
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

100

Manuscript received April 5, 2013
Manuscript revised April 20, 2013

Defending DDoS Attack using Stochastic Model based Puzzle
Controller

Santhosh K M† and Elizabeth Isaac††,

M Tech in Information System Security, IGNOU, India

Summary
Distributed denial of service (DDoS) attack aimed at network is
some sort of malicious activity or unusual behavior, which
compromise the availability of the server’s resources and
prevents the legitimate users from using the service. In this paper
a preventive mechanism using stochastic model based puzzle
controller, to eliminate the possibility of DDoS attack is
proposed. A behavior matrix is defined to record the behavior of
users in terms of number of requests sent. A puzzle controller
based on stochastic model is used to analyze the behavior matrix
and compute covariance matrix. The entropy computed from the
covariance matrix is compared against the threshold to detect
DDoS attack. To defend against DDoS attack, allocate resources
only to those clients who solve the puzzle with difficulty level
determined based on entropy value.
Key words:
DDoS, stochastic model, entropy, puzzle.

1. Introduction

DDoS attacks [3, 4] are DoS attacks that come
simultaneously from many hosts from all over the net. DoS
attacks attempt to exhaust the victim's resources. To launch
a DDoS attack, malicious users first build a network of
computers that they will use to produce the volume of
traffic needed to deny services to computer users. To
create this attack network, attackers discover vulnerable
sites or hosts on the network. Vulnerable hosts are usually
those that are either running no antivirus software or out-
of-date antivirus software, or those that have not been
properly patched. Vulnerable hosts are then exploited by
attackers who use their vulnerability to gain access to these
hosts. The next step for the intruder is to install slave
processes in compromised hosts that allow the attacker to
remotely direct the hosts to attack a target. The hosts that
are running these attack tools are known as zombies, and
they can carry out any attack under the control of the
attacker. The attacker installs a master program somewhere
on the Internet. Master has a list of all the locations of the
zombies. Master waits for instructions. When it is time to
strike, the attacker sends a message to the master
indicating the target address. The master then sends a
message to each of the zombies with the target address. At
once, the zombies flood the target with enough traffic to

overwhelm it. The traffic from zombies can be sent with
spoofed IP source address to make it difficult to trace the
actual source.

DDoS be carried at network level which attempts to
exhaust network resources. Typical examples are Ping of
Death, Smurf Attack etc. In transport layer attacker
uses TCP SYN attacks, UDP flooding etc. In application
layer attackers use HTTP flooding to overwhelm the
server. Popular DDoS tools are Tribe Flood Network
(TFN), TFN2K, and Trinoo that generate flooding attacks
using a combination of TCP, UDP, and ICMP packets [5].

In Ping of Death attacks, the attacker creates a packet that
contains more than 65,536 bytes, which is the maximum IP
packet length that the IP protocol defines. This packet can
cause different kinds of damage to the machine that
receives it, such as crashing and rebooting.
The Smurf IP Attack is named after an application that lets
the attacker carry out the attack. In a "smurf" attack, the
victim is flooded with Internet Control Message Protocol
(ICMP) "echo-reply" packets. The attacker sends
numerous ICMP "echo-request" packets to the broadcast
address of many subnets. These packets contain the
victim's address as the source IP address. Because the ping
was sent to a broadcast address, it was received by all
other computers on the subnet. They read the source IP
address, belonging to the victim, and all of them send
ICMP "echo-reply" packets to the victim, overwhelming it
with replies. Smurf attacks are very dangerous, because
they are strongly distributed attacks.

In a TCP SYN attack, the attacker takes the benefit of
vulnerability in TCP/IP implementation. A SYN flood
attack occurs during the three-way handshake. In the three-
way handshake, a client requests for connection by sending
a TCP SYN packet to a server. Then the server sends a
SYN/ACK packet back to the client and places the
connection request in a queue. Finally, the client
acknowledges the SYN/ACK packet. If an attack occurs,
however, the attacker sends an abundance of TCP SYN
packets to the victim, obliging it both to open a lot of TCP
connections and to respond to them. Then the attacker does
not execute the third step of the three-way handshake that

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

101

follows, rendering the victim unable to accept any new
incoming connections, because its queue is full of half-
open TCP connections.

Another type of Denial of Service attack at the transport
layer is the UDP Flood attack which floods the victim with
continuous stream of UDP packets. The attacker fires UDP
packets at the victim, attempting to overload a service that
is listening for UDP packets.

DDoS defense mechanisms are generally classified as
preventive mechanisms and reactive Mechanisms.

The preventive mechanisms try to eliminate the chance of
DDoS attacks altogether or to enable potential victims to
endure the attack and to continue the services to legitimate
clients. Examples of system security mechanisms include
monitoring access to the computer and applications, and
installing security patches, firewall systems, virus scanners,
and intrusion detection systems automatically. At the
network level, implementing ingress and egress filtering to
prevent packets with bogus source addresses from leaving
the local network can prevent local machines from
participating in DDoS attacks. One method of DDoS
prevention is to increase the privileges of users according
to their behavior. It tries to verify users' identities so that
no threat exists. Another method involves increasing the
effective resources to such a degree that DDoS effects are
limited, which is costlier and practically impossible.

The reactive mechanisms try to detect the attack and
respond to it immediately. Hence, they restrict the impact
of the attack on the victim. Again, there is the danger of
characterizing a legitimate connection as an attack. For
that reason it is necessary for researchers to be very careful.
Reactive mechanisms respond to attack after detecting it
which may help to reduce the impact of the attack. Some
mechanisms react by limiting the accepted traffic rate. This
means that legitimate traffic is also blocked. In some cases,
techniques try to identify the attacker. If attackers are
identified, despite their efforts to spoof their address, then
it is easy to filter their traffic. Filtering is efficient only if
attackers' detection is correct.

Development of detection and defending tools is very
complicated. Designers must think in advance of every
possible situation because every weakness can be exploited.
One of the difficulties is DDoS attacks flood victims with
packets. This means that victims cannot contact anyone
else in order to ask for help. Secondly any attempt of
filtering the incoming flow means that legitimate traffic
will also be rejected. Third difficulty is Attack packets
usually have spoofed IP addresses and so it is more
difficult to trace back to their source. Last difficulty is

Defense mechanisms are applied in systems with
differences in software and architecture and hence
developers must design a platform independent of all these
parameters.

In this paper we propose stochastic model based puzzle
controller, a preventive mechanism which concentrates on
user behavior. A behavior matrix prepared is used to
compute covariance matrix and entropy. Entropy is
compared with threshold value to predict the possibility of
DDoS attack. The client which solves the puzzle with
difficulty level determined by entropy value will be
allocated resources.

This paper is organized as follows: Section 2 deals with the
related work and Section 3 and 4 deals with DDoS
detection and DDoS prevention using puzzle controller.
Section 5 deals with results and analysis. Section 6
contains the conclusion.

2. RELATED WORK

In our literature survey, we note that DDoS defense
mechanisms are generally classified as preventive
mechanisms and reactive Mechanisms. Here we explain
two preventive mechanisms- Defending against denial-of-
service attacks with puzzle auctions puzzle auction [1]
and a puzzle-based defense strategy against flooding
attacks using game theory [7]. We will also present a
monitoring scheme [2].

Client puzzles helps in defending against DoS attacks. In
this approach each client has to solve a cryptographic
puzzle for each service request before the server allocates
its resources so that it outs a large computational task on
adversaries. But, this approach was not used much in
practice because of at least two reasons. First, puzzles add
to legitimate clients load and in the presence of adversaries
with unknown computing power, it may be difficult to
approximately tune puzzle difficulty to minimize client
cost. Second, very few implementations of client puzzles
are available. Xiaofeng Wang; Reiter, M.K. [1] proposed a
puzzle mechanism to defend against DoS attack, called
puzzle auction. Here each client determined the difficulty
of the puzzle it solves and allocates server resources to the
client which solved the difficult puzzle first when the
server is busy. It gives each client the flexibility to choose
service priority against its valuation, i.e., computation paid
for the service. They also designed a bidding strategy for
clients to increment puzzle difficulty, i.e., bid, gradually
via retransmission to just above adversaries capabilities.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

102

 Here [1] TCP puzzle auction works as follows. Client first
sends a request (SYN packet) to the server without a
puzzle solution. After receiving the packet, the server first
checks the puzzle difficulty to determine the priority of the
request and then adds the request to half open queue if the
buffer queue is not full, else the server drops the request
with lowest priority and sends back reset packet(RST
packet) with server nonce generated according to client’s
IP address. The receiver of the RST packet uses server
nonce to increase its bid (puzzle difficulty). It computes a
puzzle and retransmits a new SYN with puzzle solution. If
the server again rejects the request, the client will further
increase its bid and retransmits again. This process will be
continued till either server accepts the request (server
sends back SYN-ACK packet) or maximum number of
retransmissions set by the protocol exceeds.

Mehran S. Fallah in his paper [6] utilizes game theory to
propose a number of puzzle-based defenses against
flooding attacks. Preventive mechanisms against flooding
attacks can be effectively studied through game theory.
This is mainly owing to the several trade-offs existing in a
flooding attack defense scenario. For an attacker, there is a
trade-off between the severity of his attack and the amount
of resources he uses to do so; the more damage an attacker
intends to cause, the more amounts of resources he should
spend. For a defender, on the other hand, there is a trade-
off between the effectiveness of his defense and the quality
of service he provides for legitimate users; the more
difficult it becomes to exhaust the defender’s resources, the
more workload, and hence, less quality of service is
imposed on legitimate users. A trade-off also exists
between the effectiveness of the defense and the amounts
of resources a defender expends. Here it is shown that the
interactions between an attacker who perpetrates a
flooding attack and a defender who counters the attack
using a puzzle-based defense can be modeled as a two-
player infinitely repeated game with discounting. Then, the
solution concepts of this type of games are deployed to
find the solutions, i.e., the best strategy a rational defender
can adopt in the face of a rational attacker.

Like many puzzle-based defenses, [6] is also based on an
assumption that the defender is at least capable of sending
reply messages to the origins of incoming requests. This
seemingly restricts the applicability of the proposed
mechanisms in the case of bandwidth exhaustion attacks in
which the attacker sends a huge number of service requests
to deplete the victim’s bandwidth. However, it can be
envisioned that by coordinating multiple routers installed
with the defense mechanisms proposed in this paper, one
can restrain the attack flows before they converge to the
victim. Nevertheless, the game-theoretic approach
employed in the current paper is not sufficient for handling

such a case. Another assumption made in this paper [6] is
the complete rationality of the players. Evidently, the
defense strategies proposed in this paper may not be
optimal if the attacker has a bounded level of rationality. In
other words, the defender can gain payoffs better than the
ones attainable by the mechanisms of this paper when his
opponent is not completely rational.

In paper [2] a scheme based on document popularity is
introduced. An Access Matrix is defined to capture the
spatial-temporal patterns of a normal flash crowd.
Principal component analysis and independent component
analysis are applied to abstract the multidimensional
Access Matrix. A novel anomaly detector based on hidden
semi-Markov model is proposed to describe the dynamics
of Access Matrix and to detect the attacks. The entropy of
document popularity fitting to the model is used to detect
the potential application-layer DDoS attacks.

3. DDoS DETECTION

In this paper, we propose a stochastic model based puzzle
controller to prevent DDoS attack. User behavior is
analyzed to detect the anomaly. User behavior is
represented by the number of requests to access server
resources, particularly the web pages. A behavior matrix of
order NxT is computed. Here N is the total number of
resources and T is the number of time units considered.
Each entry in the matrix is denoted by bit and it is defined
as given below.

[] []

1

, 1, , 1,it
it N

it
i

rb i N t T
r

=

= ∈ ∈

∑
 (1)

Here bit is the behavior rate of ith resource at tth time unit,
rit is the request number of ith resource at tth time unit. Now
Behavior matrix BNxT is constructed as follows:

[]

11 12 1

21 22 2
1 2

1 2

T

T
N T T

N N NT

b b b
b b b

B b b b

b b b

×

 
 
 = =
 
 
 






   



Here 1b , 2b , , Tb are defined as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

103

1 2

11 12 1

21 22 2
1 2, ,

N N NT

T

T
T

b b b
b b b

b b b

b b b

     
     
     = = =
     
     
     

  

Next we need to compute a covariance matrix which is
necessary to fully describe the variation in a distribution.
The expected value or mean is defined as follows:

1

1[]
N

i i ji
j

E b b
N

µ
=

= = ∑ (2)

[]iE b or iµ is expected value of ith resources. Using this
value, covariance matrix CNxT can be constructed. Each
element of the matrix is a variance represented by Cij. In
one dimensional array, the variance 2σ is

2 2var() [()]b E bσ µ= = − (3)

In more than one dimension, covariance matrix is

 [()()]TC E b bµ µ= − − (4)

Its entries are the individual covariance and are defined as
follows:

[()()]T
ij ij i ij iC E b bµ µ= − − (5)

CNxT is constructed as follows:

11 1 1 1 1

2 2 1 1 2 2

11

[()()] [()()]

[()()] [()()]

[()()] [()()]

T T

T T

T T T T T T

T T

T T

N T

T T

E b b E b b

E b b E b b
C

E b b E b b

µ µ µ µ

µ µ µ µ

µ µ µ µ

×

− − − −

− − − −
=

− − − −

 
 
 
 
  





  



According to information theory, the information entropy
is a measure of randomness and uncertainty associated
with a random variable. It measures the average
information contained in a piece of data. The information
entropy (En) of our observations can be calculated from
covariance matrix (CNxT) as follows:

 ()
1 1

1 log
N T

i j
En Cij Cij

N = =

= − ∑∑ (6)

Threshold entropy (En threshold) is determined based on
entropy distribution. Here we can also consider entropies
at the time when DDoS attack (if any) occurred in the past.
Now this system can be used to detect anomaly by
comparing current entropy with threshold entropy.

4. DDoS PREVENTION WITH PUZZLE
CONTROLLER

Here we present the structure of our proposed puzzle
controller to prevent DDoS attack. We assume that as the
difficulty level of the puzzle to be solved increases, the
attacker gives up his attempt to access the service. Only the
legitimate user will continue to solve the difficult puzzle
and will succeed if he solves it successfully within the
required time.

Fig. 1. Puzzle Controller

 Sever Side Puzzle Controller

Allocate resources Access Service

Check
whether timer

expires

Check for
correctness of
puzzle
solution

Compute puzzle solution

Behavior matrix computed

Covariance matrix computed

Entropy is calculated

Check
whether
entropy
exceeds

Select puzzle with difficulty
level

Client requests for service

 Client Side

DDoS
Attack

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

104

The structure of puzzle controller (PC) is given in Fig.1.
As the first step, client sends his request to server to access
the service. Puzzle controller on server computes a
behavior matrix to analyze the activity of users. Each entry
in this matrix is a measure of average number of requests
for a service at a given instance of time.

A covariance matrix is computed from the behavior matrix
as described in section 3. Each entry in this matrix
describes variation in distribution of user behavior. Next
step is the calculation of entropy which is a measure of
average behavior of users at a given instant of time.

The entropy calculated is compared with a threshold value
to detect the possibility of DDoS attack. Threshold value is
determined based of entropy distribution and previous
values of entropy at which attacks occurred in the past. If
the calculated value of entropy is grater than or equal to
threshold value, then DDoS attack occurs.

In our proposed system, we implement a method to
prevention DDoS attack. Here each client has to solve a
puzzle with a required difficulty level. PC determines the
difficulty of the puzzle to be solved by the client so as to
access the server service or resource. The difficulty level is
defined as follows:

 Puzzledifficulty Level = En ? N + t (7)

Here En is entropy at current time unit t and N is the total
number of resources. PC selects a puzzle with difficulty
level determined using above equation and is sent to the
client which requests for the service. As the value of
entropy tends to close to threshold value, the level of
puzzle difficulty also increases to maximum. To defend
against DDoS attack, resources will be allocated only to
those clients who solve the puzzle successfully within the
required time.

Puzzle controller selects a puzzle with the required
difficulty level dynamically and is sent to client. Client
solves the puzzle within the required time and sends the
solution to server. The difficulty level is higher on
adversary condition and client has to spend more time and
resources to solve the puzzle. We assume that only
legitimate user spends to solve puzzle and the attacker
gives up his attempt.

The puzzle controller checks for the time taken for solving
the puzzle and solution. If both condition satisfied, server
allocates the resources to the client.

5. RESULT AND ANALYSIS

In this section we present result and analysis of our
implementation. We simulate the proposed puzzle controller in
NS2.

Fig. 2. Entropy Vs time Graph during DDoS Attack

A graph obtained during DDoS attack for the system under
experiment is shown in Fig.2. It is the graph obtained when
puzzle controller not implanted in the system. Here we
noticed that when the system reaches the entropy value
0.75, the system is overwhelmed and further service is
denied for the client. The system reaches this threshold
entropy during fourth time unit under consideration.

Fig. 3. Entropy Vs time Graph using puzzle controller

Fig.3. shows the graph obtained when puzzle controller is
implemented in the system. Here we continuously monitor the
system to prevent possibility of DDoS attack. We set the
threshold value as 0.75 which is entropy of the system for which
DDoS attack is detected with no puzzle controller. When client
requests for service, difficulty level of puzzle is calculated based
on entropy value and puzzle is selected dynamically. Under our

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.4, April 2013

105

assumption that as the difficulty level increases the attacker gives
up his attempt, we were able to maintain peak entropy between
0.62 and 0.68. With strict monitoring and puzzle at required
difficulty level with quality, entropy can never reach a value
which is closer to threshold value. Thus we can detect possibility
of DDoS attack very early and prevent the attack.

6. CONCLUSION
Seven/twenty-four (7 × 24) operations have become the
norm in many of today’s businesses and systems must be
continuously online. If an outage occurs, the company
stands to lose tens of thousands of dollars an hour. In
today’s gloomy economy, stockholders don’t want to hear
that their favorite investment is having system availability
problems. So it is the primary responsibility of all
concerned to make the system available and hence the
resources and services to all the legitimate users. An
attacker can make all resources unavailable by initiating a
DDoS attack. So we need to detect the possibility of such
attack and it is required to prevent the same.
In this paper we proposed a method to detect and prevent
the DDoS attack. Our system is a stochastic model based
puzzle controller. It forces each user to solve a puzzle of
required difficulty level determined based on entropy. A
legitimate user spends time and other resources to solve
the puzzle correctly and gets the service. Our simulation
results show that it is effective mechanism in preventing
the DDoS attacks.

REFERENCES
[1] Xiaofeng Wang, Michael K. Reiter, “Defending against

denial-of-service attacks with puzzle auctions”, Symposium
on Security and Privacy, 2003.

[2] Yi Xie, Shun-Zheng Yu, “Monitoring the Application-Layer
DDoS Attacks for Popular Websites “, IEEE/ACM
Transactions on Networking Vol 17 No 1, Feb. 2009, pp.
15-25.

[3] Charalampos Patrikakis, Michalis Masikos, and Olga
Zouraraki , “Distributed Denial of Service Attacks “ The
Internet Protocol Journal - Volume 7, Number 4

[4] T. Peng, C. Leckie, and K. Ramamohanarao, "Detecting
Distributed Denial of Service Attacks Using Source IP
Address Monitoring," The University of Melbourne,
Australia, 2003.

[5] Alefiya Hussain, John Heidemann, and Christos
Papadopoulo, "A Framework for Classifying Denial of
Service Attacks," 25 February 2003.

[6] Mehran S. Fallah, “a puzzle-based defense strategy against
flooding attacks using game theory” IEEE
TRANSACTIONS on dependable and secure computing,
vol. 7, no. 1, January-March 2010

[7] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari,
Darrell Kindred, ” Statistical Approaches to DDoS Attack
Detection and Response” Proceedings of the DARPA
Information Survivability Conference and Exposition
(DISCEX’03)

[8] N. Jeyanthi1, N.Ch. Sriman, Narayana Iyengar”MAC Based
Routing Table Approach to Detect and Prevent DDoS
Attacks and Flash Crowds in VoIP Networks”
CYBERNETICS AND INFORMATION TECHNOLOGIES
-Volume 11, No 4

[9] Yuexiang Yang, Hailong Wang and Xicheng Lu, Entropy-
“Based Classification of Large-Scale Network Traffic
Anomalies”, ComputerEngineering & Science,
Vol.29 ,No.2 ,2007, 40-43

[10] Akoi M., “Optimization of Stochastic Systems-Topics in
Discrete-Time Systems”, Academic Press, New York, 1967

[11] Hiromitsu Hama, Pyke Tin, Thi Thi Zin and Takashi
Toriu, ” A Stochastic Model for Popularity Measures in
Web Dynamics” , IEEE Sixth International Conference on
Intelligent Information Hiding and Multimedia Signal
Processing,2010

[12] Shuyuan Jin, Daniel S. Yeung, “A Covariance Analysis
Model for DDoS Attack Detection” IEEE Communications
Society, 2004

[13] S. Noh, C. Lee, K. Choi, and G. Jung, “Detecting
Distributed Denial of Service (DDoS) attacks through
inductive learning,” Lecture Notesin Computer Science, vol.
2690, pp. 286–295, 2003.

[14] W. Yen and M.-F. Lee, “Defending application DDoS with
constraint random request attacks,” in Proc. Asia-Pacific
Conf. Commun., Perth, Western Australia, Oct. 3–5, 2005,
pp. 620–624.

[15] J. J. Yuan and K. Mills, “Monitoring the macroscopic effect
of DDoS flooding attacks,” IEEE Trans. Dependable and
Secure Computing, vol. 2, no. 4, pp. 324–335, Oct.-Dec.
2005

[16] Yingjie Zhou Guangmin Hu Weisong He, “Using Graph to
Detect Network Traffic Anomaly”, IEEE Communications
Society, 2009

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8543
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yi%20Xie.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Shun-Zheng%20Yu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90

	6. CONCLUSION

