona, 
pp.176-180, April 2008. 

[17] M. Yoon, S. Chen, Z. Zhang, “Minimizing the Maximum 
Firewall Rule Set in a Network with Multiple Firewalls,” 
IEEE Transactions on Computers, vol. 59, no.2, pp. 218-230, 
Feb 2010. 

[18] G. Misherghi, L. Yuan, Z. Su, C-N. Chuah, and H. Chen, “A 
General, Framework for Benchmarking Firewall 
Optimization Techniques,” IEEE Transactions on Network 
and Service Management, vol. 5, no. 4, pp. 227-238, Dec 
2008. 

[19] H.G.Verizon, K.A. Ahmat, “Fast and Scalable Method for 
Resolving Anomalies in Firewall Policies”,Proc. of 14th  
IEEE Global Internet Symposium 2011 at IEEE INFOCOM 
2011, pp. 839-844,  April 2011.  

[20] H.Hu, G.J.Ahn and K.Kulkarni, “FAME: A Firewall 
Anomaly Management Environment”, Proc. of ACM 
SafeConfig’10, ISBN: 978-1-4503-0093-3, Oct 2010.  

[21] http://linux.die.net/man/8/iptables 
[22] N. Takahashi, “A Systolic Sieve Array for Real-time Packet 

Classification,” IPSJ Journal, vol. 42, no.2, pp.146-166, 
2001.  

[23] T. Srinivasan, N. Dhanasekar, M. Nivedita, R. 
Dhivyakrishnan, A. A. Azeezunnisa, “Scalable and parallel 
aggregated bitvector packet classification using prefix 
computation model,” Proc. of Int Symposium on PAR 
ELEC 2006, pp.139-144, Bialystok, 2006.  

[24] T. V. Lakshman, “High-speed policy based packet 
forwarding using efficient multi-dimensional range 
matching,” Proc. of ACM SIGCOMM 98, vol. 28, pp.203-
214, Vancouver, Sep 1998. 

[25] S. Singh, F. Baboescu, G. Varghese, J. Wang, “Packet 
classification using multidimensional cutting,” Proc. of 
ACM SIGCOMM 03’, pp.213-224, Germany, Feb 2003. 

[26] K. Matsuda, “A packet filtering filters compression by 
decomposing into matrixes,” IPSJ Journal, vol.48, no.10, 
pp.3357-3364, 2007 [in Japanese].  

[27] https://www.cisco.com/en/US/docs/security/pix/pix63/releas
e/notes/pixrn634.html 

[28] http://www.pcis.com/products/astaro_firewall.html 
[29] Max J Egenhofer, “A Formal Definition of Binary 

Topological Relationships,” Proc. of LNCS 367/1989, 
pp.457-472, USA, 1989. 

http://freebsd.org/doc/enUS.ISO88591/books/handbook/firewalls-ipfw.html
http://freebsd.org/doc/enUS.ISO88591/books/handbook/firewalls-ipfw.html
http://linux.die.net/man/8/iptables
https://www.cisco.com/en/US/docs/security/pix/pix63/release/notes/pixrn634.html
https://www.cisco.com/en/US/docs/security/pix/pix63/release/notes/pixrn634.html
http://www.pcis.com/products/astaro_firewall.html

