
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

44

Manuscript received April 5, 2013
Manuscript revised April 20, 2013

A Modified DES and Triple DES Algorithm for Wireless
Networks

1 A.K. Santra, 2Nagarajan S

1Professor and Dean, MCA Department, CARE School of Computer Applications, Tiruchirappalli, Tamil Nadu.
2Research Scholar, Bharathiar University, Coimbatore and Professor and Head, The Oxford College of Science, Bangalore,

Karnataka.

Abstract
The application of technological and related procedures to
safeguard the security of various documents while moving on the
channel is an important responsibility in electronic data
systems. This paper specifies the modification of the Data
Encryption Standard (DES) and the Triple Data Encryption
Algorithm (TDEA) which may organizations to protect sensitive
data. Protection of data during transmission or while in storage
may be necessary to maintain the confidentiality and integrity of
the information represented by the data. The algorithms
uniquely define the mathematical steps required to transform data
into a cryptographic cipher and also to transform the cipher
back to the original form. The Data Encryption Standard is
being made available for use by various agencies within the
context of a total security consisting of physical security
procedures, good information management practices, and
computer system/network access controls.
Key words:
computer security, data encryption standard, triple data
encryption algorithm, Federal

1. ormation Processing Standard (FIPS);
security.

DES is a block cipher--meaning it operates on plaintext
blocks of a given size (64-bits) and returns ciphertext
blocks of the same size. Thus DES results in a
permutation among the 2^64 (read this as: "2 to the 64th
power") possible arrangements of 64 bits, each of which
may be either 0 or 1. Each block of 64 bits is divided into
two blocks of 32 bits each, a left half block L and a right
half R. (This division is only used in certain operations.)
Example: Let M be the plain text message M =
0123456789ABCDEF, where M is in hexadecimal (base
16) format. Rewriting M in binary format, we get the 64-
bit block of text:

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000
1001 1010 1011 1100 1101 1110 1111
L = 0000 0001 0010 0011 0100 0101 0110 0111
R = 1000 1001 1010 1011 1100 1101 1110 1111
The first bit of M is "0". The last bit is "1". We read from
left to right.

DES operates on the 64-bit blocks using key sizes of 56-
bits. The keys are actually stored as being 64 bits long, but
every 8th bit in the key is not used (i.e. bits numbered 8,
16, 24, 32, 40, 48, 56, and 64). However, we will
nevertheless number the bits from 1 to 64, going left to
right, in the following calculations. But, as you will see,
the eight bits just mentioned get eliminated when we
create subkeys.
Example: Let K be the hexadecimal key K =
133457799BBCDFF1. This gives us as the binary key
(setting 1 = 0001, 3 = 0011, etc., and grouping together
every eight bits, of which the last one in each group will
be unused):
K = 00010011 00110100 01010111 01111001 10011011
10111100 11011111 11110001
The DES algorithm uses the following steps:

Step 1: Create 16 subkeys, each of which is 48-bits long.
The 64-bit key is permuted according to the following
table, PC-1. Since the first entry in the table is "57", this
means that the 57th bit of the original key K becomes the
first bit of the permuted key K+. The 49th bit of the
original key becomes the second bit of the permuted key.
The 4th bit of the original key is the last bit of the
permuted key. Note only 56 bits of the original key appear
in the permuted key.
PC-1

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Example: From the original 64-bit key
K = 00010011 00110100 01010111 01111001 10011011
10111100 11011111 11110001

we get the 56-bit permutation

K+ = 1111000 0110011 0010101 0101111 0101010
1011001 1001111 0001111

Next, split this key into left and right halves, C0 and D0,

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 45

where each half has 28 bits.

Example: From the permuted key K+, we get

C0 = 1111000 0110011 0010101 0101111
D0 = 0101010 1011001 1001111 0001111

With C0 and D0 defined, we now create sixteen blocks Cn
and Dn, 1<=n<=16. Each pair of blocks Cn and Dn is
formed from the previous pair Cn-1 and Dn-1,
respectively, for n = 1, 2, ..., 16, using the following
schedule of "left shifts" of the previous block. To do a left
shift, move each bit one place to the left, except for the
first bit, which is cycled to the end of the block.
 Iteration Number of
 Number Left Shifts

 1 1
 2 1
 3 2
 4 2
 5 2
 6 2
 7 2
 8 2
 9 1
 10 2
 11 2
 12 2
 13 2
 14 2
 15 2
 16 1

This means, for example, C3 and D3 are obtained from C2
and D2, respectively, by two left shifts, and C16 and D16
are obtained from C15 and D15, respectively, by one left
shift. In all cases, by a single left shift is meant a rotation
of the bits one place to the left, so that after one left shift
the bits in the 28 positions are the bits that were previously
in positions 2, 3,..., 28, 1.
Example: From original pair pair C0 and D0 we obtain:
We now form the keys Kn, for 1<=n<=16, by applying the
following permutation table to each of the concatenated
pairs CnDn. Each pair has 56 bits, but PC-2 only uses 48
of these.
C0 = 1111000011001100101010101111
D0 = 0101010101100110011110001111
C1 = 1110000110011001010101011111
D1 = 1010101011001100111100011110
C2 = 1100001100110010101010111111
D2 = 0101010110011001111000111101

C3 = 0000110011001010101011111111
D3 = 0101011001100111100011110101
C4 = 0011001100101010101111111100
D4 = 0101100110011110001111010101
C5 = 1100110010101010111111110000
D5 = 0110011001111000111101010101
C6 = 0011001010101011111111000011
D6 = 1001100111100011110101010101
C7 = 1100101010101111111100001100
D7 = 0110011110001111010101010110
C8 = 0010101010111111110000110011
D8 = 1001111000111101010101011001
C9 = 0101010101111111100001100110
D9 = 0011110001111010101010110011
C10 = 101010111111110000110011001
D10 = 111000111101010101011001100
C11 = 101011111111000011001100101
D11 = 100011110101010101100110011
C12 = 101111111100001100110010101
D12 = 001111010101010110011001111
C13 = 111111110000110011001010101
D13 = 111101010101011001100111100
C14 = 111111000011001100101010101
D14 = 110101010101100110011110001
C15 = 111100001100110010101010111
D15 = 010101010110011001111000111
C16 = 111000011001100101010101111
D16 = 101010101100110011110001111

PC-2

 14

17

11 24 1 5

3

28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41

52 31 37 47 55

30

40 51 45 33 48

44

49 39 56 34 53

46 42 50 36 29 32

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 46

Therefore, the first bit of Kn is the 14th bit of CnDn, the
second bit the 17th, and so on, ending with the 48th bit of
Kn being the 32th bit of CnDn.
Example: For the first key we have C1D1 = 1110000
1100110 0101010 1011111 1010101 0110011 0011110
0011110
which, after we apply the permutation PC-2, becomes
K1 = 000110 110000 001011 101111 111111 000111
000001 110010
For the other keys we have
K2 = 011110 011010 111011 011001 110110 111100
100111100101
K3 = 010101 011111 110010 001010 010000 101100
111110 011001
K4 = 011100 101010 110111 010110 110110 110011
010100 011101
K5 = 011111 001110 110000 000111 111010 110101
001110 101000
K6 = 011000 111010 010100 111110 010100 000111
101100 101111
K7 = 111011 001000 010010 110111 111101 100001
100010 111100
K8 = 111101 111000 101000 111010 110000 010011
101111 111011
K9 = 111000 001101 101111 101011 111011 011110
011110 000001
K10 = 101100 011111 001101 000111 101110 100100
011001 001111
K11 = 001000 010101 111111 010011 110111 101101
001110 000110
K12 = 011101 010111 000111 110101 100101 000110
011111 101001
K13 = 100101 111100 010111 010001 111110 101011
101001 000001
K14 = 010111 110100 001110 110111 111100 101110
011100 111010
K15 = 101111 111001 000110 001101 001111 010011
111100 001010
K16 = 110010 110011 110110 001011 000011 100001
011111 110101

So much for the subkeys. Now we look at the message
itself.
Step 2: Encode each 64-bit block of data.
There is an initial permutation IP of the 64 bits of the
message data M. This rearranges the bits according to the
following table, where the entries in the table show the
new arrangement of the bits from their initial order. The
58th bit of M becomes the first bit of IP. The 50th bit of
M becomes the second bit of IP. The 7th bit of M is the
last bit of IP.

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Example: Applying the initial permutation to the block of
text M, given previously, we get
M = 000000010010 0011010001010110
011110001001101010111100110111101111
IP =
11001100000000001100110011111111111100001010101
01111000010101010
Here the 58th bit of M is "1", which becomes the first bit
of IP. The 50th bit of M is "1", which becomes the second
bit of IP. The 7th bit of M is "0", which becomes the last
bit of IP. Next divide the permuted block IP into a left
half L0 of 32 bits, and a right half R0 of 32 bits.
Example: From IP, we get L0 and R0
L0 = 1100 1100 0000 0000 1100 1100 1111 1111
R0 = 1111 0000 1010 1010 1111 0000 1010 1010

We now proceed through 16 iterations, for 1<=n<=16,
using a function f which operates on two blocks--a data
block of 32 bits and a key Kn of 48 bits--to produce a
block of 32 bits. Let + denote XOR addition, (bit-by-bit
addition modulo 2). Then for n going from 1 to 16 we
calculate
Ln = Rn-1
Rn = Ln-1 + f(Rn-1,Kn)
This results in a final block, for n = 16, of L16R16. That is,
in each iteration, we take the right 32 bits of the previous
result and make them the left 32 bits of the current step.
For the right 32 bits in the current step, we XOR the left
32 bits of the previous step with the calculation f .
Example: For n = 1, we have
K1 = 000110 110000 001011 101111 111111 000111
000001 110010
L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010
R1 = L0 + f(R0,K1)
It remains to explain how the function f works. To
calculate f, we first expand each block Rn-1 from 32 bits
to 48 bits. This is done by using a selection table that
repeats some of the bits in Rn-1 . We'll call the use of this
selection table the function E. Thus E(Rn-1) has a 32 bit
input block, and a 48 bit output block. Let E be such that
the 48 bits of its output, written as 8 blocks of 6 bits each,
are obtained by selecting the bits in its inputs in order
according to the following table:

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 47

E BIT-SELECTION TABLE

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Thus the first three bits of E(Rn-1) are the bits in positions
32, 1 and 2 of Rn-1 while the last 2 bits of E(Rn-1) are the
bits in positions 32 and 1.
Example: We calculate E(R0) from R0 as follows:

R0 = 1111 0000 1010 1010 1111 0000 1010 1010
E(R0) = 011110 100001 010101 010101 011110 100001
010101 010101
(Note that each block of 4 original bits has been expanded
to a block of 6 output bits.)

Next in the f calculation, we XOR the output E(Rn-1) with
the key Kn:
Kn + E(Rn-1).

Example: For K1 , E(R0), we have
K1 = 000110 110000 001011 101111 111111 000111
000001 110010
E(R0) = 011110 100001 010101 010101 011110 100001
010101 010101
K1+E(R0) = 011000 010001 011110 111010 100001
100110 010100 100111.

We have not yet finished calculating the function f . To
this point we have expanded Rn-1 from 32 bits to 48 bits,
using the selection table, and XORed the result with the
key Kn . We now have 48 bits, or eight groups of six bits.
We now do something strange with each group of six bits:
we use them as addresses in tables called "S boxes". Each
group of six bits will give us an address in a different S
box. Located at that address will be a 4 bit number. This 4
bit number will replace the original 6 bits. The net result is
that the eight groups of 6 bits are transformed into eight
groups of 4 bits (the 4-bit outputs from the S boxes) for 32
bits total.
Write the previous result, which is 48 bits, in the form:

Kn + E(Rn-1) =B1B2B3B4B5B6B7B8,
where each Bi is a group of six bits. We now calculate

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
where Si(Bi) referres to the output of the i-th S box.
To repeat, each of the functions S1, S2,..., S8, takes a 6-bit
block as input and yields a 4-bit block as output. The table
to determine S1 is shown and explained below:

Row
No. 0 1 2 3 4 5 6 7 8 9 10
0 14 4 13 1 2 15 11 8 3 10 6
1 0 15 7 4 14 2 13 1 10 6 12
2 4 1 14 8 13 6 2 11 15 12 9
3 15 12 8 2 4 9 1 7 5 11 3

Row
No. 11 12 13 14 15
0 12 5 9 0 7
1 11 9 5 3 8
2 7 3 10 5 0
3 14 10 0 6 13

S1
Column Number
If S1 is the function defined in this table and B is a block
of 6 bits, then S1(B) is determined as follows: The first
and last bits of B represent in base 2 a number in the
decimal range 0 to 3 (or binary 00 to 11). Let that number
be i. The middle 4 bits of B represent in base 2 a number
in the decimal range 0 to 15 (binary 0000 to 1111). Let
that number be j. Look up in the table the number in the i-
th row and j-th column. It is a number in the range 0 to 15
and is uniquely represented by a 4 bit block. That block is
the output S1(B) of S1 for the input B. For example, for
input block B = 011011 the first bit is "0" and the last bit
"1" giving 01 as the row. This is row 1. The middle four
bits are "1101". This is the binary equivalent of decimal 13,
so the column is column number 13. In row 1, column 13
appears 5. This determines the output; 5 is binary 0101, so
that the output is 0101. Hence S1(011011) = 0101.
The tables defining the functions S1,...,S8 are the
following:

S1

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 48

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 49

Example: For the first round, we obtain as the output of
the eight S boxes:
K1 + E(R0) = 011000 010001 011110 111010 100001
100110 010100 100111.

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
= 0101 1100 1000 0010 1011 0101 1001 0111

The final stage in the calculation of f is to do a
permutation P of the S-box output to obtain the final value
of f:
f = P(S1(B1)S2(B2)...S8(B8))
The permutation P is defined in the following table. P
yields a 32-bit output from a 32-bit input by permuting the
bits of the input block.
P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

Example: From the output of the eight S boxes:
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
= 0101 1100 1000 0010 1011 0101 1001 0111

we get f = 0010 0011 0100 1010 1010 1001 1011 1011

R1 = L0 + f(R0 , K1)

= 1100 1100 0000 0000 1100 1100 1111 1111
+ 0010 0011 0100 1010 1010 1001 1011 1011
= 1110 1111 0100 1010 0110 0101 0100 0100

In the next round, we will have L2 = R1, which is the
block we just calculated, and then we must calculate R2
=L1 + f(R1, K2), and so on for 16 rounds. At the end of
the sixteenth round we have the blocks L16 and R16. We
then reverse the order of the two blocks into the 64-bit
block R16L16 and apply a final permutation IP-1 as
defined by the following table:

 IP-1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the
preoutput block as its first bit, bit 8 as its second bit, and
so on, until bit 25 of the preoutput block is the last bit of
the output.

Example: If we process all 16 blocks using the method
defined previously, we get, on the 16th round,

L16 = 0100 0011 0100 0010 0011 0010 0011 0100
R16 = 0000 1010 0100 1100 1101 1001 1001 0101
We reverse the order of these two blocks and apply the
final permutation to

R16L16 = 00001010 01001100 11011001 1001010
1 01000011 01000010 00110010 00110100
IP-1 = 10000101 11101000 00010011 01010100 0000
1111 00001010 10110100 00000101
which in hexadecimal format is

85E813540F0AB405.

This is the encrypted form of M = 0123456789ABCDEF:
namely, C = 85E813540F0AB405.

Decryption is simply the inverse of encryption, follwing
the same steps as above, but reversing the order in which
the sub keys are applied.

2. DES Modes of Operation
The DES algorithm turns a 64-bit message block M into a
64-bit cipher block C. If each 64-bit block is encrypted
individually, then the mode of encryption is called
Electronic Code Book (ECB) mode. There are two other
modes of DES encryption, namely Chain Block Coding
(CBC) and Cipher Feedback (CFB), which make each
cipher block dependent on all the previous messages
blocks through an initial XOR operation.

3. Cracking DES

Before DES was adopted as a national standard, during the
period NBS was soliciting comments on the proposed
algorithm, the creators of public key cryptography, Martin
Hellman and Whitfield Diffie, registered some objections
to the use of DES as an encryption algorithm. Hellman
wrote: "Whit Diffie and I have become concerned that the
proposed data encryption standard, while probably secure
against commercial assault, may be extremely vulnerable

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 50

to attack by an intelligence organization" (letter to NBS,
October 22, 1975).
Diffie and Hellman then outlined a "brute force" attack on
DES. (By "brute force" is meant that you try as many of
the 2^56 possible keys as you have to before decrypting
the ciphertext into a sensible plaintext message.) They
proposed a special purpose "parallel computer using one
million chips to try one million keys each" per second, and
estimated the cost of such a machine at $20 million.
Fast forward to 1998. Under the direction of John Gilmore
of the EFF, a team spent $220,000 and built a machine that
can go through the entire 56-bit DES key space in an
average of 4.5 days. On July 17, 1998, they announced
they had cracked a 56-bit key in 56 hours. The computer,
called Deep Crack, uses 27 boards each containing 64
chips, and is capable of testing 90 billion keys a second.

4.Triple-DES

Triple-DES is just DES with two 56-bit keys applied.
Given a plaintext message, the first key is used to DES-
encrypt the message. The second key is used to DES-
decrypt the encrypted message. (Since the second key is
not the right key, this decryption just scrambles the data
further.) The twice-scrambled message is then encrypted
again with the first key to yield the final ciphertext. This
three-step procedure is called triple-DES.
Triple-DES is just DES done three times with two keys
used in a particular order. (Triple-DES can also be done
with three separate keys instead of only two. In either case
the resultant key space is about 2^112.) [10]

5. Weaknesses of the DES Algorithm

3.1 Key space size

In DES, the key consists in a 56-bit vector providing a key
space K of 256 = 7.2058 × 1016 elements. In an
exhaustive search known-plaintext attack, the cryptanalyst
will obtain the solution after 255 or 3.6029 × 1016 trials,
on average. In 1977, Diffie and Hellman[DH77] have
shown that a special purpose multiple parallel processor
consisting of 106 intergrated circuits, each one trying a
key every 1μ s, could determine the key used in about 10
hours on average in a known-plaintext attack. The cost of
such a multiple processor machine would have been
around $50,000,000 in 1977 [Pfl89]. If such a machine
was used 365 days a year, 24 hours a day, amortizing the
price over the number of key solutions obtained, then the
price per solution would have been about $20,000 per
solution.
Diffie and Hellman argued that if the key length was
increased from 56 to 64 bits, it would make the DES
algorithm secure even for “intelligence agencies

budgets...” [Sim92], while decreasing the key length from
56 to only 48 would make DES “vulnerable to attack by
almost any reasonable sized organization” [Sim92]. The
key length is thus a very critical parameter to the security
of DES.

3.2 Complement property

Another possible weakness of DES lies in the complement
property of the DES algorithm. Let M be a 64-bit plaintext
message to be encrypted into a 64-bit ciphertext C using
the 56-bit key K: C = DESK (M) . The complement
property of DES [Pfl89] indicates that the bit-by-bit
modulo-2 complement of the ciphertext C, i.e. C, can be
obtained from the plaintext M and key K as: C = DESK
(M)
 C = DESK (M)
 Since complementing the ciphertext vector C takes much
less time than actually performing the DES encryption
transformation, the exhaustive key search attack can be
reduced almost by half.

3.3 DES weak keys

The DES algorithm generates from the 56-bit key K a set,
or sequence, of 16 distinct 48-bit sub-keys which are then
used in each round of substitution and permutation
transformation of DES. However, if the left and right
registers Ci and Di of the sub-key schedule calculation
branch are filled with “0” or “1”, the sub-keys will be
identical:
k1 = k2 = . . . = k16
The encryption and decryption processes being the same
except for the order of sub-keys, when such weak keys are
employed, enciphering a plaintext messages M twice will
result in the original plaintext message [DP84]: 11
DESK [DESK (M)] = M
 The weak keys of the DES are listed hereafter:

K1 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1
 K2 = FE FE FE FE FE FE FE
FE
 K3 = 1F 1F 1F 1F 0E 0E 0E
0E
 K4 = E0 E0 E0 E0 F1 F1 F1
F1

3.4 DES semi-weak key pairs

Another property observed in the DES algorithm is the
existence of semi-weak pairs of keys for which the pattern
of alternating zeroes and ones in the two sub-key registers
Ci and Di . This results in the first key, say K1 , producing
the sub-key sequence: k1 , k2 , . . ., k16 , while the second
key of the pair, K2 , generates the inverse sub-key
sequence: k16 , k15 , . . ., k1 . Thus the encryption of
message M by key K1 followed by a second encryption

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 51

with key K2 will give the original message

M: DESK2 [DESK1 (M)] = M

 The semi-weak keys of the DES are [DP84]:

K1,1 = 0 1 FE 0 1 FE 0 1 FE 01 FE

K1,2 = FE 0 1 FE 0 1 FE 01 FE 01

K2,1 = 1F E0 1F E0 0E F1 0E F1

K2,2 = E0 1F E0 1F F1 0E F1 0E

K3,1 = 01 E0 01 E0 01 F1 01 F1

K3,2 = E0 01 E0 01 F1 01 F1 01

K4,1 = 1F FE 1F FE 0E FE 0E FE

K4,2 = FE 1F FE 1F FE 0E FE 0E

K5,1 = 01 1F 01 1F 01 0E 01 0E

K5,2 = 1F 01 1F 01 0E 01 0E 01

K6,1 = E0 FE E0 FE F1 FE F1 FE

K6,2 = FE E0 FE E0 FE F1 FE F1

Proposed modification on DES and Tripple DES
algorithm

The initial 64 bit key to be generated is generated using
the RSA algorithm. The procedure is described in the
following steps:
Step1: The 256 bit decimal output generated from the RSA
is taken as the initial value to start with.
Step 2: Using random generator algorithm, randomly 64
bits are extracted from the 256 bit decimal output of the
RSA which becomes the initial key for the DES and triple
DES algorithms.
The proposed random generator algorithm is as shown in
the above flow chart.

Jhbjhbvkjxkfksjxckzjxbckzjxckjzxckj

Theorem 1 (Fermat’s Little Theorem) If p is a prime
number, and a is an integer such that (a, p) = 1, then
ap−1 = 1(mod p).
Proof: Consider the numbers (a · 1), (a · 2), . . . (a · (p −
1)), all modulo p. They are all different. If any of them
were the same, say a · m = a · n(mod p), then a · (m − n) =
0(mod p) so m− n must be a multiple of p. But since all m
and n are less than p, m = n. Thus a·1, a·2, . . . , a· (p−1)
must be a rearrangement of 1, 2, . . . , (p−1). So modulo
p, we have: = =ap-1

so ap−1 = 1(mod p).
Theorem 2 (Fermat’s Theorem Extension) If (a,m) = 1
then a Φ(m) = 1(mod m),where Φ(m) is the number of
integers less than m that are relatively prime to m. The
number m is not necessarily prime.
Proof: Same idea as above. Suppose Φ (m) = n. Then
suppose that the n numbers less than m that are relatively
prime to m are: a1, a2, a3, . . . , an. Then a · a1, a · a2, . . . , a
· an are also relatively prime to m, and must all be different,
so they must just be a rearrangement of the a1, . . . , an in
some order. Thus: = =an

modulo m, so an = 1(mod m).
Theorem 3 (Chinese Remainder Theorem) Let p and q
be two numbers (not necessarily primes), but such that (p,
q) = 1. Then if a = b(mod p) and a = b(mod q) we have a =
b(mod pq).
Proof: If a = b(mod p) then p divides (a − b). Similarly, q
divides (a − b). But p and q are relatively prime, so pq
divides (a − b). Consequently, a = b(mod pq). (This
is a special case with only two factors of what is usually
called the Chinese remainder theorem .)
3.1 Proof of the Main Result
Based on the theorems above, here is why the RSA
encryption scheme works. Let p and q be two different
(large) prime numbers, let 0 M < pq be a secret
message1, let d be an integer (usually small) that is
relatively prime to (p − 1)(q − 1), and let e be a number
such that de = 1(mod (p − 1)(q − 1)). The encoded
message is C = Me(mod pq), so we need to show that the
decoded message is given byM = Cd(mod pq).

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 52

Proof: Since de = 1(mod (p−1)(q −1)), de = 1+k(p−1)(q
−1) for some integer k.
Thus: Cd = Mde = M1+k(p−1)(q−1) = M · (M(p−1)(q−1))k. If M is
relatively prime to p,
 then Mde = M · (Mp−1)k(q−1) = M·(1)k(q−1) = M(mod p)
By the extension of Fermat’s Theorem giving
Mp−1 = 1(mod p) followed by a multiplication of both sides
byM. But ifM is not relatively prime to p, thenM is a
multiple of p, so equation 1 still holds because both sides
will be zero, modulo p.
By exactly the same reasoning, Mde = M ·Mq−1 = M(mod
q)
If we apply the Chinese remainder theorem to equations 1
and 2, we obtain the result we want: Mde = M(mod pq).
Finally, given the integer d, we will need to be able to find
another integer e such that
de = 1(mod (p−1)(q−1)). To do so we can use the
extension of Fermat’s theorem to get dΦ((p−1)(q−1)) = 1(mod
(p−1)(q−1)), so dΦ((p−1)(q−1))−1(mod (p−1)(q−1))
is a suitable value for e.

Mathematical proof of the RSA

8.1 Algorithm Key generation for RSA public-key
encryption
Each entity creates an RSA public key and a
corresponding private key. Each entity A should do the
following:
1. Generate two large random (and distinct) primes p and q,
each roughly the same size.
2. Compute n = pq and Φ = (p — l) (q — 1). (See Note
8.5.)
3. Select a random integer e, 1 < e < Φ, such that gcd(e, Φ)
= 1.

4. Use the extended Euclidean algorithm to compute the
unique integer d,1 < d < Φ, such that ed = 1 (mod Φ).
5. A’s public key is (n, e); A’s private key is d.

The integers e and d in RSA key generation are called the
encryption exponent and the decryption exponent,
respectively, while n is called the modulus.

 RSA public-key encryption

B encrypts a message m for A, which A decrypts.
1. Encryption. B should do the following:

(a) Obtain A’s authentic public key (n, e).
(b) Represent the message as an integer m in the interval [0,
n—1].
(c) Compute c = me mod n.
(d) Send the ciphertext c to A.
 2. Decryption. To recover plaintext m from c, A should

do the following:
 (a) Use the private key d to recover m = cd mod n.
Proof that decryption works. Since ed = 1 (mod Φ), there
exists an integer k such that ed = 1 + k Φ. Now, if gcd(m,p)
= 1 then by Fermat’s theorem
mp-1 = 1 (mod p).

Raising both sides of this congruence to the power k(q — 1)
and then multiplying both sides by m yields ml+k(P-l)(q-l)
= m (mod p)

On the other hand, if gcd (m, p) = p, then this last
congruence is again valid since each side is congruent to 0
modulo p. Hence, in all cases m ed = m (mod p).By the
same argument, m ed =m(mod q). Finally, since
p and q are distinct primes, it follows that m ed = m (mod n),
and, hence, c d = (me)d = m (mod n).

(RSA encryption with artificially small parameters)
Key generation. Entity A chooses the primes p = 2357, q =
2551, and computes n = pq = 6012707 and Φ = (p —1)(q —
1) = 6007800. A chooses e = 3674911 and, using the
extended Euclidean algorithm, finds d = 422191 such that
ed = 1 (mod <p). A’s public key is the pair (n = 6012707, e
= 3674911), while A’s private key is d = 422191.
Encryption. To encrypt a message m = 5234673, B uses an
algorithm for modular exponentiation (e.g., Algorithm
2.143) to compute c= me mod n = 52346733674911 mod
6012707 = 3650502, and sends this to A. Decryption.
To decrypt c, A computes cd mod n = 3650502422191 mod
6012707 = 5234673. (universal exponent) The number
λ = lcm(p — l,q— 1), sometimes called the universal
exponent of n, may be used instead of Φ=(p—1)(q—1) in
RSA key generation. Observe that λ is a proper divisor of Φ.
Using λ can result in a smaller decryption exponent d,
which may result in faster decryption. However, if p and q
are chosen at random, then gcd(p —1, q— 1) is expected to be
small, and consequently Φ and λ will be roughly of the
same size.

Security of RSA

This subsection discusses various security issues related to
RSA encryption. Various attacks which have been studied in
the literature are presented, as well as appropriate measures
to counteract these threats.

(i) Relation to factoring

The task faced by a passive adversary is that of recovering
plaintext m from the corresponding ciphertext c, given the
public information (n, e) of the intended receiver A. This is
called the RSA problem (RSAP).There is no efficient algo-
rithm known for this problem.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 53

One possible approach which an adversary could employ to
solving the RSA problem is to first factor n, and then
compute Φ and d . Once d is obtained, the adversary can
decrypt any ciphertext intended for A.
On the other hand, if an adversary could somehow
compute d, then it could subsequently factor n efficiently
as follows. First note that since ed = 1 (mod Φ), there is an
integer k such that ed — 1 = k Φ. Hence, aeti_1 = 1 (mod n)
for all a Є Z*. Let ed — 1 = 2st, where t is an odd integer.
Then it can be shown that there exists an i Є [l,s] such that
a2i-1t ≠±1 (mod n) anda2it = 1 (mod n) for at least half of all
a Є Zn; if a and i are such integers then gcd(a—1, n) is a
non-trivial factor of n. Thus the adversary simply needs to
repeatedly select random a ЄZ* and check if an i Є [1, s]
satisfying the above property exists; the expected number
of trials before a non-trivial factor of n is obtained is 2.
This discussion establishes the following.
The problem of computing the RSA decryption exponent d
from the public key (n, e), and the problem of factoring n,
are computationally equivalent. Then generating RSA
keys, it is imperative that the primes p and q be selected in
such a way that factoring n = pq is computationally
infeasible.

(ii) Small encryption exponent e

In order to improve the efficiency of encryption, it is
desirable to select a small encryption exponent e such as e =
3. A group of entities may all have the same encryption
exponent e, however, each entity in the group must have its
own distinct modulus. If an entity A wishes to send the
same message m to three entities whose public moduli are
n1, n2, n3 and whose encryption exponents are e = 3, then
A would send Ci = m3 mod n; for i = 1,2,3. Since these
moduli are most likely pairwise relatively prime, an
eavesdropper observing c1, C2,C3 can use Gauss’s
algorithm to find a solution x, 0≤ x < n1n2n3, to the three
congruences x = c1 (mod n1) x =C2(mod n2) x=C3(mod
n3). Since m3 < n1n2n3, by the Chinese remainder theorem,
it must be the case that x = m3. Hence, by computing the
integer cube root of x, the eavesdropper can recover the
plaintext m. Thus a small encryption exponent such as e =
3 should not be used if the same message, or even the
same message with known variations, is sent to many
entities. Alternatively, to prevent against such an attack, a
pseudorandomly generated bitstring of appropriate length
should be appended to the plaintext message prior to
encryption; the pseudorandom bit-string should be
independently generated for each encryption. This process
is sometimes referred to as salting the message.
Small encryption exponents are also a problem for small
messages m, because if m< n1/e, then m can be recovered
from the ciphertext c = me mod n simply by computing the
integer eth root of c; salting plaintext messages also
circumvents this problem.

(iii) Forward search attack

If the message space is small or predictable, an adversary can
decrypt a ciphertext c by simply encrypting all possible
plaintext messages until c is obtained. Salting the message
as described above is one simple method of preventing
such an attack.

(iv) Small decryption exponent d

As was the case with the encryption exponent e, it may
seem desirable to select a small decryption exponent d in
order to improve the efficiency of decryption.x However, if
gcd (p—1, q—1) is small, as is typically the case, and if d
has up to approximately one-quarter as many bits as the
modulus n, then there is an efficient algorithm (referenced
on page 313) for computing d from the public information
(n, e). This algorithm cannot be extended to the case where
d is approximately the same size as n. Hence, to avoid this
attack, the decryption exponent d should be roughly the
same size as n.

(v) Multiplicative properties

Let m1 and m2 be two plaintext messages, and let C1 and
C2 be their respective RSA encryptions. Observe that
(m1m2)e = m1

em2
e = C1C2 (mod n).In other words, the

ciphertext corresponding to the plaintext m = m1m2 mod n
is c = c1c2 mod n; this is sometimes referred to as the
homomorphic property of RSA. This observation leads to
the following adaptive chosen-ciphertext attack on RSA
encryption.

Suppose that an active adversary wishes to decrypt a
particular ciphertext c = me mod n intended for A. Suppose
also that A will decrypt arbitrary ciphertext for the
adversary, other than c itself. The adversary can conceal c
by selecting a random integer x Є Zn* and computing c- =
cxe mod n. Upon presentation of c-, A will compute for the
adversary m- = (c-)d mod n. Since m- = (c-) d = cd
(xe)d = mx (mod n), the adversary can then compute
m =m-x-1 mod n.
This adaptive chosen-ciphertext attack should be
circumvented in practice by imposing some structural
constraints onplaintext messages. If a ciphertext c is
decrypted to a message not possessing this structure, then c
is rejected by the decryptor as being fraudulent. Now, if a
plaintext message m has this (carefully chosen) structure,
then with high probability mx mod n will not for xЄ Zn*.
Thus the adaptive chosen-ciphertext attack described in
the previous paragraph will fail because A will not decrypt
c for the adversary.

(vi) Common modulus attack

The following discussion demonstrates why it is

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 54

imperative for each entity to choose its own RSA modulus
n. It is sometimes suggested that a central trusted authority
should select a single RSA modulus n, and then distribute
a distinct encryption/decryption exponent pair (ei, di) to
each entity in a network. However, as shown in (i) above,
knowledge of any (ei, di) pair allows for the factorization of
the modulus n, and hence any entity could subsequently
determine the decryption exponents of all other entities in
the network. Also, if a single message were encrypted and
sent to two or more entities in the network, then there is a
technique by which an eavesdropper (any entity not in the
network) could recover the message with high probability
using only publicly available information.

(vii) Cycling attacks

Let c = me mod n be a ciphertext. Let k be a positive
integer such that cek=c(mod n); since encryption is
a permutation on the message space {0,1,... , n — 1} such
an integer k must exist. For the same reason it must be the
case that ck-1 = m (mod n). This observation leads to the
following cycling attack on RSA encryption. An adversary
computes ce mod n, ce2 mod n, ce3 mod n,... until c is
obtained for the first time. If cek mod n =c, then the
previous number in the cycle, namely c ek-1 mod n, is
equal to the plaintext m. A generalized cycling attack is to
find the smallest positive integer u such that f =gcd(ce—
c,n) > 1. If ce=c (mod p) and ce ≠ c (mod q) then f = p.
Similarly, if
ce ≠ c (mod p) and ce = c (mod q (8.2) then 1 = q. In
either case, n has been factored, and the adversary can
recover d and then m. On the other hand, if both c =c
(mod p) and c =c (mod q),(8.3) then f = n and ce
= c (mod n). In fact, u must be the smallest positive
integer k for which ce = c (mod n). In this case, the basic
cycling attack has succeeded and so 7n = c mod n can be
computed efficiently. The generalized cycling attack
usually terminates before the cycling attack does. For this
reason, the generalized cycling attack can be viewed as
being essentially an algorithm for factoring n. Since
factoring n is assumed to be intractable, these cycling attacks
do not pose a threat to the security of RSA encryption.

(viii) Message concealing

A plaintext message m, 0 < m < n—1, in the RSA public-
key encryption scheme is said to be unconcealed if it
encrypts to itself; that is, me = m (mod n). There are
always some messages which are unconcealed (for
example m = 0, m = 1, and m = n—1). In fact, the number
of unconcealed messages is exactly

[1 + gcd(e—l , p —1)] • [1 + gcd(e—1,q—1)].

Since e — l,p—l and q — 1 are all even, the number of

unconcealed messages is always at least 9. If p and q are
random primes, and if e is chosen at random (or if e is
chosen to be a small number such as e = 3or e = 216 + l =
65537), then the proportion of messages which are
unconcealed by RSA encryption will, in general, be
negligibly small, and hence unconcealed messages do not
pose a threat to the security of RSA encryption in practice.

RSA encryption in practice

There are numerous ways of speeding up RSA encryption
and decryption in software and hardware implementations.
Some of these techniques are covered in Chapter 14,
including fast modular multiplication , fast modular
exponentiation, and the use of the Chinese remainder
theorem for faster decryption. Even with these im-
provements, RSA encryption/decryption is substantially
slower than the commonly used symmetric-key encryption
algorithms such as DES. In practice, RSA encryption is
most commonly used for the transport of symmetric-key
encryption algorithm keys and for the encryption of small
data items.
The RSA cryptosystem has been patented in the U.S. and
Canada. Several standards organizations have written, or
are in the process of writing, standards that address the use
of the RSA cryptosystem for encryption, digital signatures,
and key establishment. For discussion of patent and
standards issues related to RSA.
Note (recommended size of modulus) Given the latest
progress in algorithms for factoring integers , a 512-bit
modulus n provides only marginal security from concerted
attack. As of 1996, in order to foil the powerful quadratic
sieve and number field sieve factoring algorithms, a
modulus n of at least 768 bits is recommended. For long-
term security, 1024-bit or larger moduli should be used.
(selectingprimes)
(i)The primes p and q should be selected so that factoring
n = pq is computationally infeasible. The major restriction
onp and q in order to avoid the elliptic curve factoring
algorithm is that p and q should be about the same bitlength,
and sufficiently large. For example, if a 1024-bit modulus n
is to be used, then each of p and q should be about 512 bits
in lengt.
(ii) Another restriction on the primes p and q is that the
difference p—q should not be too small. If p—q is small,
then p ≈q and hence p ≈√n. Thus, n could be factored
efficiently simply by trial division by all odd integers close
to √n. If p and q are chosen at random, then p—q will be
appropriately large with overwhelming probability.
(iii) In addition to these restrictions, many authors have
recommended that p and q be strong primes. A prime p is
said to be a strong prime if the following three conditions
are satisfied:
(a) p—1 has a large prime factor, denoted r;
(b) p + 1 has a large prime factor; and

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 55

(c) r—1 has a large prime factor.
The reasonfor condition (a) is to foil Pollard’s p—1 factoring
algorithm which is efficient only if n has a prime factor p
such that p—1 is smooth. Condition (b) foils the p + 1
factoring algorithm mentioned, which is efficient only if n
has a prime factor p such that p + 1 is smooth. Finally,
condition (c) ensures that the cycling attacks will fail.
If the prime p is randomly chosen and is sufficiently large,
then both p—1 and p+1 can be expected to have large prime
factors. In any case, while strong primes protect against the
p—1 and p+1 factoring algorithms, they do not protect
against their generalization. The latter is successful in
factoring n if a randomly chosen number of the same size
as p has only small prime factors. Additionally, it has been
shown that the chances of a cycling attack succeeding are
negligible if p and q are randomly chosen. Thus, strong
primes offer little protection beyond that offered by random
primes. Given the current state of knowledge of factoring
algorithms, there is no compelling reason for requiring the
use of strong primes in RSA key generation. On the other
hand, they are no less secure than random primes, and
require only minimal additional running time to compute;
thus there is little real additional cost in using them.
(small encryption exponents)
If the encryption exponent e is chosen at random, then RSA
encryption using the repeated square-and-multiply
algorithm (Algorithm 2.143) takes k modular squarings and
an expected k/2 (less with optimizations) modular
multiplications, where k is the bitlength of the modulus n.
Encryption can be sped up by selecting e to be small and/or
by selecting e with a small number of 1 ’s in its binary
representation. The encryption exponent e = 3 is commonly
used in practice; in this case, it is necessary that neither p—1
nor q—1 be divisible by 3. This results in a very fast encryp-
tion operation since encryption only requires 1 modular
multiplication and 1 modular squaring. Another encryption
exponent used in practice is e = 216 + 1 = 65537. This
number has only two 1’s in its binary representation, and
so encryption using the repeated square-and-multiply
algorithm requires only 16 modular squarings and 1
modular multiplication. The encryption exponent e = 216 +
1 has the advantage over e = 3 in that it resists the kind of
attack , since it is unlikely the same message will be sent to
216 +1 recipients.

Conclusion

In this paper the proposal is to modify the DES algorithm
to improve the encryption information exchanged between
any two nodes on the network. In its present form it can be
broken. By the proposed modification the purpose is to
enhance the time to break so that with the timestamp for
the transfer of the frame the information would have

already reached the destination and action accordingly
taken as needed. This enhances the performance of the
DES algorithm to a large extent. It is very clear with the
proof related to RSA with regard to the key generated
given above. For future research on this, the inclusion of
the knowledge of some of the other theorems of number
theory can be use to further enhance the performance of
the DES algorithm.

References
[1] "Cryptographic Algorithms for Protection of Computer Data

During Transmission and Dormant Storage," Federal
Register 38, No. 93 (May 15, 1973).

[2] Data Encryption Standard, Federal Information Processing
Standard (FIPS) Publication 46, National Bureau of
Standards, U.S. Department of Commerce, Washington D.C.
(January 1977).

[3] Carl H. Meyer and Stephen M. Matyas, Cryptography: A
New Dimension in Computer Data Security, John Wiley &
Sons, New York, 1982.

[4] Dorthy Elizabeth Robling Denning, Cryptography and Data
Security, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1982.

[5] D.W. Davies and W.L. Price, Security for Computer
Networks: An Introduction to Data Security in
Teleprocessing and Electronics Funds Transfer, Second
Edition, John Wiley & Sons, New York, 1984, 1989.

[6] Miles E. Smid and Dennis K. Branstad, "The Data
Encryption Standard: Past and Future," in Gustavus J.
Simmons, ed., Contemporary Cryptography: The Science of
Information Integrity, IEEE Press, 1992.

[7] Douglas R. Stinson, Cryptography: Theory and Practice,
CRC Press, Boca Raton, 1995.

[8] Bruce Schneier, Applied Cryptography, Second Edition,
John Wiley & Sons, New York, 1996.

[9] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone, Handbook of Applied Cryptography, CRC Press,
Boca Raton, 1997.

[10] J. Orlin Grabbe, The DES Algorithm Illustrated.

