
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

74

Manuscript received April 5, 2013
Manuscript revised April 20, 2013

Support for Goal Oriented Requirements Engineering in Elastic
Cloud Applications

Zill-e-Subhan1, Robail Yasrab2, Muhammad Farhan3, Abdul Qahhar Mohsin4, Muhammad Munwar
Iqbal5

1 National University of Computer and Emerging Sciences (FAST) Lahore,
2,4 e-Lecturer Virtual University of Pakistan,

3,5 Department of Computer Science & Engineering, UET Lahore

Abstract
Businesses have already started to exploit potential uses of cloud
computing as a new paradigm for promoting their services.
Although the general concepts they practically focus on are:
viability, survivability, adaptability, etc., however, on the ground,
there is still a lack for forming mechanisms to sustain viability
with adaptation of new requirements in cloud-based applications.
This has inspired a pressing need to adopt new methodologies
and abstract models which support system acquisition for self-
adaptation, thus guaranteeing autonomic cloud application
behavior. This paper relies over state-of-the-art Neptune
framework as runtime adaptive software development
environment supported with intention-oriented modeling
language in the representation and adaptation of goal based
model artifacts and their intrinsic properties requirements. Such
an approach will in turn support distributed service based
applications virtually over the cloud to sustain a self-adaptive
behavior with respect to its functional and non-functional
characteristics.
Keywords
Cloud Applications, Neptune, Intention, Goal Oriented
Requirements Engineering (GORE)

1. INTRODUCTION

With the ever increasing need to utilize computing
resources as non-scale bounded computing infrastructure,
which cost a fortune, the shift towards the cloud
computing as a new pay-as-you-need computing paradigm
has been announced to help in reducing the cost and
maintaining the system locality without necessarily
accepting risks implicated by infrastructure fragility [10].
During early stages of the cloud, IBM had provided a
definition to cloud as:
“An all-inclusive solution in that the entire computing
resources (software, hardware, storage, networking, and so
on) are offered quickly to users as demand dictates” [1]
In other words, the convention naming of X-as-a-Service
(XaaS) or Software-as-a-Service (SaaS) now is
increasingly used as a generalized aspectual adoption of
services in the cloud. A influential fundamental idea is
computing in the course of service-oriented architectures

(or simply SOA) [2]: “delivery of an integrated as well as
orchestrated suite of processes to an end-user in the course
of composition of together insecurely plus strongly
coupled processes, plus services” frequently network
based. Connected ideas are component-based system
engineering [3]: orchestration of dissimilar components in
the course of workflows, as well as virtualization. In an
service-oriented architecture environment, end-users
demand an IT service (or an incorporated set of such
services) at the preferred quality, functional as well as
capacity level, plus obtain it either at the time demanded
or at a particular later time. Service detection, brokering,
plus reliability are significant, as well as services are
typically intended to interoperate, as are the complex
made of these services. The solution to a SOA structure
that facilitates workflows is componentization of its
services-based delivery. An incorporated vision of service-
based actions is offered through the idea of a workflow. IT
supported workflow signifies a series of structured actions
that happen in information assisted problem reservation.
In the situation of cloud computing, the main questions
should be whether the fundamental arrangement is
accommodating to the workflow-oriented view of the
world. This comprises on-demand access to individual as
well as combined computational plus other autonomics,
resources, capability to group resources as of potentially
diverse “clouds” to deliver workflow outcome, suitable
level of security as well as privacy, etc. [4]. In essence the
pressing need to proximate challenging interaction
between system components to serve accomplishment of
strategically set goals led to the forming of new Intention-
Cloud-Based-Model [5], in which functional and non-
functional system characteristics are reified by actors
based distributed intentionalities. This inception had led to
a new way of developing applications in the cloud, and
thus cooperatively rendered for more adoption of elastic
and dynamic computational resources.
In this paper we use Neptune1 as an adaptive cloud
application development framework, which supports
adaptation of runtime requirements through self-
management system and an intention-based modeling

http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 75

language which stimulate an abstraction of Goal Oriented
Requirement model. We use intentions as to describe the
instantaneous behavior in system components to
operationalize goals into functional and non-functional.
Neptune uses the semantic description underlined by goals
in order to find necessary requirements needed to fulfill
these goals, thus by match and build necessary links
between multi-stage levels of goals.

2. PROBLEM STATEMENT

Researchers continually seek extra well-organized as well
as agile software engineering methods, particularly as
solutions intended for repeatedly demanding applications
are necessary. Against this environment, wide variety of
software engineering paradigms has been planed (for
example structured programming, procedural
programming, object-oriented programming, declarative
programming, application frameworks, design patterns as
well as component-ware). An Intra-

Agent view perspective of software engineering has the
following components [7]:

• Social -- who are the related actors, what do they
want? What are their duties, what are their
potentials?

• Intentional -- what are the applicable objectives as
well as how do they interrelate? How are they state
met, as well as through whom?

• Process-oriented -- what are the applicable
business/computer procedures? Who is
accountable for what?

• Object-oriented – what are the applicable
matter as well as classes, along by their inter-
relationships?

The require for transform can happen because to dynamic
transforms in the users’ requirements as well as the
environment in that the system operates. Thus by
expanding users instant needs and sometimes to fulfill
infrastructure demands also, this will affect how
application will function in order to successfully adapt to
these new changes. Dynamic web-service composition
permits an application to switch one web based service
intended for another, at runtime.[9] However, finding and
linking new services in a way to adapt new changes in
application functionality or yet ones that are functionally
the similar however demonstrate diverse QA levels, is a
difficult process. An increased challenge took place when
applications became distributed over the cloud and has a
plenty of web based services to select from. The majority
of the present research on dynamic web service
composition spotlights on determining the most excellent
match among parameters demanded through the
application as well as the ones advertised through the
services. The most excellent match, though, is hard if not

possible to find in a reasonable time, known the dynamic
nature as well as scalability of the cloud. Bounded through
these restrictions, our approach presents to harness
globally initiated changes in requirements of applications
sitting in a cloud environment, through formal semantic
description of these requirements in order to fulfill desired
system goals.

3. PROPOSED SOLUTION

It outlines clear (and desirable) that applications should
adjust themselves to altering requirements, particularly all
through procedures time. Though, in an random case,
formulating an implementation adaptable is a hard
procedure. It has to be re-architected in similar a way that
is able to rationalize its working all through requirements
transformation. This means that it should be able to:

1. Dynamically decompose its part artefacts
driven through their socio-intentional
potentials.

2. Dynamically recognize objective,
requirements, that will require runtime
adaptation;

3. Start the search intended for novel services,
components that enhanced address adapted
objectives;

In this paper, we look at these steps, thus to capture
runtime requirements needed to search and find atomic
system components best fit to fulfill system goals and
objectives, while we keep to a later stage verification and
assurance rendered from value proposition to acting
stakeholders also attracting alternative decisions to trade
between actors goals and services seeking better
alternative scenario based actions needed to be taken to
satisfy these goals.

1. MODELLING GOALS OVER THE CLOUD

Since applications over the cloud can cover broaden range
of heterogeneous platforms, the most appropriate way to
model goals over the cloud is using GORE abstract
models, to this end actors in goal based models are
represented as stakeholders as well as their objectives
have been recognized, a strategic foundation model
decides in the course of a means-ends examination how
these objectives (as well as softgoals) are able to really be
satisfied in the course of the assistance of other actors. A
planned rationale model is a graph by means of four kinds
of nodes -- objective, job, resource, as well as softgoal --
plus two kinds of links -- outlined-ends links and
procedure decomposition links. A strategic rationale graph
detains the association among the objectives of each actor
as well as the dependences in the course of which the actor
expects these reliance to be fulfilled. Cloud service

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 76

provider in an e-commerce economic model is represented
by shop front owner, shipping provider, payment
facilitator. These actors have dependency relationships
between each other presented as depender and dependee
so for a strategic relationship between a shop-front owner
and a buyer for ex. in order to achieve a goal

“provide best value over price”, the depicting process
model to accomplish such goal when a buyer submits his
orders over shop-front coactively by sharing this goal with
different other cloud service providers like for ex.
payment facilitator, packaging, delivery options provided
by shipper, these will represent a dependee links as
opposed to shop-front owner which in turn a acts as
depender. Actors in the cloud are initiators of goals and
sub-goals, when goals are objectives the system and/or its
subsidiary components have to achieve under certain
conditions or constraints. Goals can be of two types
according to their commitment to achieve, soft-goals
which cannot be foreseen as in state of achieved according
to their non-deterministic nature, thus can instead infer
either positively or negatively the achievement of hard-
goals which can be accomplished when transitioned to a
specific state. While soft-goals can be “metricised”
through tasks and functions, hard-goals can be achieved
by soft-goals and tasks. During the specification of goals
from their semantics, one goal statement could be complex
like “Achieve Better Customer Satisfaction”, such type of
goal is usually called Strategic Goals, which can be
proposed on an organizational level, sometimes extracted
from organization vision. Two other levels of goal
decomposition are High Level/Core objectives as well as
Lower-level/Operational objectives. High level aims are
nothing however core objectives described all through

requirements elaboration in the cloud, so in that case these
goals are identified only during elaboration of
requirements. A new introduction of third level which is

represented as macro staged level called NBLO (Neptune
Base Language Object) level. At this level Neptune
semantically searches to find link through service
agreements with high system model abstracts to other
cloud service providers using meta object abstractions.
That link provides required resources to be utilized as
services for the system to perform functionally (Figure 2).

Figure 2: Goal abstraction levels in the cloud

Explaining objectives AND/OR structure through
describing objectives as well as their refinement/conflict
links in anticipation of transferable fundamentals are
attained. The procedure of recognizing objectives,
describing them exactly, as well as relating them in the
course of positive/negative involvement links is generally
a blend of top-down as well as bottom-up sub-processes;
offspring objectives are recognized through asking HOW
questions regarding objectives previously acknowledged
whereas parent objectives are recognized through asking
WHY questions regarding goals as well as operational
necessities previously recognized (Figure 3). The
elaboration process of goals into goals and sub-goals can
be anticipated through our cloud intention modeling
methodology, in which writing intentions that drive
process and sub-process models, the process model is
annotated with goals and sub-goals, where the lowest level
in goal tree are the Operational Goals, which will be
supported by Neptune Functions as tasks at the operational
level. Objectives have to clearly be specified accurately to
facilitate verification/validation, requirements elaboration,
negotiation, conflict management, replacement,
explanation as well as evolution.
Figure 3: Capturing Early and Late Requirements with
Neptune

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 77

2. INTENTION-CLOUD-BASED MODEL

The intention model is composed of flow model and logic
model. Whereby, I representing the intention model can be
defined as:

I = < T, cp >

Where T represents a set of tasks to be executed to achieve
the goals, which define the Intention model and cp,
represents a set of conditions which define and/or control
the associated task set. In other words, T represents the
flow model, and cp represents the control flow model of a
given Intention model (Figure 4). [10]

Figure 4: ICBM Meta Model

IV. CASE STUDY: DESIGN PETSHOP SCENARIO VIA
GOAL

MODELLING
Using Microsoft PetShop blueprint as an online e-
commerce store-front, we re-engineer PetShop
architecture to be a cloud based application driven by
GORE methodologies. Based on is goal modeling
methodology, two models are available Strategic
Dependency and Strategic Rationale. We first need to
specify who are the main actors and their goals (Listing 1).

<PetShopInte

ntion>
<goals>

<actor id="PetShop"/>
<actor id="Product
manager"/> <actor

id="Cart"/>
<actor id="Account
controller"/> <actor
id="Billing provider"/>
<actor id="Shipment
provider"/> <actor
id="Order manager"/>
<actor id="Cart
controller"/>

Listing 1: representation of actors using intention
modeling

Goals and soft-goals are of multi abstraction levels
starting from strategic, core and operational, strategic
goals are represented in two models, strategic dependency
and strategic rationale. In our PetShop scenario, “Consult
Catalogue” is a strategic goal for actor “Customer”. Since
intentions identify locality attributions of actors for the
specification of their instant behavioral needs, in cloud
environment the effort behind using intention modeling is
to identify actor’s needs. Hence in order to share the
semantic description of actor requirements, an exposition
of these requirements to Neptune would harness more
cloud service providers to be linked through interfaces
through dependencies as actors in strategic dependency
model. As seen in (Listing 2) alternative optional
intentions can be presented by an actor to support
progression of a strategic goal i.e. “Consult Catalogue”; a
formal way of presenting goal decomposition into goals
and sub-goals.

<goal id="See pet details" mode=”achieve”>

<supporting actor="PetShop"/>
<contribute goal="Consult
catalogue"/> <contribute
goal="Order pets"/>

</goal>
<goal id="See pet by search"

mode=”achieve”> <supporting
actor="Product manager"/>
<contribute goal="Consult
catalogue"/> <contribute goal="Order
pets"/>

</goal>
<goal id="See pet by category"

mode=”achieve”> <supporting
actor="Product manager"/> <contribute
goal="Consult catalogue"/> <contribute
goal="Order pets"/>

</goal>

Listing 2: Goal decomposition using intention modelling

The process model is annotated with intentional goals and
their attributes; this differentiates between actor
intentional goals and strategic ones (Listing 3). Actions
which entail tasks also have contribution relationship
through annotations as in (Listing 2), so each action in the
process flow is linked accordingly to a core goal, this
relationship is been presented as semi-formal specification
often include keyword, like Achieve, Maintain and Avoid
verbs in KAOS [09].

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 78

<process id="1" text="Consult catalogue"
type="activity"> <strategic goal="Consult
catalogue"/> <startpoint id="Start point">

<moveto>Choose way of
consulting</moveto> </startpoint>
<action id="Choose way of

consulting"> <contribute
goal="See pet details"/>
<input type="text">

<message><![CDATA[index.aspx]]></mess
age> </input>
<moveto result="search">See pet by

search</moveto> <moveto
result="category">See pet by

category</m
oveto>
</action>
<action id ="See pet by search">

<contribute goal="See pet by
search"/> <input type="text">

<message><![CDATA[0]]></me
ssage> </input>

<moveto>Search</moveto>
</action>
Listing 3: Goal annotation over process model

Tasks will be called through actions in the flow model
using ask construct, here a specification of the required
operation to be taken and Neptune function which support
it. Support for task decomposition will be specified at
Neptune function. The process model contains flow of
actions that should be executed respectively and controlled
with control model, the same representation can be
accomplished through goal decomposition model as
strategic goals are decomposed into goals and sub-goals,
these in turn represent intentions in the intention model
while operationalization of goals occurs at task level, the
task decomposition into sub-tasks with “AND”
relationship can represent actions in process flow model,
when the final state of goal can be set to achieved only
when all tasks and sub-tasks are set to completed. The
“AND” and “OR” relationships can be represented
through control model in the process flow.

<ask id="Search"
NeptuneFunction="search">
<contribute goal="See pet by
search"/> <input type="text">

<message><![CDATA[0]]></me
ssage> </input>
<moveto>Show search

results</moveto> </ask>

Listing 4: Support for Neptune Function

Intention model provides a dynamic interface to write
functional support for tasks that Neptune should executed
at runtime (Listing 4), through this support we may call
Neptune function at any point during the flow model
execution, as there are number of tasks should be executed
within each intention. By accomplishment of these tasks,
the state of intention is said to achieved, once intention
model is interpreted to generate valid abstract process and
control model, these will be used by Semantic Linker to
generate BPEL like orchestration model. During this stage

Neptune will use task function to discover software
services – including services, and software components –
ontological and WSDL definition that will associate each
task with required services (endpoints) that can be invoked
to perform that task. Composer then composes those
services and components together to produce a new
functionality. The produced composition will be sent
respectively to the Execution Engine (e.g. BPEL engine)
(Figure 5).

Figure 5: Goal modeling support for Neptune

As the major design objective of Neptune is its capability
to generate runtime flexibility. As such, determined
whether an adaptation established at runtime or at design
time is intrinsically simple; if no re-deployment and re-
compilation of the application happened in a customary
design sense, as a result the edition are able to be
recognized to be made at runtime. The procedure of
performing an search inside the PetShop is split among the
logic layer as well as the presentation layer. Data is
recovered to notify the procedure by means of discrete
web pages, like that SeePetsDetails.aspx holds the trigger
code that moves the procedure towards one more task.
User has two subordinate intentional goals when trying to
achieve See pet detail goal, either he performs a task
which supports quick access to specific product details or
to choose to browse products by category. By
decomposing these intentions into process of activities a
system modeled by interpreting intention model needs to
identify relevant tasks needed to satisfy these intentions,
thus by writing required support for Neptune function is
expected to trigger compilation of Neptune Base

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 79

Language Objects (NBLO’s), which will be used by
Semantic Linker to link required components to the
system.

1. WRITING NEPTUNE SUPPORT

Neptune provides the system-to-be as a new actor to
dependency model, at this stage Neptune starts to model
late requirements by building same dependency and
rationale models for system layers and components, here
in our case presentation layer as a depender delegates
accomplishment of actor task of viewing Pet details to
logic layer, then logic layer provides reasoning to save and
pull resource data from data layer. The running of the
procedure passes to the logic layer to understand the data,
as well as to store it in database. Once stored, the logic
moves the running to create another page intended for the
user. Similarly, the classes inside the logic layer are able
to be said to modify the state of the procedure through
demonstrating that a task is complete, as well as that data
is incorporate to the data layer structures, as these are the
disadvantages of its actuation. Likewise pages inside the
presentation layer are able to be said to initiate data to the
state of procedure, plus indicate that the task of generating
data is complete. Through these means, characterized
intentional elements of goals which gain achieve modality
exhibit new state for goal fulfillment.

Figure 6: Display Pet Details Process

(Listing 5) demonstrates the explanation of search
components inside the logic layer as well as the
presentation layer. In this means the nbloSearchPets
describes the method getSearchResults within the
presentation layer as adding the features PetName,
PetDesc and PetLocation to the sessionID element within
the state of the process. Similarly, the
nbloDisplaySearchResults adds the feature

DisplaySearchResults to an constituent Database to
explain the reality that operationally. Values are placed
intended for the characteristics through way of the return
value of the fundamental parts. By itself, PetLocation will
take the value of the return the characteristic PetLocation
of the object returned through the technique
getSearchResults. Other values are able to be specified
through the as operator in Neptune, like that the values of
the return type are able to be reflected.

define nbloSearchPets with
NString sessionID
{purpose

{
feature PetName to
sessionID ; feature
PetDesc to sessionID;
feature PetLocation
to sessionID;

}
actuation
{
// call the presentation
layer call

BaseLanguage.Csharp(”searchPL.dll”, ”get
SearchResults”, sessionID,sync);

}}
// logic layer component

define nbloSearchPetByKeyword with
NString sessionID {purpose

{
feature sessionID.Searching to Database ;

}
actuation

{
// call the logic layer

call
BaseLanguage.Csharp(”search
LL.dll”, ”processSearchPets
”,sessionID,sync);

}}

Listing 5: NBLO definition of logic and
presentation components.

The procedure itself is able to be declared as act from
discrete jobs that each necessitates particular information
to be accessible inside the state of the procedure. The
development model employed inside the PetShop to
execute a “See Pet Details” is presented in figure 6. As
every stage in the procedure has a associated class, it is
able to be said, for instance, that previous to entering the
job designated for taking pet details from the products,
data have to first be accessible. In this means, axiomatic
semantics intended for the tasks are able to be placed
foundational on information necessary through the task.
Likewise, the job itself necessitates information to be
incorporated to the state after its completion, like for the
class SearchPets the data relating to show particulars of
the pets are the job performed through that part of the
procedure.

The subsequent (Listing 6) demonstrates the procedure
“See Pet Details”, that necessitates that search data should
be accessible in the state element sessionID, as well as that

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 80

this should be put aside to the database, or rather
Database.Searching should be accessible on known
searched keyword.
task SearchPets with NString sessionID
// Presenting system as an actor for late
requirements {actor PetShop}{mode achieve}
//GORE
requirements
{requirements
{

//resource requirements
needPetName:require
sessionID.PetName;
needPetDesc:require
sessionID.PetDesc;
needPetLocation:require
sessionID.PetLocation; //task
requirements

queried:require Database.Searching(sessionID) ;
}
}

Listing 6: Task Definition for Pets Searching.

The semantic linking module, when outlines by means of
task description, are able to then position the NBLO that
are able to offer the data necessary to be completed
through the job (Listing 7), offering a level of autonomy
among processes description as well as the logic plus
presentation layers of the systems. As both processes are
synchronous, the running of the actions will establish in
sequence, permitting the data to be located, as well as
incorporated to the database.

task SearchPets with NString sessionID
// Presenting system as an actor for late
requirements {actor PetShop}{mode achieve}
//GORE
requirements
{requirements

{
//need resources for Means-Ends
needPetName:require
sessionID.PetName;
needPetDesc:require
sessionID.PetDesc;
needPetLocation:require
sessionID.PetLocation; //need
task

queried:require Database.Searching(sessionID) ;
}
//as processed by the semantic
linker actions
{

needPetName,needPetDesc,needPetLocation via
nbloSearchPets; queried via
nbloSearchPetByKeyword;

}
}

Listing 7: Task Definition for Shipping

5. CONCLUSIONS

Intention modelling and Neptune opened new visions over
how to expose language semantics over the cloud, this in
turn showed extraordinary potential for adding goal
modeling and goal requirement engineering through
composition of multi actor agency partnering in a socio

economical model. It is however still essential to add
support for assurance and verification of transitional
change of actors goals at runtime and how to operate in
competitive market, this will surely reflect more
complexity while keeping best value proposition during
goal refinery process. Future work will cover assisting
cloud features for multi-tenancy, quality assurance
through runtime verification of non-functional system
requirements linked to softgoals, thus how to maintain
system steady-state over large scaled user demand-ship. It
is foreseeable for example, to dynamically build on-
demand venturing partnership as dependency models
through call of agency NBLO’s at actor level rather than
task level. As is obvious in this paper though, intention
modeling has demonstrated promise in realistic
application intended for offering autonomous behavior
bounded through behavioral as well as architectural issues
of how to build dynamic composite service based cloud
application.

REFERENCES
[1]. Dustin Amrhein, Scott Quint (2009), Cloud computing for

the enterprise: Part 1: Capturing the cloud, Understanding
cloud computing and related technologies, Retrieved March
28, 2012, from
http://www.ibm.com/developerworks/websphere/techjourna
l/0904_amrhein/0904_amrhein.html

[2]. Priyanka R. Nayak, “A Seminar Report on Cloud
computing”, p5, (2009-2010)

[3]. Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng
Zhang, Anand Ghalsasi (2011), “Cloud computing — The
business perspective”, Decision Support Systems, Volume
51, Issue 1, April 2011, Pages 176-189,
http://www.sciencedirect.com/science/article/pii/S01679236
10002393

[4]. T. Baker, A. Taleb-Bendiab, M. Randles, Y. Karam (2010),
“Support for Adaptive Cloud-Based Applications via
Intention modelling”, School of Computing and
Mathematical Sciences, WSS ’10: Proceedings to 3rd Intl,
Symposium on Web Services at Zayed University, pp 1-6

[5]. Philip, M., Talebbendiab A., “CA-SPA: Balancing the
Crosscutting Concerns of Governance and Autonomy in
Trusted Software”, Proceedings of the 20th International
Conference on Advanced Information Networking and
Applications - Volume 2 (AINA’06) (Washington, USA),
IEEE Computer Society, pp. 471–475, (2006).

[6]. Winikoff, M, Padgham, L, Harland, J and Thangarajah, J
2002, 'Declarative and procedural goals in intelligent agent
systems', in Proceedings of the 8th International Conference
on Principles of Knowledge Representation and Reasoning,
Toulouse, France, 22-25 April 2005.

[7]. Jordi Cabot and Eric Yu (2008), “Improving Requirements
Specifications in Model-Driven Development Processes”,
First International Workshopon Challenges in Model Driven
Software Engineering, http://ssel.vub.ac.be/ChaMDE08

[8]. Sayed G. Tabatabaei, Wan M. Kadir, Suhaimi I. (2008),
“Web Service Composition Approaches to Support
Dynamic E-Business Systems”, V 2, no 16,
Communications of the IBIMA, 2008, pp 115-121

http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html
http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html
http://www.sciencedirect.com/science/article/pii/S0167923610002393
http://www.sciencedirect.com/science/article/pii/S0167923610002393
http://ssel.vub.ac.be/ChaMDE08

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013 81

[9]. Axel van Lamsweerde (2001), “Goal-Oriented
Requirements Engineering: A Guided Tour”, Proceedings
of the 5th IEEE International Symposium on Requirements
Engineering, p.249, August 27-31, 2001

[10]. Michael Armbrust, Armando Fox, Rean Griffith, Anthony
D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee,
David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. (2010), “A view of cloud computing”, Commun.
ACM 53, 4 (April 2010), 50-58,
http://doi.acm.org/10.1145/1721654.1721672

http://doi.acm.org/10.1145/1721654.1721672

