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Summary 
Distributed constraint optimization problems (DCOP) have 
attracted attention as a means of resolving distribution problems 
in multiagent environments. We [1] proposed a multiplex method 
target ing the  improved effic iency of a  d ist r ibu ted 
nondeterministic approximation algorithm for distributed 
constraint optimization problems. The multiplex method 
target ing the  improved effic iency of a  d ist r ibu ted 
nondeterministic approximation algorithm has been proposed for 
distributed constraint optimization problems. Since much of the 
computation time is used to transmit messages, improving 
efficiency using a multiplex computation of distributed 
approximation algorithms might be feasible, presuming that the 
computation time of each node or a small change in message 
length has no direct impact. Although it is usually impossible to 
guarantee that the approximation algorithm can obtain the 
optimal solution, we managed to do so, using a theoretically 
determined multiplex method. In addition, we show the 
feasibility of an optimal solution attainment rate of 0.99 by an 
experiment using a Distributed Stochastic Search Algorithm. 
Key words: 
Distributed Constraint Optimization Problem, Optimal Solution 

1. Introduction 

Distributed Constraint Optimization Problems (DCOP) 
are fundamental frameworks in distributed artificial 
intelligence and have recently attracted considerable 
attention [2, 3]．As for DCOP, Traffic control, Sensor 
Network, Multi-Robot System , Smart Grid, Disaster 
Evacuation Assist, etc. are expected. In the smart grid, 
distributed control of energy is demanded and the problem 
matches the framework of DCOP. Several complete and 
approximation algorithms, [4, 5, 6] and [7, 8] respectively, 
have been proposed as resolutions for DCOP. However, 
when tackling real-world problems, high efficiency 
algorithms are required [9], hence the purpose of this study 
is to increase the efficiency of distributed approximation 
algorithms. Although an approximation algorithm has a 
short computation time, obtaining the optimal solution 
cannot be guaranteed. In this paper, when an 
approximation algorithm is repeatedly performed, the 
probability that the optimal solution will be obtained is 
called the optimal solution attainment rate. This research 
targets an approximation algorithm with an optimal 

solution attainment rate of 0.99. Via the multiplexed 
execution of one kind of distributed approximation 
algorithm, despite the use of an approximation algorithm, 
it is shown that an optimal solution attainment rate can be 
arbitrarily established. 

The next section describes an overview of DCOP. 
Details of the multiplex method for DCOP and the 
potential to establish an optimal solution attainment rate in 
the multiplex method are discussed in Section 3, while in 
Section 4, the verification results of the multiplex method 
through an example problem are described. 

2. Distributed Constraint Optimization 
Problems (DCOP) 

DCOP is defined as follows [6, 4]. A set of variables x1, 
x2,…, xn exists, each of which is assigned a value taken 
from a finite and discrete domain D1, D2, …,  Dn and 
each of which is also assigned to multiple agents a1, a2, …, 
am. Constraints cij: Di × Dj → {true, false} are defined 
between xi and xj and a cost function gij (xi, xj) : Di × Dj 
→ R+ exists for each constraint. The agent ak only has the 
following information: information about xk, which is 
assigned to ak, cij, which is a constraint of xk, and the cost 
function gk* . In this case, the purpose of DCOP is to 
obtain an assignment for variable A that minimizes the 
summation of the cost function G(A) = Σ gij(A) (Variable 
n is handled as n = m here.) 

In DCOP, an assignment Ao that offers the minimum 
G(Ao) amongst all possible assignments A is defined as the 
optimal solution. When an assignment Ap is l = G(Ap) − 
G(Ao), Ap is defined as a solution of distance l from the 
optimal solution in this paper. Distance l is one of the 
measurement bases used to evaluate the quality of the 
solution. In DCOP, agents whose variables are associated 
by constraints solve problems by exchanging values of the 
variable through message transmission. 

Well-known algorithms used to solve DCOP include 
ADOPT [4], DPOP [5], OptAPO [6], and distributed 
stochastic search algorithm (DSA) [8]. 

As for a complete algorithm, an optimal solution is 
guaranteed, despite the extended computing time. When 
using DCOP for real-world problems, particularly when 
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solving problems involving robotics and sensor networks, 
problems must be solved in distributed environments with 
minimal computation resources [10, 8]. To express 
complex issues, many variables are needed. Under such 
circumstances, seeking an optimal solution with a 
complete algorithm is not always the best method, and 
there is a greater need for a fast and efficient 
approximation method. The multiplex method was 
proposed targeting the improved efficiency of a distributed 
non-deterministic approximation algorithm for DCOP[1]. 

Related works such as algorithm portfolios exist [11], 
and a study of the parallel execution of approximation 
algorithms [12] one decade previously showed that not 
only could computation times be reduced but the quality of 
solutions could also be increased. Gomes[13] also showed 
how random restarts can effectively eliminate heavy-tailed 
behavior. Ringwelski[14] proposed a system that 
multiplexes the tree-based algorithm of DisCSP, in order 
to reduce the risk of heuristics selection. However, only 
the effect of the experiment was evaluated, despite 
engaging in theoretical considerations. Compared to these 
existing related works, the effect of multiplexing the 
non-deterministic approximation algorithm of DCOP, has 
the significant feature of being theoretically analyzed 
using extreme value theory. In this paper we theoretically 
show the probability of obtaining an optimal solution that 
can be arbitrarily set according to this multiplex method. 

3. Multiplex Method for Distributed 
Approximation Algorithms 

This section explains the multiplex method of the 
distributed approximation algorithm, and based on the 
following presumption: Multiplexing, in this research, 
means the execution of several searches simultaneously 
without increasing computation resources. As the problem 
was originally distributed for the DCOP, it is calculated by 
distributed agents and the use of the multiplex method 
means each agent’s computation resource need not be 
increased. To avoid confusion with parallel processing, in 
which multiple computation resources are used, the term
“multiplex” is used in this paper. 

The computation time and quality of the solution of 
distributed approximation algorithms are subject to 
variation. 

Most of the computation time in distributed algorithms 
is spent in message transmission[14]. Measures commonly 
used to evaluate distributed algorithms include ideal time 
complexities and communication complexities. Ideal time 
complexities refer to the overall number of message 

rounds, while each agent simultaneously exchanges and 
processes messages until the algorithm stops. 
Presupposing the adoption of this measure, if the number 
of messages remains constant, the processing time at each 
node and a slight increase in the length of each transmitted 
message will not impact significantly on the execution 
time of the distributed algorithm. 

3.1 Multiplexing distributed approximation algorithm  

When the results of trial S conform to some kind of 
probability distribution, if the trial is repeated, and the 
minimum (or maximum) value of the repeated trials is 
selected as trial M, the latter conforms to a probability 
distribution different from trial S. For instance, if the 
scores are pointed to by a roll of the dice, the probability 
distribution becomes 1/6 each of X = {1, 2, 3, 4, 5, 6}, and 
the expected value 

sµ  of 3.5. If a dice is thrown m times, 
or a total of m dice are thrown simultaneously and the 
scores resulting from the minimum value of the dice are 
taken as trial M, the probability distribution will be 
non-uniform, and as the value of m rises, the expected 
value 

mm  will become closer to 1. 
 
1: Algorithm S 
2: while(TerminationConditionIsNotMet)do 
3:   mc := 0; /* Number of Messages */ 
4:   while(mc < #Neighbors) do 
5:     neighborsStatus[mc] := Receive; mc++; 
6:   endwhile 
7:   x := NewValue(neighborsStatus[ ]) 
8:   Send(x) 
9: endwhile 
Figure 1. Simple distributed iterative improvement algorithm S 
 
11: Algorithm Multiplexed-S 
12: while(TerminationConditionIsNotMet)do 
13:   mc := 0; /* Number of Messages */ 
14:   while(mc < #Neighbors) do 
15:     neighborsStatus[mc][ ] := Receive; mc++; 
16:   endwhile 
17:   forall i in m do /* for each plane */ 
18:     x[i] := NewValue(neighborsStatus[ ][i]) 
19:   end 
20:   Send(x[ ]) 
21: endwhile 
Figure 2. Multiplexed distributed iterative improvement algorithm 
Multiplexed-S 
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Figure 3. Concept of the multiplexed algorithm 

 
If this fundamental is applied to distributed 

approximation algorithms, it may help improve their 
efficiency. Namely, if a distributed approximation 
algorithm is executed m times and the maximum or 
minimum value is selected as a result or if the algorithm is 
executed simultaneously in m layers and the maximum or 
minimum value is selected as a result, it may be feasible to 
gain a better computational performance. 
  In this paper, multiplexing the computations and 
messages at each respective node executing the distributed 
algorithm is considered, based on the above presumption, 
without increasing the number of messages. 

Fig. 1 is a simple example of distributed iterative 
improvement approximation algorithm S for DCOP. The 
agent executing this algorithm receives messages from the 
neighbor agents, and after determining its value x, informs 
the latter of this value. The procedure NewValue( ) is 
assumed to include nondeterministic elements. In this 
paper, the ordinary execution of an algorithm is considered 
as a plane. When multiple planes execute the algorithm 
simultaneously, it is defined here as multiplexing. Fig. 2 
shows Multiplexed-S, which multiplexes algorithm S of 
Fig 1. The idea of multiplexing is shown in Fig 3. Agents 
on m planes have independent values x[i] and searches are 
performed independently on each plane when multiplexed, 
and though the length of the message is increased, there is 
no increase in the number of messages because in the 
messages exchanged with neighbor agents, the multiplexed 
value is exchanged in a single message. 

In this paper, the number of planes simultaneously 
executed is defined as multiplicity and expressed as m. 

3.2 Analysis of the Expected Multiplexing Results  

In this section, the analysis result of the effect acquired 
by multiplexing is explained. It is presumed that the 
distance from the optimal solution of the solution of a 
distributed approximation algorithm S follows the 
probability distribution of the distribution function Fs(w) 
and the probability density function fs(w). When algorithm 
S is executed multiply on m-plex planes, the minimum 
value is selected as a result. The execution on m-plex 
planes is presumed to be independent. In this case, the 

probability that the distance from the optimal y can be 
obtained through multiplicity m follows the “minimum 
value distribution” of the original probability distribution 
according to the extreme value theory. 

The probability distribution function Fm(y) and 
probability density function fm(y) are given in the 
following formulas: 
 

m
sm yFyF ))(1(1)( −−=             (1) 

 
)())(1()( 1 yfyFmyf s

m
sm

−−=       (2) 
 

The expected values 
mm  and distribution )(2 mmσ  of 

this probability distribution can be expressed as a function 
of m, but an exact solution becomes very complex. 
Therefore, in general, analyze an extreme value 
distribution of the minimum value, a type-3 asymptomatic 
minimum value distribution is used that assumes the 
existence of a lower limit in the original probability 
distribution. Assuming the lower limit of the original 
probability distribution as 0 (= optimal), if a type-3 
asymptomatic minimum value distribution is used, the 
expected values

mm  appear as follows: 
 

)11()( /1 km
m km +Γ=
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Similarly, the distribution )(2 mmσ  is expressed as follows: 
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Where, Γ( ) is a gamma function, and δ  and k are 
parameters that are dependent on the shape of the original 
probability distribution. If the original expected values of 
the probability distribution are 

sµ , since this is 
sm mm =)1( , 

let us simplify Formula (3) and substitute 1/k for h (h = 
1/k). Then 
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h
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where h is an index of the multiplexing effects, and the 
larger h is, the greater the multiplexing effect obtained. 
From approximation (5), the effects of multiplexing can be 
expressed as m-h, which is the power of multiplicity m, and 
from approximation (6), the distribution can be expressed 
as m-2h. Since the index of the effects of multiplexing h is 
the inverse of k, it will follow on the shape of the original 
probability distribution. 

The Formula (5) shows that the effect acquired by 
multiplexing gradually diminished, even if enlarging 
multiplicity m. 
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Figure 4. The effect of the multiplexed method given binary distribution 

of Fs 
 
As shown in Fig.4, if a certain trial is multiplexed, the 

probability distributions will change. This is the 
probability distribution at the time of multiplexing by m=1, 
2, 5, 30, 200 (m = 1 is the original probability distribution), 
when binomial distribution is assumed to the original 
probability distributions. Thus, distribution is small while 
the mode of probability distributions will move to the left, 
if m is made to increase. The probability distributions after 
multiplexing turn into extremum distribution (Weibull 
distribution) rather than binomial distribution. 

3.3 Optimal solution attainment rate and multiplicity 

When a distributed approximation algorithm is 
performed n times, suppose that it was nopt times the 
number of times that the optimal solution was obtained. At 
this time, Popt = nopt / n is called the optimal solution 
attainment rate of that algorithm. There follows an 
argument concerning the optimal solution attainment rate 
at the time of multiplexed execution of the algorithm. 

In [1], we argued that a near-optimal solution was 
obtained by multiplexed execution of the algorithm. When 
multiplexed execution is performed, the mode of the 
probability distributions of the solution obtained 
diminishes, and likewise the distribution (Fig.4). 
Subsequently, whether the attainment to the optimal 
solution can be guaranteed by raising the degree of 
multiplex is considered. For example, suppose that there is 
a distributed approximation algorithm with a low 
attainment rate of the optimal solution. Can the optimal 
solution certainly be gained by multiplexed execution of 
this algorithm? In this section, the optimal attainment rate 
Psopt of the distributed approximation algorithm before 
multiplexing(m = 1) is assumed to be known. 

The distance from the optimal solution of the solution, 
as calculated by a certain distributed approximation 
algorithm, presumes that it becomes probability 
distributions, with the optimal solution the minimum of 
the latter. When the optimal solution attainment rate 
obtained by performing this distributed algorithm simply 
(m = 1) is Psopt, the optimal solution attainment rate Pmopt 
obtained by multiplexed execution is calculated by the 
following formula: 
 

m
soptmopt PP )1(1 −−=              (7) 

 
By using Formula (7), the required multiplicity m can be 
calculated by establishing a target attainment rate relative 
to the optimal solution. For example, m in the case of an 
optimal solution attainment rate of 0.99, can be calculated 
as follows: 
 

99.0)1(1 ≥−− m
soptP              (8) 

 
By using common logarithms here, the conditions of 
multiplicity m become the following formula: 
 

)1log(
2

soptP
m

−
−

≥                (9) 

 
It considers setting an optimal solution attainment rate 

to 0.99 by the multiplexed execution of the distributed 
approximation algorithm of the optimal solution 
attainment rate 0.2. Since m is an integer, the condition is 
m ≥ 21. Furthermore, the condition is m ≥ 31 to set an 
optimal solution attainment rate to 0.999. A logarithm is 
used to calculate the degree of multiplex, when the 
conditions of the optimal solution attainment rate 0.9 are  
m ≥ m1, the conditions for an optimal solution attainment 
rate of 0.99 are m ≥ 2 m1, and those for an optimal solution 
attainment rate of 0.999 are m ≥ 3 m1. 

Although the optimal solution attainment rate can be 
increased to 0.9999 etc., attainment rate 1 to the optimal 
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solution cannot be guaranteed. However, when raising the 
optimal solution attainment rate (when multiplicity m is 
enlarged), the distribution of the probability distributions 
of the distance from the optimal solution of that originally 
obtained diminishes, hence the distance from the optimal 
solution can become very small. 

The above calculation shows the following, even if it is 
a distributed approximation algorithm with a low optimal 
solution attainment rate, namely that attainment is highly 
likely to be possible for the optimal solution using 
multiplexed execution. Although 0.99 was shown here, 
this rate can be freely established. 

3.4. Selection of efficient multiplicity for calculating 
the optimal solution 

It was shown that an optimal solution attainment rate 
can be established by multiplexed execution of the 
distributed approximation algorithm by the argument in 
the previous paragraph. In this section, the case whereby 
the character of the distributed approximation algorithm 
not featuring multiplexed execution is an anytime 
algorithm[8] is considered. If the following two cases are 
compared, which will be efficient, this will involve the 
case of large multiplicity with a short execution round, and 
that of small multiplicity with a long execution round, 
respectively. 

For distributed approximation algorithms that are not 
multiplexed, according to the computation time, 
monotonically decreasing distance from the optimal 
solution is assumed. Let l be the expected value of the 
distance from the optimal solution, re the number of 
rounds to the end of an algorithm and a and b constants. In 
algorithm DSt, which was used for the experiment in [1], 
these relations have been approximated as in the following 
formula: 
 

b
earl −=                 (10) 

 
When not multiplexing an algorithm, the computation time 
is proportional to re. 

First, we would like to denote the optimal solution 
attainment rate of this algorithm by the function of the 
number of rounds re to a stop. Henceforth, in this section, 
to simplify the model, the weight of violation of 
constraints is considered to be 1. Furthermore, it is 
assumed that the distribution of distance from the optimal 
solution obtained by the distributed approximation 
algorithm, with no multiplexed execution, is binomial. 
Parameters include the number of constraints n, and the 
probability p(re) by which a certain constraint is not 
satisfied (when the number of rounds is re). At this time, 
the expected value can be described as follows as a 
function of re based on the binomial distribution 
definition: 

 
)()( ees rnpr =µ              (11) 

 
Since this decreases by l= are

-b , this can be described by 
the next formula. 
 

b
ee arrnp −=)(               (12) 

thus 
b

ee crrp −=)(                (13) 
 
in which c is taken as a constant. The case where the 
number of violations of constraints in the optimal solution 
is 0 is considered for simplification. The probability of the 
calculated solution being an optimal solution can be 
expressed as a function of the number of rounds re to an 
algorithm stop. 
 

n
eesopt rprP ))(1()( −=                

nb
ecr )1( −−=            (14) 

 
Next, it asks for the minimum multiplicity for the 

optimal solution attainment rate 0.99 to be obtained as a 
function of re. Here, Formula (9) takes an equals sign and 
Formula (14) is substituted, whereupon 

 

))1(1log(
2)( nb

e
e cr

rm −−−
−

=        (15) 

 
By multiplex execution, we assumed that the 

computation time increases m times in the worst case. 
When multiplex execution of the algorithm applies and is 
made to stop at re round, the actual computation time 
becomes the following formula: 
 

mrmT ec ×=)(               (16) 
 

When Formula (15) is substituted here, the computation 
time of the algorithm for multiplexed execution can be 
expressed as a function of the number of rounds re: 
 

))1(1log(
2)( nb

e
eec cr

rrT −−−
−

×=      (17) 

 
An example result of numerical analysis using the 
conditions 0 ≤ cre

-b≤ 1 is shown in Fig. 5. Here, a figure is 
calculated by setting it to c = 2, b = 0.8, n = 20, with re set 
as the horizontal axis and Tc as the vertical axis. The 
parameter set here is one of the examples. As shown in this 
figure, Formula (17) may have a local minimum according 
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to the conditions of the parameter. In other words, as a 
value peculiar to an algorithm, in order to calculate the 
optimal solution, the most efficient re and corresponding 
m will exist. 
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Figure 5. Example of a numerical-analysis result of theoretical 
calculation  
 

There are some important considerations: m calculated 
in this section is a value when observing the optimal 
solution attainment rate, while m calculated in [1] is a 
value for minimizing computation time. Since this m 
changes based on the character of the algorithm, detailed 
analysis is required in future.  

4. Verification by an Experiment to 
Determine the Optimal Solution Attainment 
Rate  

Here, the optimal solution attainment rate by multiplex 
execution of the approximation algorithm for DCOP is 
verified by an experiment. A simple distributed 
approximation algorithm for DCOP is prepared, and an 
investigation performed to determine whether the optimal 
solution attainment rate becomes the theoretical value by 
the multiplexed execution of the same. 

4.1. Experimental conditions 

In this experiment, as performed in the literature [4, 7, 
8], distributed graph coloring problems are solved using a 
simulator, and the results were evaluated using the number 
of rounds in which messages are exchanged (ideal time 
complexity) and the optimal solution attainment rate. A 
distributed constraint satisfaction problem that lacks a 
satisfying assignment must be chosen for the distributed 
graph coloring problem prepared for this experiment, and 
handled as a DCOP by expressing the condition’s 
constraint satisfaction as a cost function of {1,0}. The 
number of agents is 30, the number of constraints is 90, 
and the number of domains is 3, the constraints graph is a 
random graph. 
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Figure 6. The optimal solution attainment rate (in the case of m = 1) 
experimental result of an algorithm DSA-B 
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Figure 7. The degree of minimum multiplex; computed in order to obtain 
an optimal solution attainment rate of 0.99 from an experimental result  
(Fig. 6) 
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Figure 8. The optimal solution attainment rate by multiplex execution 
 

The distributed approximation algorithm DSA-B[8] was 
used for this experiment, the parameter of which was set to 
p = 0.5. In this experiment, since the purpose was to 
measure the effect of multiplex execution, the simulator 
was stopped at an arbitrary time and the solution of the 
plane having acquired the best value was chosen. 
Moreover, results were compared for the case where an 
algorithm was not multiplexed (m = 1), and that where it 
was (m > 1). 
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4.2. Experimental results  

Each of the following experiments involved 1000 
prepared problems each being solved 1000 times, and the 
average of the optimal solution attainment rate being 
investigated. First, the optimal solution attainment rate of 
algorithm DSA without multiplexed execution, equivalent 
to Formula (13), is shown in Fig. 6. 

Based on the result obtained here, the minimum 
multiplicity for obtaining the optimal solution attainment 
rate of 0.99 was calculated, with the result shown in Fig. 7. 
From these figures, the multiplicities for obtaining optimal 
solution attainment rates of 0.99 were respectively set up, 
and the multiplex execution of the algorithm was 
performed. The result is shown in Fig. 8. When it stops at 
100 rounds, the optimal solution attainment rate 0.99 
should be theoretically obtained by m = 25. However, this 
experiment is the average of 1000 problems. Therefore, 
the 1000 results vary and the optimal solution attainment 
rate is lower than the theoretical value. When the 
experiment was performed using one problem, the same 
curve as the theory was obtained as an experimental result. 
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Figure 9. The frequency of the optimal solution attainment rate.  
(random graph m = 1 and m = 20) 
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Figure 10. The frequency of the optimal solution attainment rate. 
(scale-free graph, m = 1 and m = 52) 
 

All experiments involved performing 1000 problems 
1000 times and calculating the average. However, the 

optimal solution attainment rate differs for every problem 
and cannot be determined until we solve it. The optimal 
solution attainment rate to problems of the same class is 
almost the same. Subsequently, we checked the frequency 
distribution of the optimal solution attainment rate in m = 
1 for about 1000 problems used for the experiment and 
similarly checked the frequency distribution of the optimal 
solution attainment rate in m = 20. The frequency 
distribution is shown in Fig. 9. Thus, the problem made 
from the same parameter becomes the distribution of the 
bell curve in m = 1. If the degree of multiplex is increased, 
the frequency distribution will gather near 1.0. 

The constraint graph of the problem used for these 
experiments was a random graph. For comparative 
experiments, we created 1000 problems on a scale free 
graph. The frequency distribution of the optimal solution 
attainment rate of those problems is shown in Fig. 10. The 
curve of the graph showed a tendency similar to Fig. 9. 
Thus, with the creation parameter of the problems, 
although the optimal solution attainment rate differed, 
each had become a bell curve. Therefore, in many cases, 
the optimal solution is obtained by setting up a suitable 
degree of multiplex, presuming an optimal solution 
attainment rate. 

As shown in Fig. 6, within the experimental range, the 
optimal solution attainment rate of algorithm DSA used for 
this experiment was less than 0.25 and remained constant, 
even when the computation time was extended. However, 
optimal solution attainment rates of 0.99 were attained, as 
shown in Fig. 8, as a result of multiplexed execution of the 
algorithm. In other words, the optimal solution can also be 
efficiently obtained by multiplex execution for an 
approximation algorithm with a low optimal solution 
attainment rate. The effect of multiplex execution is 
considerable. 
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Figure 11. Real computation time calculated from the experimental result 
(Figs. 6, 7) 
 

With regard to the theoretical value of multiplicity from 
the experimental result, the result of having applied the 
number of rounds and multiplicity is shown in Fig. 11, 
which is equivalent to the actual measurement of the 
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theoretical-analysis result of Fig. 5. Both Fig. 11 and 5 
include a local minimum. 

5. Considerations 

With regard to the optimal solution attainment rate at 
the time of multiplexed execution of the distributed 
approximation algorithm, a theoretical examination was 
performed in Section 3.3 and experimented in Section 4. 
Consequently, even when a distributed algorithm with a 
low optimal solution attainment rate was used, it was 
shown that an optimal solution attainment rate of 0.99 etc. 
could be realized by multiplexed execution. 

When multiplex execution is carried out, the distribution 
of the distance from the optimal solution diminishes [1]. 
Therefore, even if the optimal solution is not obtained, the 
obtained solution is one in which the distance from the 
optimal solution is negligible. 

The fundamental view of this multiplexing solution is as 
follows: Each plane is searched independently, the search 
is stopped independently, and an optimal solution is 
chosen, which resembles the concept of a genetic 
algorithm. Therefore, this method is considered applicable 
not only for DCOP but also for the distributed search 
algorithm. 

6. Conclusion  

In this study, when the multiplex execution of the 
distributed approximation algorithm for DCOP was carried 
out, it was shown that an optimal solution attainment rate 
could be set. Since a simple algorithm was applied for this 
experiment, further study of a method for the autonomous 
adjustment of multiplicity might improve the effectiveness 
of the solution attainment rate. 
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