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Abstract 
The application of technological and related procedures to 
safeguard the security of various documents while moving on the 
channel is an important responsibility in electronic data  
systems. This paper specifies the modification of the Data 
Encryption Standard (DES) and the Triple Data Encryption 
Algorithm (TDEA) which may organizations to protect sensitive 
data. Protection of data during transmission or while in storage  
may be necessary to maintain the confidentiality and integrity of 
the information represented by the  data. The algorithms 
uniquely define the mathematical steps required to transform data 
into a  cryptographic cipher and also to transform the cipher 
back to the original form. The Data Encryption  Standard is 
being made available for use by various agencies within the 
context of a total security  consisting of physical security 
procedures, good information management practices, and 
computer system/network access controls.  
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1. ormation Processing Standard (FIPS); 
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DES is a block cipher--meaning it operates on plaintext 
blocks of a given size (64-bits) and returns ciphertext 
blocks of the same size. Thus DES results in a 
permutation among the 2^64 (read this as: "2 to the 64th 
power") possible arrangements of 64 bits, each of which 
may be either 0 or 1. Each block of 64 bits is divided into 
two blocks of 32 bits each, a left half block L and a right 
half R. (This division is only used in certain operations.)  
Example: Let M be the plain text message M = 
0123456789ABCDEF, where M is in hexadecimal (base 
16) format. Rewriting M in binary format, we get the 64-
bit block of text:  

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 
1001 1010 1011 1100 1101 1110 1111 
L = 0000 0001 0010 0011 0100 0101 0110 0111 
R = 1000 1001 1010 1011 1100 1101 1110 1111  
The first bit of M is "0". The last bit is "1". We read from 
left to right.  

DES operates on the 64-bit blocks using key sizes of 56- 
bits. The keys are actually stored as being 64 bits long, but 
every 8th bit in the key is not used (i.e. bits numbered 8, 
16, 24, 32, 40, 48, 56, and 64). However, we will 
nevertheless number the bits from 1 to 64, going left to 
right, in the following calculations. But, as you will see, 
the eight bits just mentioned get eliminated when we 
create subkeys.  
Example: Let K be the hexadecimal key K = 
133457799BBCDFF1. This gives us as the binary key 
(setting 1 = 0001, 3 = 0011, etc., and grouping together 
every eight bits, of which the last one in each group will 
be unused):  
K = 00010011 00110100 01010111 01111001 10011011 
10111100 11011111 11110001  
The DES algorithm uses the following steps:  

Step 1: Create 16 subkeys, each of which is 48-bits long. 
The 64-bit key is permuted according to the following 
table, PC-1. Since the first entry in the table is "57", this 
means that the 57th bit of the original key K becomes the 
first bit of the permuted key K+. The 49th bit of the 
original key becomes the second bit of the permuted key. 
The 4th bit of the original key is the last bit of the 
permuted key. Note only 56 bits of the original key appear 
in the permuted key.  
PC-1 

57 49 41 33 25 17 9 
1 58 50 42 34 26 18 
10 2 59 51 43 35 27 
19 11 3 60 52 44 36 
63 55 47 39 31 23 15 
7 62 54 46 38 30 22 
14 6 61 53 45 37 29 
21 13 5 28 20 12 4 

Example: From the original 64-bit key  
K = 00010011 00110100 01010111 01111001 10011011 
10111100 11011111 11110001  

we get the 56-bit permutation  

K+ = 1111000 0110011 0010101 0101111 0101010 
1011001 1001111 0001111  

Next, split this key into left and right halves, C0 and D0, 
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where each half has 28 bits.  

Example: From the permuted key K+, we get  

C0 = 1111000 0110011 0010101 0101111  
D0 = 0101010 1011001 1001111 0001111  

With C0 and D0 defined, we now create sixteen blocks Cn 
and Dn, 1<=n<=16. Each pair of blocks Cn and Dn is 
formed from the previous pair Cn-1 and Dn-1, 
respectively, for n = 1, 2, ..., 16, using the following 
schedule of "left shifts" of the previous block. To do a left 
shift, move each bit one place to the left, except for the 
first bit, which is cycled to the end of the block.  
                     Iteration     Number of 
                      Number      Left Shifts 
 
                          1          1 
                          2          1 
                          3          2 
                          4          2 
                          5          2 
                          6          2 
                          7          2 
                          8          2 
                          9          1 
                         10          2 
                         11          2 
                         12          2 
                         13          2 
                         14          2 
                         15          2 
                         16          1 

This means, for example, C3 and D3 are obtained from C2 
and D2, respectively, by two left shifts, and C16 and D16 
are obtained from C15 and D15, respectively, by one left 
shift. In all cases, by a single left shift is meant a rotation 
of the bits one place to the left, so that after one left shift 
the bits in the 28 positions are the bits that were previously 
in positions 2, 3,..., 28, 1.  
Example: From original pair pair C0 and D0 we obtain:  
We now form the keys Kn, for 1<=n<=16, by applying the 
following permutation table to each of the concatenated 
pairs CnDn. Each pair has 56 bits, but PC-2 only uses 48 
of these.  
C0 = 1111000011001100101010101111 
D0 = 0101010101100110011110001111  
C1 = 1110000110011001010101011111 
D1 = 1010101011001100111100011110  
C2 = 1100001100110010101010111111 
D2 = 0101010110011001111000111101  

C3 = 0000110011001010101011111111 
D3 = 0101011001100111100011110101  
C4 = 0011001100101010101111111100 
D4 = 0101100110011110001111010101  
C5 = 1100110010101010111111110000 
D5 = 0110011001111000111101010101  
C6 = 0011001010101011111111000011 
D6 = 1001100111100011110101010101  
C7 = 1100101010101111111100001100 
D7 = 0110011110001111010101010110  
C8 = 0010101010111111110000110011 
D8 = 1001111000111101010101011001  
C9 = 0101010101111111100001100110 
D9 = 0011110001111010101010110011  
C10 = 101010111111110000110011001 
D10 = 111000111101010101011001100  
C11 = 101011111111000011001100101 
D11 = 100011110101010101100110011  
C12 = 101111111100001100110010101 
D12 = 001111010101010110011001111  
C13 = 111111110000110011001010101 
D13 = 111101010101011001100111100  
C14 = 111111000011001100101010101 
D14 = 110101010101100110011110001  
C15 = 111100001100110010101010111 
D15 = 010101010110011001111000111  
C16 = 111000011001100101010101111 
D16 = 101010101100110011110001111  

 
PC-2 

 14 
     
17 

     
11 24 1 5 

3 
     
28 15 6 21 10 

23     19 12 4 26 8 

16      7 27 20 13 2 

41 
     
52 31 37 47 55 

30 
     
40 51 45 33 48 

44 
     
49 39 56 34 53 

46     42 50 36 29 32 
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Therefore, the first bit of Kn is the 14th bit of CnDn, the 
second bit the 17th, and so on, ending with the 48th bit of 
Kn being the 32th bit of CnDn.  
Example: For the first key we have C1D1 = 1110000 
1100110 0101010 1011111 1010101 0110011 0011110 
0011110  
which, after we apply the permutation PC-2, becomes   
K1 = 000110 110000 001011 101111 111111 000111 
000001 110010  
For the other keys we have  
K2 = 011110 011010 111011 011001 110110 111100 
100111100101 
K3 = 010101 011111 110010 001010 010000 101100 
111110 011001 
K4 = 011100 101010 110111 010110 110110 110011 
010100 011101 
K5 = 011111 001110 110000 000111 111010 110101 
001110 101000 
K6 = 011000 111010 010100 111110 010100 000111 
101100 101111 
K7 = 111011 001000 010010 110111 111101 100001 
100010 111100 
K8 = 111101 111000 101000 111010 110000 010011 
101111 111011 
K9 = 111000 001101 101111 101011 111011 011110 
011110 000001 
K10 = 101100 011111 001101 000111 101110 100100 
011001 001111 
K11 = 001000 010101 111111 010011 110111 101101 
001110 000110 
K12 = 011101 010111 000111 110101 100101 000110 
011111 101001 
K13 = 100101 111100 010111 010001 111110 101011 
101001 000001 
K14 = 010111 110100 001110 110111 111100 101110 
011100 111010 
K15 = 101111 111001 000110 001101 001111 010011 
111100 001010 
K16 = 110010 110011 110110 001011 000011 100001 
011111 110101 

So much for the subkeys. Now we look at the message 
itself.  
Step 2: Encode each 64-bit block of data. 
There is an initial permutation IP of the 64 bits of the 
message data M. This rearranges the bits according to the 
following table, where the entries in the table show the 
new arrangement of the bits from their initial order. The 
58th bit of M becomes the first bit of IP. The 50th bit of 
M becomes the second bit of IP. The 7th bit of M is the 
last bit of IP.  

IP 
58 50 42 34 26 18 10 2 
60 52 44 36 28 20 12 4 

62 54 46 38 30 22 14 6 
64 56 48 40 32 24 16 8 
57 49 41 33 25 17 9 1 
59 51 43 35 27 19 11 3 
61 53 45 37 29 21 13 5 
63 55 47 39 31 23 15 7 

Example: Applying the initial permutation to the block of 
text M, given previously, we get  
M = 000000010010 0011010001010110 
011110001001101010111100110111101111 
IP = 
11001100000000001100110011111111111100001010101
01111000010101010  
Here the 58th bit of M is "1", which becomes the first bit 
of IP. The 50th bit of M is "1", which becomes the second 
bit of IP. The 7th bit of M is "0", which becomes the last 
bit of IP. Next divide the permuted block IP into a left 
half L0 of 32 bits, and a right half R0 of 32 bits.  
Example: From IP, we get L0 and R0  
L0 = 1100 1100 0000 0000 1100 1100 1111 1111  
R0 = 1111 0000 1010 1010 1111 0000 1010 1010  

We now proceed through 16 iterations, for 1<=n<=16, 
using a function f which operates on two blocks--a data 
block of 32 bits and a key Kn of 48 bits--to produce a 
block of 32 bits. Let + denote XOR addition, (bit-by-bit 
addition modulo 2). Then for n going from 1 to 16 we 
calculate  
Ln = Rn-1  
Rn = Ln-1 + f(Rn-1,Kn)  
This results in a final block, for n = 16, of L16R16. That is, 
in each iteration, we take the right 32 bits of the previous 
result and make them the left 32 bits of the current step. 
For the right 32 bits in the current step, we XOR the left 
32 bits of the previous step with the calculation f .  
Example: For n = 1, we have  
K1 = 000110 110000 001011 101111 111111 000111 
000001 110010  
L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010  
R1 = L0 + f(R0,K1)  
It remains to explain how the function f works. To 
calculate f, we first expand each block Rn-1 from 32 bits 
to 48 bits. This is done by using a selection table that 
repeats some of the bits in Rn-1 . We'll call the use of this 
selection table the function E. Thus E(Rn-1) has a 32 bit 
input block, and a 48 bit output block. Let E be such that 
the 48 bits of its output, written as 8 blocks of 6 bits each, 
are obtained by selecting the bits in its inputs in order 
according to the following table:  
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E BIT-SELECTION TABLE 
 
32 1 2 3 4 5 
4 5 6 7 8 9 
8 9 10 11 12 13 
12 13 14 15 16 17 
16 17 18 19 20 21 
20 21 22 23 24 25 
24 25 26 27 28 29 
28 29 30 31 32 1 

Thus the first three bits of E(Rn-1) are the bits in positions 
32, 1 and 2 of Rn-1 while the last 2 bits of E(Rn-1) are the 
bits in positions 32 and 1.  
Example: We calculate E(R0) from R0 as follows:   

R0 = 1111 0000 1010 1010 1111 0000 1010 1010  
E(R0) = 011110 100001 010101 010101 011110 100001 
010101 010101  
(Note that each block of 4 original bits has been expanded 
to a block of 6 output bits.)  

Next in the f calculation, we XOR the output E(Rn-1) with 
the key Kn: 
Kn + E(Rn-1).  

Example: For K1 , E(R0), we have  
K1 = 000110 110000 001011 101111 111111 000111 
000001 110010  
E(R0) = 011110 100001 010101 010101 011110 100001 
010101 010101  
K1+E(R0) = 011000 010001 011110 111010 100001 
100110 010100 100111.  

We have not yet finished calculating the function f . To 
this point we have expanded Rn-1 from 32 bits to 48 bits, 
using the selection table, and XORed the result with the 
key Kn . We now have 48 bits, or eight groups of six bits. 
We now do something strange with each group of six bits: 
we use them as addresses in tables called "S boxes". Each 
group of six bits will give us an address in a different S 
box. Located at that address will be a 4 bit number. This 4 
bit number will replace the original 6 bits. The net result is 
that the eight groups of 6 bits are transformed into eight 
groups of 4 bits (the 4-bit outputs from the S boxes) for 32 
bits total.  
Write the previous result, which is 48 bits, in the form:  

Kn + E(Rn-1) =B1B2B3B4B5B6B7B8,  
where each Bi is a group of six bits. We now calculate  

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)  
where Si(Bi) referres to the output of the i-th S box.  
To repeat, each of the functions S1, S2,..., S8, takes a 6-bit 
block as input and yields a 4-bit block as output. The table 
to determine S1 is shown and explained below:  

Row 
No. 0 1 2 3 4 5 6 7 8 9 10 
0 14 4 13 1 2 15 11 8 3 10 6 
1 0 15 7 4 14 2 13 1 10 6 12 
2 4 1 14 8 13 6 2 11 15 12 9 
3 15 12 8 2 4 9 1 7 5 11 3 

 
Row 
No. 11 12 13 14 15 
0 12 5 9 0 7 
1 11 9 5 3 8 
2 7 3 10 5 0 
3 14 10 0 6 13 

 
S1 
Column Number 
If S1 is the function defined in this table and B is a block 
of 6 bits, then S1(B) is determined as follows: The first 
and last bits of B represent in base 2 a number in the 
decimal range 0 to 3 (or binary 00 to 11). Let that number 
be i. The middle 4 bits of B represent in base 2 a number 
in the decimal range 0 to 15 (binary 0000 to 1111). Let 
that number be j. Look up in the table the number in the i-
th row and j-th column. It is a number in the range 0 to 15 
and is uniquely represented by a 4 bit block. That block is 
the output S1(B) of S1 for the input B. For example, for 
input block B = 011011 the first bit is "0" and the last bit 
"1" giving 01 as the row. This is row 1. The middle four 
bits are "1101". This is the binary equivalent of decimal 13, 
so the column is column number 13. In row 1, column 13 
appears 5. This determines the output; 5 is binary 0101, so 
that the output is 0101. Hence S1(011011) = 0101.  
The tables defining the functions S1,...,S8 are the 
following: 

 

 

 

 

 

 

 

 

 

 

S1 
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14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 

 
S2 
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9 

 
S3 
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 

 
S4 
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 

 
S5 
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 

S6 
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13 

 
S7 
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 

 
S8 
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 
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Example: For the first round, we obtain as the output of 
the eight S boxes:  
K1 + E(R0) = 011000 010001 011110 111010 100001 
100110 010100 100111.  

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) 
= 0101 1100 1000 0010 1011 0101 1001 0111  

The final stage in the calculation of f is to do a 
permutation P of the S-box output to obtain the final value 
of f:  
f = P(S1(B1)S2(B2)...S8(B8))  
The permutation P is defined in the following table. P 
yields a 32-bit output from a 32-bit input by permuting the 
bits of the input block.  
P 

16 7 20 21 
29 12 28 17 
1 15 23 26 
5 18 31 10 
2 8 24 14 
32 27 3 9 
19 13 30 6 
22 11 4 25 

 
Example: From the output of the eight S boxes:  
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) 
= 0101 1100 1000 0010 1011 0101 1001 0111  

we get  f = 0010 0011 0100 1010 1010 1001 1011 1011  

R1     = L0 + f(R0 , K1 ) 

= 1100 1100 0000 0000 1100 1100 1111 1111  
+ 0010 0011 0100 1010 1010 1001 1011 1011  
= 1110 1111 0100 1010 0110 0101 0100 0100  

In the next round, we will have L2 = R1, which is the 
block we just calculated, and then we must calculate R2 
=L1 + f(R1, K2), and so on for 16 rounds. At the end of 
the sixteenth round we have the blocks L16 and R16. We 
then reverse the order of the two blocks into the 64-bit 
block  R16L16  and apply a final permutation  IP-1 as 
defined by the following table:  

                             IP-1 
             

40 8 48 16 56 24 64 32 
39 7 47 15 55 23 63 31 
38 6 46 14 54 22 62 30 

37 5 45 13 53 21 61 29 
36 4 44 12 52 20 60 28 
35 3 43 11 51 19 59 27 
34 2 42 10 50 18 58 26 
33 1 41 9 49 17 57 25 

 
That is, the output of the algorithm has bit 40 of the 
preoutput block as its first bit, bit 8 as its second bit, and 
so on, until bit 25 of the preoutput block is the last bit of 
the output.  

Example: If we process all 16 blocks using the method 
defined previously, we get, on the 16th round,  

L16 = 0100 0011 0100 0010 0011 0010 0011 0100 
R16 = 0000 1010 0100 1100 1101 1001 1001 0101  
We reverse the order of these two blocks and apply the 
final permutation to  

R16L16 = 00001010 01001100 11011001 1001010 
1 01000011 01000010 00110010 00110100  
IP-1 = 10000101 11101000 00010011 01010100 0000 
1111 00001010 10110100 00000101  
which in hexadecimal format is  

85E813540F0AB405.  

This is the encrypted form of M = 0123456789ABCDEF: 
namely, C = 85E813540F0AB405.  

Decryption is simply the inverse of encryption, follwing 
the same steps as above, but reversing the order in which 
the sub keys are applied.  

2. DES Modes of Operation 
The DES algorithm turns a 64-bit message block M into a 
64-bit cipher block C. If each 64-bit block is encrypted 
individually, then the mode of encryption is called 
Electronic Code Book (ECB) mode. There are two other 
modes of DES encryption, namely Chain Block Coding 
(CBC) and Cipher Feedback (CFB), which make each 
cipher block dependent on all the previous messages 
blocks through an initial XOR operation.  

3. Cracking DES 

Before DES was adopted as a national standard, during the 
period NBS was soliciting comments on the proposed 
algorithm, the creators of public key cryptography, Martin 
Hellman and Whitfield Diffie, registered some objections 
to the use of DES as an encryption algorithm. Hellman 
wrote: "Whit Diffie and I have become concerned that the 
proposed data encryption standard, while probably secure 
against commercial assault, may be extremely vulnerable 
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to attack by an intelligence organization" (letter to NBS, 
October 22, 1975).  
Diffie and Hellman then outlined a "brute force" attack on 
DES. (By "brute force" is meant that you try as many of 
the 2^56 possible keys as you have to before decrypting 
the ciphertext into a sensible plaintext message.) They 
proposed a special purpose "parallel computer using one 
million chips to try one million keys each" per second, and 
estimated the cost of such a machine at $20 million.  
Fast forward to 1998. Under the direction of John Gilmore 
of the EFF, a team spent $220,000 and built a machine that 
can go through the entire 56-bit DES key space in an 
average of 4.5 days. On July 17, 1998, they announced 
they had cracked a 56-bit key in 56 hours. The computer, 
called Deep Crack, uses 27 boards each containing 64 
chips, and is capable of testing 90 billion keys a second.  

4.Triple-DES 

Triple-DES is just DES with two 56-bit keys applied. 
Given a plaintext message, the first key is used to DES- 
encrypt the message. The second key is used to DES-
decrypt the encrypted message. (Since the second key is 
not the right key, this decryption just scrambles the data 
further.) The twice-scrambled message is then encrypted 
again with the first key to yield the final ciphertext. This 
three-step procedure is called triple-DES.  
Triple-DES is just DES done three times with two keys 
used in a particular order. (Triple-DES can also be done 
with three separate keys instead of only two. In either case 
the resultant key space is about 2^112.) [10] 

5. Weaknesses of the DES Algorithm 

3.1 Key space size 

In DES, the key consists in a 56-bit vector providing a key 
space K of 256 = 7.2058 × 1016 elements. In an 
exhaustive search known-plaintext attack, the cryptanalyst 
will obtain the solution after 255  or 3.6029 × 1016 trials, 
on average. In 1977, Diffie and Hellman[DH77] have 
shown that a special purpose multiple parallel processor 
consisting of 106 intergrated circuits, each one trying a 
key every 1μ s, could determine the key used in about 10 
hours on average in a known-plaintext attack. The cost of 
such a multiple processor machine would have been 
around $50,000,000 in 1977 [Pfl89]. If such a machine 
was used 365 days a year, 24 hours a day, amortizing the 
price over the number of key solutions obtained, then the 
price per solution would have been about $20,000 per 
solution. 
Diffie and Hellman argued that if the key length was 
increased from 56 to 64 bits, it would make the DES 
algorithm secure even for “intelligence agencies 

budgets...” [Sim92], while decreasing the key length from 
56 to only 48 would make DES “vulnerable to attack by 
almost any reasonable sized organization” [Sim92]. The 
key length is thus a very critical parameter to the security 
of DES.  

3.2    Complement property 

Another possible weakness of DES lies in the complement 
property of the DES algorithm. Let M be a 64-bit plaintext 
message to be encrypted into a 64-bit ciphertext C using 
the 56-bit key K:  C = DESK (M ) . The complement 
property of DES [Pfl89] indicates that the bit-by-bit 
modulo-2 complement of the ciphertext C, i.e. C, can be 
obtained from the plaintext M and key K as: C = DESK 
(M )  
 C = DESK (M ) 
 Since complementing the ciphertext vector C takes much 
less time than actually performing the DES encryption 
transformation, the exhaustive key search attack can be 
reduced almost by half.  

3.3    DES weak keys 

The DES algorithm generates from the 56-bit key K a set, 
or sequence, of 16 distinct 48-bit sub-keys which are then 
used in each round of substitution and permutation 
transformation of DES. However, if the left and right 
registers Ci and Di of the sub-key schedule calculation 
branch are filled with “0” or “1”, the sub-keys will be 
identical:  
k1 = k2 = . . . = k16 
The encryption and decryption processes being the same 
except for the order of sub-keys, when such weak keys are 
employed, enciphering a plaintext messages M twice will 
result in the original plaintext message [DP84]: 11 
DESK [DESK (M )] = M 
    The weak keys of the DES are listed hereafter: 

K1    =   0 1    0 1    0 1    0 1   0 1    0 1    0 1    
0 1 
 K2    =  FE     FE    FE     FE    FE  FE     FE    
FE 
 K3    =  1F     1F     1F     1F    0E   0E     0E    
0E 
 K4    =  E0     E0      E0     E0    F1   F1     F1    
F1 

3.4    DES semi-weak key pairs 

Another property observed in the DES algorithm is the 
existence of semi-weak pairs of keys for which the pattern 
of alternating zeroes and ones in the two sub-key registers 
Ci and Di . This results in the first key, say K1 , producing 
the sub-key sequence: k1 , k2 , . . ., k16 , while the second 
key of the pair, K2 , generates the inverse sub-key 
sequence: k16 , k15 , . . ., k1 . Thus the encryption of 
message M by key K1 followed by a second encryption 
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with key K2 will give the original message  

M:        DESK2 [DESK1 (M )] = M 

    The semi-weak keys of the DES are [DP84]:  

K1,1    =   0 1   FE    0 1    FE   0 1   FE    01   FE 

K1,2    =   FE   0 1    FE    0 1   FE   01   FE   01 

K2,1    =   1F    E0   1F    E0    0E    F1     0E   F1 

K2,2    =   E0   1F    E0    1F    F1     0E    F1    0E 

K3,1    =   01    E0   01    E0    01    F1     01    F1 

K3,2    =   E0    01   E0    01    F1    01    F1    01 

K4,1    =   1F    FE    1F    FE   0E   FE    0E   FE 

K4,2    =   FE    1F   FE    1F    FE   0E    FE    0E 

K5,1    =   01    1F    01     1F    01   0E     01   0E 

K5,2    =   1F    01    1F    01    0E    01     0E    01 

K6,1    =   E0     FE    E0    FE   F1    FE    F1    FE 

K6,2    =   FE     E0    FE    E0   FE    F1    FE    F1 

Proposed modification on DES and Tripple DES 
algorithm 

 

The initial 64 bit key to be generated is generated using 
the RSA algorithm. The procedure is described in the 
following steps: 
Step1: The 256 bit decimal output generated from the RSA 
is taken as the initial value to start with. 
Step 2: Using random generator algorithm, randomly 64 
bits are extracted from the 256 bit decimal output of the 
RSA which becomes the initial key for the DES and triple 
DES algorithms.  
The proposed random generator algorithm is as shown in 
the above flow chart. 

Jhbjhbvkjxkfksjxckzjxbckzjxckjzxckj 

Theorem 1 (Fermat’s Little Theorem) If p is a prime 
number, and a is an integer such that (a, p) = 1, then 
ap−1 = 1(mod p). 
Proof: Consider the numbers (a · 1), (a · 2), . . . (a · (p − 
1)), all modulo p. They are all different. If any of them 
were the same, say a · m = a · n(mod p), then a · (m − n) = 
0(mod p) so m− n must be a multiple of p. But since all m 
and n are less than p, m = n. Thus a·1, a·2, . . . , a· (p−1) 
must be a rearrangement of 1, 2, . . . , (p−1). So modulo 
p, we have: =  =ap-1  

so ap−1 = 1(mod p). 
Theorem 2 (Fermat’s Theorem Extension) If (a,m) = 1 
then a Φ(m) = 1(mod m),where Φ(m) is the number of 
integers less than m that are relatively prime to m. The 
number m is not necessarily prime. 
Proof: Same idea as above. Suppose Φ (m) = n. Then 
suppose that the n numbers less than m that are relatively 
prime to m are: a1, a2, a3, . . . , an. Then a · a1, a · a2, . . . , a 
· an are also relatively prime to m, and must all be different, 
so they must just be a rearrangement of the a1, . . . , an in 
some order. Thus: =  =an  

modulo m, so an = 1(mod m). 
Theorem 3 (Chinese Remainder Theorem) Let p and q 
be two numbers (not necessarily primes), but such that (p, 
q) = 1. Then if a = b(mod p) and a = b(mod q) we have a = 
b(mod pq). 
Proof: If a = b(mod p) then p divides (a − b). Similarly, q 
divides (a − b). But p and q are relatively prime, so pq 
divides (a − b). Consequently, a = b(mod pq). (This 
is a special case with only two factors of what is usually 
called the Chinese remainder theorem .) 
3.1 Proof of the Main Result 
Based on the theorems above, here is why the RSA 
encryption scheme works. Let p and q be two different 
(large) prime numbers, let 0  M < pq be a secret 
message1, let d be an integer (usually small) that is 
relatively prime to (p − 1)(q − 1), and let e be a number 
such that de = 1(mod (p − 1)(q − 1)). The encoded 
message is C = Me(mod pq), so we need to show that the 
decoded message is given byM = Cd(mod pq).  
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Proof: Since de = 1(mod (p−1)(q −1)), de = 1+k(p−1)(q 
−1) for some integer k.  
Thus: Cd = Mde = M1+k(p−1)(q−1) = M · (M(p−1)(q−1))k. If M is 
relatively prime to p, 
 then Mde = M · (Mp−1)k(q−1) = M·(1)k(q−1) = M(mod p)  
By the extension of Fermat’s Theorem giving 
Mp−1 = 1(mod p) followed by a multiplication of both sides 
byM. But ifM is not relatively prime to p, thenM is a 
multiple of p, so equation 1 still holds because both sides 
will be zero, modulo p. 
By exactly the same reasoning, Mde = M ·Mq−1 = M(mod 
q)  
If we apply the Chinese remainder theorem to equations 1 
and 2, we obtain the result we want: Mde = M(mod pq). 
Finally, given the integer d, we will need to be able to find 
another integer e such that 
de = 1(mod (p−1)(q−1)). To do so we can use the 
extension of Fermat’s theorem to get dΦ((p−1)(q−1)) = 1(mod 
(p−1)(q−1)), so dΦ((p−1)(q−1))−1(mod (p−1)(q−1)) 
is a suitable value for e. 

Mathematical proof of the RSA 

8.1 Algorithm Key generation for RSA public-key 
encryption 
Each entity creates an RSA public key and a 
corresponding private key. Each entity A should do the 
following: 
1. Generate two large random (and distinct) primes p and q, 
each roughly the same size. 
2. Compute n = pq and Φ = (p — l ) (q  — 1). (See Note 
8.5.) 
3. Select a random integer e, 1 < e < Φ, such that gcd(e, Φ) 
= 1. 

4. Use the extended Euclidean algorithm  to compute the 
unique integer d,1 < d < Φ, such that ed = 1 (mod Φ). 
5. A’s public key is (n, e); A’s private key is d. 

The integers e and d in RSA key generation are called the 
encryption exponent and the decryption exponent, 
respectively, while n is called the modulus. 

 RSA public-key encryption                                                                                                                 

B encrypts a message m for A, which A decrypts. 
1. Encryption. B should do the following: 

(a) Obtain A’s authentic public key (n, e). 
(b) Represent the message as an integer m in the interval [0, 
n—1]. 
(c) Compute c = me mod n. 
(d) Send the ciphertext c to A. 
     2. Decryption. To recover plaintext m from c, A should 

do the following: 
   (a) Use the private key d to recover m = cd mod n. 
Proof that decryption works. Since ed = 1 (mod Φ), there 
exists an integer k such that ed = 1 + k Φ. Now, if gcd(m,p) 
= 1 then by Fermat’s theorem                                        
mp-1 = 1 (mod p). 

Raising both sides of this congruence to the power k(q — 1) 
and then multiplying both sides by m yields ml+k(P-l)(q-l) 
= m (mod p) 

On the other hand, if gcd (m, p) = p, then this last 
congruence is again valid since each side is congruent to 0 
modulo p. Hence, in all cases m ed   = m (mod p).By the 
same argument,            m ed =m(mod q). Finally, since 
p and q are distinct primes, it follows that m ed = m (mod n), 
and, hence, c d  = (me)d   = m (mod n). 

(RSA encryption with artificially small parameters) 
Key generation. Entity A chooses the primes p = 2357, q = 
2551, and computes n = pq = 6012707 and Φ = (p —1)(q — 
1) = 6007800. A chooses e = 3674911 and, using the 
extended Euclidean algorithm, finds d = 422191 such that 
ed = 1 (mod <p). A’s public key is the pair (n = 6012707, e 
= 3674911), while A’s private key is d = 422191. 
Encryption. To encrypt a message m = 5234673, B uses an 
algorithm for modular exponentiation (e.g., Algorithm 
2.143) to compute c= me mod n = 52346733674911 mod 
6012707 = 3650502, and sends this to A. Decryption.                
To decrypt c, A computes cd mod n =  3650502422191 mod 
6012707 = 5234673. (universal exponent) The number 
λ = lcm(p — l,q— 1), sometimes called the universal 
exponent of n, may be used instead of Φ=(p—1)(q—1) in 
RSA key generation. Observe that λ is a proper divisor of Φ. 
Using λ can result in a smaller decryption exponent d, 
which may result in faster decryption. However, if p and q 
are chosen at random, then gcd(p —1, q— 1) is expected to be 
small, and consequently Φ and λ will be roughly of the 
same size. 

Security of RSA 

This subsection discusses various security issues related to 
RSA encryption. Various attacks which have been studied in 
the literature are presented, as well as appropriate measures 
to counteract these threats. 

(i) Relation to factoring 

The task faced by a passive adversary is that of recovering 
plaintext m from the corresponding ciphertext c, given the 
public information (n, e) of the intended receiver A. This is 
called the RSA problem (RSAP).There is no efficient algo-
rithm known for this problem. 
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One possible approach which an adversary could employ to 
solving the RSA problem is to first factor n, and then 
compute Φ and d . Once d is obtained, the adversary can 
decrypt any ciphertext intended for A. 
On the other hand, if an adversary could somehow 
compute d, then it could subsequently factor n efficiently 
as follows. First note that since ed = 1 (mod Φ), there is an 
integer k such that ed — 1 = k Φ. Hence, aeti_1 = 1 (mod n) 
for all a Є Z*. Let ed — 1 = 2st, where t is an odd integer. 
Then it can be shown that there exists an i Є [l,s] such that 
a2i-1t ≠±1 (mod n) anda2it = 1 (mod n) for at least half of all 
a Є Zn; if a and i are such integers then gcd(a—1, n) is a 
non-trivial factor of n. Thus the adversary simply needs to 
repeatedly select random a ЄZ* and check if an i Є [1, s] 
satisfying the above property exists; the expected number 
of trials before a non-trivial factor of n is obtained is 2. 
This discussion establishes the following. 
The problem of computing the RSA decryption exponent d 
from the public key (n, e), and the problem of factoring n, 
are computationally equivalent. Then generating RSA 
keys, it is imperative that the primes p and q be selected in 
such a way that factoring n = pq is computationally 
infeasible. 

(ii) Small encryption exponent e 

In order to improve the efficiency of encryption, it is 
desirable to select a small encryption exponent e such as e = 
3. A group of entities may all have the same encryption 
exponent e, however, each entity in the group must have its 
own distinct modulus. If an entity A wishes to send the 
same message m to three entities whose public moduli are 
n1, n2, n3 and whose encryption exponents are e = 3, then 
A would send Ci = m3 mod n; for i = 1,2,3. Since these 
moduli are most likely pairwise relatively prime, an 
eavesdropper observing c1, C2,C3 can use Gauss’s 
algorithm to find a solution x, 0≤ x < n1n2n3, to the three 
congruences x = c1 (mod n1) x =C2(mod n2)   x=C3(mod 
n3). Since m3 < n1n2n3, by the Chinese remainder theorem, 
it must be the case that x = m3. Hence, by computing the 
integer cube root of x, the eavesdropper can recover the 
plaintext m. Thus a small encryption exponent such as e = 
3 should not be used if the same message, or even the 
same message with known variations, is sent to many 
entities. Alternatively, to prevent against such an attack, a 
pseudorandomly generated bitstring of appropriate length 
should be appended to the plaintext message prior to 
encryption; the pseudorandom bit-string should be 
independently generated for each encryption. This process 
is sometimes referred to as salting the message. 
Small encryption exponents are also a problem for small 
messages m, because if m< n1/e, then m can be recovered 
from the ciphertext c = me mod n simply by computing the 
integer eth root of c; salting plaintext messages also 
circumvents this problem. 

(iii) Forward search attack 

If the message space is small or predictable, an adversary can 
decrypt a ciphertext c by simply encrypting all possible 
plaintext messages until c is obtained. Salting the message 
as described above is one simple method of preventing 
such an attack. 

(iv) Small decryption exponent d 

As was the case with the encryption exponent e, it may 
seem desirable to select a small decryption exponent d in 
order to improve the efficiency of decryption.x However, if 
gcd (p—1, q—1) is small, as is typically the case, and if d 
has up to approximately one-quarter as many bits as the 
modulus n, then there is an efficient algorithm (referenced 
on page 313) for computing d from the public information 
(n, e). This algorithm cannot be extended to the case where 
d is approximately the same size as n. Hence, to avoid this 
attack, the decryption exponent d should be roughly the 
same size as n. 

(v) Multiplicative properties 

Let m1 and m2 be two plaintext messages, and let C1 and 
C2 be their respective RSA encryptions. Observe that 
(m1m2)e = m1

em2
e  =  C1C2 (mod n).In other words, the 

ciphertext corresponding to the plaintext m = m1m2 mod n 
is c = c1c2 mod n; this is sometimes referred to as the 
homomorphic property of RSA. This observation leads to 
the following adaptive chosen-ciphertext attack on RSA 
encryption. 

Suppose that an active adversary wishes to decrypt a 
particular ciphertext c = me mod n intended for A. Suppose 
also that A will decrypt arbitrary ciphertext for the 
adversary, other than c itself. The adversary can conceal c 
by selecting a random integer x Є Zn* and computing c- = 
cxe mod n. Upon presentation of c-, A will compute for the 
adversary m- = (c-)d   mod n. Since m- =  (c-) d   = cd 
(xe)d    = mx    (mod n), the adversary can then compute 
m =m-x-1 mod n. 
This adaptive chosen-ciphertext attack should be 
circumvented in practice by imposing some structural 
constraints onplaintext messages. If a ciphertext c is 
decrypted to a message not possessing this structure, then c 
is rejected by the decryptor as being fraudulent. Now, if a 
plaintext message m has this (carefully chosen) structure, 
then with high probability mx mod n will not for xЄ Zn*. 
Thus the adaptive chosen-ciphertext attack described in 
the previous paragraph will fail because A will not decrypt 
c for the adversary.  

(vi) Common modulus attack 

The following discussion demonstrates why it is 
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imperative for each entity to choose its own RSA modulus 
n. It is sometimes suggested that a central trusted authority 
should select a single RSA modulus n, and then distribute 
a distinct encryption/decryption exponent pair (ei, di) to 
each entity in a network. However, as shown in (i) above, 
knowledge of any (ei, di) pair allows for the factorization of 
the modulus n, and hence any entity could subsequently 
determine the decryption exponents of all other entities in 
the network. Also, if a single message were encrypted and 
sent to two or more entities in the network, then there is a 
technique by which an eavesdropper (any entity not in the 
network) could recover the message with high probability 
using only publicly available information. 

(vii) Cycling attacks 

Let c = me mod n be a ciphertext. Let k be a positive 
integer such that       cek=c(mod n); since encryption is 
a permutation on the message space {0,1,... , n — 1} such 
an integer k must exist. For the same reason it must be the 
case that ck-1 = m (mod n). This observation leads to the 
following cycling attack on RSA encryption. An adversary 
computes ce mod n, ce2 mod n, ce3 mod n,... until c is 
obtained for the first time. If cek mod n =c, then the 
previous number in the cycle, namely c ek-1  mod n, is 
equal to the plaintext m. A generalized cycling attack is to 
find the smallest positive integer u such that f =gcd(ce—
c,n) > 1. If ce=c    (mod p) and ce ≠ c (mod q) then f = p. 
Similarly, if 
ce ≠ c (mod p) and ce   = c (mod q (8.2) then 1 = q. In 
either case, n has been factored, and the adversary can 
recover d and then m. On the other hand, if both c    =c    
(mod p) and c    =c    (mod q),(8.3) then f = n and ce 
= c (mod n). In fact, u must be the smallest positive 
integer k for which ce = c (mod n). In this case, the basic 
cycling attack has succeeded and so 7n = c mod n can be 
computed efficiently. The generalized cycling attack 
usually terminates before the cycling attack does. For this 
reason, the generalized cycling attack can be viewed as 
being essentially an algorithm for factoring n. Since 
factoring n is assumed to be intractable, these cycling attacks 
do not pose a threat to the security of RSA encryption. 

(viii) Message concealing 

A plaintext message m, 0 < m < n—1, in the RSA public-
key encryption scheme is said to be unconcealed if it 
encrypts to itself; that is, me = m (mod n). There are 
always some messages which are unconcealed (for 
example m = 0, m = 1, and m = n—1). In fact, the number 
of unconcealed messages is exactly 

[1 + gcd(e—l , p —1)] • [1 + gcd(e—1,q—1)]. 

Since e — l,p—l and q — 1 are all even, the number of 

unconcealed messages is always at least 9. If p and q are 
random primes, and if e is chosen at random (or if e is 
chosen to be a small number such as e = 3or e = 216 + l = 
65537), then the proportion of messages which are 
unconcealed by RSA encryption will, in general, be 
negligibly small, and hence unconcealed messages do not 
pose a threat to the security of RSA encryption in practice. 

RSA encryption in practice 

There are numerous ways of speeding up RSA encryption 
and decryption in software and hardware implementations. 
Some of these techniques are covered in Chapter 14, 
including fast modular multiplication , fast modular 
exponentiation, and the use of the Chinese remainder 
theorem for faster decryption. Even with these im-
provements, RSA encryption/decryption is substantially 
slower than the commonly used symmetric-key encryption 
algorithms such as DES. In practice, RSA encryption is 
most commonly used for the transport of symmetric-key 
encryption algorithm keys and for the encryption of small 
data items. 
The RSA cryptosystem has been patented in the U.S. and 
Canada. Several standards organizations have written, or 
are in the process of writing, standards that address the use 
of the RSA cryptosystem for encryption, digital signatures, 
and key establishment. For discussion of patent and 
standards issues related to RSA. 
Note (recommended size of modulus) Given the latest 
progress in algorithms for factoring integers , a 512-bit 
modulus n provides only marginal security from concerted 
attack. As of 1996, in order to foil the powerful quadratic 
sieve  and number field sieve factoring algorithms, a 
modulus n of at least 768 bits is recommended. For long-
term security, 1024-bit or larger moduli should be used. 
(selectingprimes) 
(i)The primes p and q should be selected so that factoring 
n = pq is computationally infeasible. The major restriction 
onp and q in order to avoid the elliptic curve factoring 
algorithm is that p and q should be about the same bitlength, 
and sufficiently large. For example, if a 1024-bit modulus n 
is to be used, then each of p and q should be about 512 bits 
in lengt. 
(ii) Another restriction on the primes p and q is that the 
difference p—q should not be too small. If p—q is small, 
then p ≈q and hence p ≈√n. Thus, n could be factored 
efficiently simply by trial division by all odd integers close 
to √n. If p and q are chosen at random, then p—q will be 
appropriately large with overwhelming probability. 
(iii) In addition to these restrictions, many authors have 
recommended that p and q be strong primes. A prime p is 
said to be a strong prime  if the following three conditions 
are satisfied: 
(a) p—1 has a large prime factor, denoted r; 
(b) p + 1 has a large prime factor; and 



IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 55 

(c) r—1 has a large prime factor.  
The reasonfor condition (a) is to foil Pollard’s p—1 factoring 
algorithm which is efficient only if n has a prime factor p 
such that p—1 is smooth. Condition (b) foils the p + 1 
factoring algorithm mentioned, which is efficient only if n 
has a prime factor p such that p + 1 is smooth. Finally, 
condition (c) ensures that the cycling attacks will fail. 
If the prime p is randomly chosen and is sufficiently large, 
then both p—1 and p+1 can be expected to have large prime 
factors. In any case, while strong primes protect against the 
p—1 and p+1 factoring algorithms, they do not protect 
against their generalization. The latter is successful in 
factoring n if a randomly chosen number of the same size 
as p has only small prime factors. Additionally, it has been 
shown that the chances of a cycling attack succeeding are 
negligible if p and q are randomly chosen.  Thus, strong 
primes offer little protection beyond that offered by random 
primes. Given the current state of knowledge of factoring 
algorithms, there is no compelling reason for requiring the 
use of strong primes in RSA key generation. On the other 
hand, they are no less secure than random primes, and 
require only minimal additional running time to compute; 
thus there is little real additional cost in using them. 
(small encryption exponents) 
If the encryption exponent e is chosen at random, then RSA 
encryption using the repeated square-and-multiply 
algorithm (Algorithm 2.143) takes k modular squarings and 
an expected k/2 (less with optimizations) modular 
multiplications, where k is the bitlength of the modulus n. 
Encryption can be sped up by selecting e to be small and/or 
by selecting e with a small number of 1 ’s in its binary 
representation. The encryption exponent e = 3 is commonly 
used in practice; in this case, it is necessary that neither p—1 
nor q—1 be divisible by 3. This results in a very fast encryp-
tion operation since encryption only requires 1 modular 
multiplication and 1 modular squaring. Another encryption 
exponent used in practice is e = 216 + 1 = 65537. This 
number has only two 1’s in its binary representation, and 
so encryption using the repeated square-and-multiply 
algorithm requires only 16 modular squarings and 1 
modular multiplication. The encryption exponent e = 216 + 
1 has the advantage over e = 3 in that it resists the kind of 
attack , since it is unlikely the same message will be sent to 
216 +1 recipients.  

Conclusion 

In this paper the proposal is to modify the DES algorithm 
to improve the encryption information exchanged between 
any two nodes on the network. In its present form it can be 
broken. By the proposed modification the purpose is to 
enhance the time to break so that with the timestamp for 
the transfer of the frame the information would have 

already reached the destination and action accordingly 
taken as needed. This enhances the performance of the 
DES algorithm to a large extent. It is very clear with the 
proof related to RSA with regard to the key generated 
given above. For future research on this, the inclusion of 
the knowledge of some of the other theorems of number 
theory can be use to further enhance the performance of 
the DES algorithm. 
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