
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013

61

Manuscript received May 5, 2013
Manuscript revised May 20, 2013

Telepathic SNP A-Machine

Ammar Adl†
Computer Science Department, Faculty of Computers and Information, Cairo University

Summary
The idea of telepathy has been always tackled as a paranormal
phenomenon, and when some efforts were introduced in pursuit
for explanation, the extended mind notion with morphic fields
appeared, and a tendency for dealing with the matter outside the
physical brain was the case. This paper is an attempt to study
whether it is possible to extract a parallel computational model
from such phenomena, and to propose another perspective
explaining telepathy from inside the brain itself. The use of SNP
Systems principles and their derivatives especially the SNP A-
Machine will be the path to follow. A software was developed to
simulate the environment providing a set of experiments to
induce some factors as a simulation of the process.
Keywords:
SNP Systems, SNP A-Machine, Telepathy, Parallel
Computational Models.

1. Introduction

A Spiking Neural P system is a class of P systems inspired
by the functioning of neural networks, and the ways they
use to exchange signals through their specialized junctions
called chemical synapses. Go to [2] for more details. SNP
System is a construction of a networked membranes
hosting a multi-set of objects and being in a certain state
according to which objects are dealt with. The
communication channels among different cells are
specified in advance and correspond to axons in neural
cells. To consider a spiking neural P system - recalling
from [2] - of degree m ≥ 1, in the form:

Π = (O, σ1, . . . , σm, syn, i0),
Where:

(i).O = {a} is the singleton alphabet (a is called spike);
(ii).σ1, . . . , σm are neurons, of the form
 σi = (ni, Ri), 1 ≤ i ≤ m,
 Where:

a) ni ≥ 0 is the initial number of spikes contained by the
cell;

b) Ri is a finite set of rules of the following two forms:

(i) E/ar → a; t, where E is a regular expression
over O, r ≥ 1, and t ≥ 0;

(ii) as → λ, for some s ≥ 1, with the restriction
that as ∈/ E/ar → a; t of type (1) from Ri;
L(E) for any rule.

(iii). syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) ∈/ syn for
 1 ≤ i ≤ m (synapses among cells);
(iv). i0 ∈ {1, 2, . . . , m} indicates the output neuron.

First type of rules are the firing rules: provided that the
contents of the neuron, is introduced by the regular
expression E, and there are r spikes are consumed, the
neuron is fired, and it produces a spike which will be sent
to other neurons after t time units, considering the usage
of a global clock all across the system, identifying the time
for the whole system, hence the functioning of the system
could be set as a synchronized model. There are two
actions that take place in a single step: firing and spiking.
A neuron fires when using a rule E/ar→ a; t, this is only
if the neuron contains n spikes and an L (E) a n d n ≥ r.
T he regular expression E represents the contents of the
neuron. Here, at the level of a single neuron computation
is in sequential mode, i.e. a single rule is to be fired at
each step. Still, the maximal parallelism is at the level of
the whole system, in the sense that in each step all neurons
which can evolve (use a rule) have to do it. For spiking,

the use of a rule E/ar→ a; t in a step q means firing in
step q and spiking in step q + t. That is, if t = 0, then the
spike is produced immediately, in the same step when the
rule is used. If t = 1, then the spike will leave the neuron
in the next step, if we consider that t is represented by a
time interval t = {0,…tn}, then moving from 0 → tn in
time will be simulating a recalling factor (r) and moving
from tn → 0 in time will be simulating a forgetting process
by a forget factor (f). In the time between firing a rule and
producing a spike, the neuron is assumed to be building up
for next firing stage (the refractory period); so it will not
be able to accept any more incoming spikes, this much
like going into a short hibernation state. [2]

2. The SNP A-Machine

As in [1] SNP A-Machine is a SNP system with one
working neuron. A neuron is considered a living cell, this
leads to the idea that it encapsulates the features of a
specialized computational model inside, and based on the
fact that if the same inputs are fed to the neuron it
produces the same outputs and that some types of neurons
deliver different outputs over processing time, these
deliver more evidences on the neuron containing some
kind of memory, and a learning mechanism. [2], refer to

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 62

[1], for a detailed structure and design of the machine.
Also refer to [4], for the single neuron discussion.

SNP A-Machine

Processor

RDB Rules
indexer

Short-
term
Array

Long-
term
Array

Environment

Set of
Presynaptic

links

Set of
Presynaptic

links

SNP System with Single Neuron

)(orrecallfactr

}{ O a= taaE r ;/ →

0i

)(Λ

(PreSyn)

λ→sa

(Firing Rules)

(Forgetting Rules)

0≥in
Ru

)(orforgetfactf

Memory (ʍ)

Fig.1.The SNP A-Machine structure. [1]

Definition.1.

An SNP A-Machine unit of degree m, m ≥ 1, is a
construct: [1]

Ʌ = (O, PreSyn, ,…, ,…, , N, Ru, ʍ, PostSyn),

Where,

(i) O = {a} is the alphabet (the object a is called spike);
(ii) PreSyn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i)

PreSyn for 1≤ i ≤ m (input synapses); where:
(iii) ʍ is a dynamic array based sub-system.
(iv) N = {n}, ni ≥ 0; is the initial number of spikes

contained by the machine;
(v) Ru is a finite set of rules {Rs, R, F} of the following

forms:

1. Rs where:

1. E/ → a; t. E is a regular expression over O, r ≥ 1,

and t ≥ 0; (firing Rule).

2. → λ, for some s ≥ 1, with the restriction that

L(E) for any rule E/ → a; t of type (1)
from Rsi; (forgetting Rule).

2. R = { ,..., }, for each i ∈ {1,... , m} and j
∈ {1,... , }, where:

E/ak → (am , r); t is a rule with recalling factor, k
≥ ≥ 0 and ≥ 0. The sequence f =
(, ,…,) is a finite sequence of natural
numbers called the recalling sequence where = k
and ≥ 0. Inspired by rules in [8].

3. F = { ,..., }, for each i ∈ {1,... , m} and j ∈
{1,… , }, where:

E/ak → (am , f); t is a rule with forget factor, k ≥
 ≥ 0 and ≥ 0. The sequence f =

(, ,…,) is a finite sequence of natural
numbers called the decaying (forgetting) sequence
where = k and ≥ 0. Inspired by rules in [8].

− PostSyn ⊆ {1, 2,…, m}× {1, 2,…, m} with (i, i)

PostSyn for 1≤ i ≤ m (indicates the output neuron
postsynaptic link.);

3. The Learning Model

Referring to rule selection and invocation mechanisms
discussed in [1], [8], and that if the choice of a firing path
leads to the success with a higher probability than the
choice of another, then the device computation process
being refined by every passing time unit. Recalling from
[1] the learning machine is a tuple of an SNP A-Machine,
an input vector for the machine, a learning schema or
function, a learning time interval, a threshold for recalling
and forgetting a certain set of rules, a learning curve slope
(Lr):

Definition.2.

A Learning SNP A-Machine is: [1]

ɅL= (Ʌ, Xinput, L, T, Th, Lr), where:

(i) Ʌ is an SNP A-Machine.
(ii) Xinput = {x1,..., xn} is a finite set of inputs of Ʌ.
(iii) L: Z → Z is a function from the set of integer numbers

onto the set of integer numbers. The learning function.
(iv) T = {t1,..., tn} is a finite set of time stamps attached to the

inputs for Ʌ.
(v) Th = {rth, fth} is a set of two values for recall and forget

values thresholds.
(vi) Lr is a positive value called the learning rate.

4. The Telepathic Process

The telepathy phenomenon studied here is just an
assumption, in order to try defining and abstracting the
concept, in its simplest case we can put it as “Having a
shared idea, feeling or even doing a certain action at the
same time, or almost at the same moment among two or
more actors”. There is no physical contact, defined

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 63

distance, or any type of communication channels in this
very case. Unlike the representation in [5] which is
introducing a physical world or evidences existing among
agents, so as a shared mind will exist.

(i) The environment
The factors affecting an actor are the constructing blocks
for the “world” that telepathy will occur in; these factors
can be categorized under the following

a. Shared experiences
For two or more actors, to construct a global extended
mind, an assumed experience shall exist; this is not a
shared culture among actors. Yet can be considered as a
global shared memory among all of them, it is a telepathic
memory; data inside memory is built along a learning
curve.

b. External stimuli
Social interaction, coincident situations, and other
accidental events like threats and fear, can make a certain
idea to be initiated due to such stimulating factors as a
logical consequence.

c. Internal stimuli
The way an actor is exposed to some inner biological
structure or developments, or past encounter to some
events, might be another set of affecting elements, this
might be observed in flocks of birds, school of fish, but
this is not limited to the same species rule [6]. It is a
matter of close interaction, with spending “enough” shared
time, to start the telepathic sequence.

(iii) The need
This can be seen as a joint between the latter two types of
stimuli, need can happen due to some external, internal or
both of these elements. When taking place also it is
assumed to trigger a certain sequence of actions that might
initiate a telepathic sequence

(iv) The time.
This factor is one of the most important key players in the
argument, it is occupying the last ring in the telepathic
chain of reactions, without a shared mind timing window,
a certain idea or feeling can exist among a number of
actors, yet will not fall into the telepathic set of actions.
Time is the carrier that transforms a certain set of ordinary
actions, feelings, or ideas occurring among some set of
actors, into a telepathic sequence.

(v) The state of shared mind
The above assumed playing factors were a trial to describe
the most obvious elements in the phenomena, when
combined by time, an initial state of sharing is evolving,
which can be called a shared mind, and at some break

point in time a certain telepathic sequence can be triggered
showing some similarity among different actors behaviors,
may be with slightly different paths of execution, yet the
accumulative results can be very close.

(vi) The state of decay
When the time window of the sequence is beginning to
narrow, a new state of forgetting can emerge, it is a state
of losing that moment in time when the actions
synchronization is being lost among all playing actors, this
can be described as a fading memory, or loss of factors
causing telepathy at a very moment in time, the decaying
sequence doesn’t mean to lose all data, it can be fed back
into the shared experience stage to be recalled once again,
like using a long-term memory.

5. An Abstract Telepathic Model

With the previously assumed factors, a need for
abstracting the process arises:
A Telepathic Model TL is a construct of the form:

TL= (E), Where,

(i) E = {Exp, } the telepathic environment, where,
a. Exp, the set of experiences = (N,),
• N, the set of stimuli = { },

representing the “need”, where Ext and Int =
{ ,..., } , { ,..., } are finite sets of
external and internal inputs respectively.

• , is the telepathic memory.
b. , is the learning function, representing the

number of hits found in memory, and r is a
positive value called the learning rate.

(ii) , the global model timing = { ,..., } is a finite set
of global clock ticks (timestamps) attached to the
inputs for E.

(iii) is the telepathic sequence, representing the
output of the system

(iv) = { } is a set of two values for recall and
forget values thresholds. The r here represents the
value that’s when r>0 an initial state of telepathic
sequence is of higher probability, and f represents the
state of decay.

6. Mapping TL to SNP A-Machine

Using the description in [1], a mapping between the
original SNP A-Machine and the new TL model can be set
as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 64

(i) The already existing rules inside the neuron. (The
ones inside the long term memory) will correspond to

 in the new model.
(ii) The initial rules configuration is set by biological

evolution and genetic structures, constructing also the
set of internal stimuli

(iii) The machine’s sub-system (Ʌ) of the predefined
structured three arrays, the Indexer, Rules Store, and
a Synchronizer:

- The indexer will be holding the rules indexes; to be

consulted at first time input is sent to the neuron, to
check if there are any matching results from
previous computation.

- The second array will be representing the short-term
memory. And the third array will be representing the
long-term memory, both will be representing .

Fig.2. The Abstract Telepathic Model (TL).

Listing.1: Fire Search Job Algorithm.

PROCEUDRE (FIRE_SEARCH_JOB)

BEGIN
// try to match the searched value with the array item value of
that job
IF (searchValue = array item value) // if value found
STOP (all running jobs) // stop other parallel search jobs, stop
all threads.
RETURN TRUE // return true to indicate that value found
ELSE
IF (other search jobs are running) // there are still some search
jobs running
THEN WAIT. // wait till other jobs finished its search

ELSE
RETURN FALSE // all jobs finished search and value was not
matched with any of them.
END

Listing.2: Machine Telepathic Parallel Search Algorithm.

PROCEUDRE
(TELEPATHIC_SEARCH {memoryType, SearchValue})
BEGIN
 DEFINE array. // load the chosen array in.
 DEFINE event = notFound // Found or Not Found
 flag, set to its default value.

// Determine the array type to be searched, and load it.
IF (memoryType = short-term memory) THEN

LOAD array = short-term memory array.
ELSE IF (memoryType = long-term memory) THEN

LOAD array = long-term memory array.
ELSE

LOAD array = rules database array.
END IF.

// If no items in the array, then search result is false.

IF (array = empty), THEN HALT, RETURN FALSE,
END IF

// Waiting for parallel search jobs results to determine the final
search result.

WHILE (search jobs are running)

// Fire a job for each item in the array to be searched, process is
in parallel.

FOREACH array.item (i).value
PARALLEL BEGIN // start a thread and do the

 following call in parallel.
event=CALLPROCEDURE (
FIRE_SEARCH_JOB
{searchValue, array.item(i).value }).
IF (event = found) THEN HALT, RETURN

TRUE END IF //a match was found, return true.
END FOR
PARALLEL END // end of the parallel section.

END WHILE

IF (event = notFound) THEN //search jobs did not find

any match.
RETURN FALSE. //a match was not found, return false.

END

7. The Simulator Overview

The SNP A-Machine simulation software is developed
using Dot Net C#, and is composed of a number of
components combined together to simulate the rule firing
idea and memory recall and forget behavior. It has some

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 65

rules and constraints to control the acceptance process.
The simulator architecture consists of some layers;
Presentation, Business logic, View controllers, Machine
container, Resources manager, and Database layer. The
core layer of the above ones is the (Machine Container). It
contains the main components of the machine: Processing,
Memory, Processing, Rules Database, and Indexer Unit.
The business logic layer contains the controller that runs
business workflows. It communicates with the machine
container, and accesses its different components to
achieve the simulation tasks. It also contains the model of
data, and maps it using the resources manager to its
physical data model.
The resources manager contains the XML serializer that
serializes and de-serializes objects encapsulating the
machine runs. It is used to load data from data layer and
pass it as objects to the business logic layer.
The view controllers’ layer is the one used by business
logic layer to communicate with the presentation one. The
view controllers take the data from business layer and
format it in a presentation understandable objects that can
be easily outputted to the screens. Also it collects data
from screen and passes it to the business logic to start
processing the orders of the events raised by the view. The
final layer is the presentation one that is responsible for
viewing the machine state and input forms to the user. It
displays the forms, charts and grids holding the simulation
runtime state to the user. Experiments were made to test
different cases and configurations effect on the machine.
Here is a list of them:

(i) Performance when learnt words are never forgotten
from memory, this is like a permanent experience in
the scope of the TL model.

(ii) Recall and forget factors difference with memory
utilization, to represent the state of decay.

(iii) Memory hits against recall factor r and forget factor f,
to measure how different time windows can affect the
telepathic sequence.

(iv) Rule firing frequency and rule sorting inside the SNP
A-Machine, showing the effects of the “Need” on the
TL model.

The idea of simulation logic is to simulate the processing
of incoming input patterns, reflecting the and
learning them through firing some set of built-in rules in
the machine then saving these rules’ learnt values
in an easy access store .
Memory is a volatile store, and its volatility ratio is
controlled by some configurations related to the learnt
rules themselves. As each rule has a value for recalling
and forgetting factors [1]. Incoming data pattern is first
searched for in the memory buffers with its two types
(short-term and long-term), and if found there, then the
machine succeeds to recognize an already learnt pattern. If

not found, a search for a rule begins, when found a Rule
Firing sequence is started. And matching rule’s output will
be put into .
Also the order of firing rules (order of putting values
inside memory) is kept in the indexer. The benefit of using
indexer is to search rules in order where the least forgotten
rule is the first one to be consulted next run. There are
some constraints that limit and control the learning
operation of the machine. Those constraints are set by the
simulator configurations. Here is a list of different factors
that control the learning process: Number of rules in the
rules database, The Rule’s recall factor r, The Rule’s
forget factor f.

Table 1: Experiment configurations description:

Table 2: Experiment output description: ()
Name Description
Avg. words found
in short-term
memory

Average number of words found in short-term
memory for the whole experiment iterations.

Avg. words found
in long memory

Average number of words found in long-term
memory for the whole experiment iterations.

Avg. rules fired in
Indexer

Average number of rules fired from the rules
within the Indexer for the all experiment
iterations.

Avg. rules fired in
rules database

Average number of rules fired from rules
database for the whole experiment iterations.

Avg. not found
words

Average number of not found words for the
whole experiment iterations.

Avg. success
Percentage %

Average percentage of spikes train accepted
words (found in memory, or matched rule
input) whole experiment iterations.

Name Description
Word

Length

Number of characters making the machine
unit input.

Global Clock
()

Number of clock ticks determining one
machine run duration.

Global Clock
Step

Duration between two clock ticks.
(simulating one second)

Rules
Number

)
Number of rules in the machine rules

database.
Forget Factor
f Maximum

Value
The maximum number of ticks a word

stays in long-term memory.
Recall Factor
r Maximum

Value
The maximum number of ticks a word

stays in short-term memory.
Spikes Trains

Number
Number of continuous words’ sections

(with no spaces) through one run.

Fired
Rules %

Rule is fired when a word matches its input
pattern. Firing percentage of the spikes
train words = (words matching rules’

inputs / the spikes train) (E.g. 20/100 of the
train words are generated from rules

output).

Memory
Hits %

Memory is hit when a word matches a fired
rule output pattern. Hits percentage of the
spikes train words = (words equal rules’
outputs / the spikes train) (E.g. 20/100 of
the train words are generated from rules

output).
Frequency Number of iterations of the experiment.

(Number of runs)

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 66

In the machine’s acceptance mode, it receives some inputs
(spikes train) and tries to process them (identify the words
in train using its set of rules) and learn their patterns, so
that when another train comes, it can recognize it more
efficiently and fast using its memory. The recognition
ability of a machine is affected by the learning curve, and
other properties as: learnt rules recall and forget factors,
number of rules, and firing rate. Refer to [1] for more
details about the machine processing mechanisms.

7.1. The Learning Curve

Learning curve explains machine learning through a
specified run. When a word is put in memory (short-term
or long-term), that word is learnt by the machine. Words
lifetime in memory is dependent on recall and forget
factors r and f of the rules. As long as word is in memory,
the machine can memorize that word and it is still learnt.
So the number of words in memory at some specific tick is
an indication on how many words the machine has learnt
from its total learning capacity (number of rules), this is to
represent the building an experience for the machine.

7.2. Success Curve

Success curve represents the machine input acceptance.
The word is accepted by the machine in two cases, if an
input word matched a rule input and fired a rule, or the
word was found in memory . So machine success

value is the number of words () accepted by the
machine during the specified ticks count. Success curve
plots the number of words accepted against global clock
ticks.

7.3. Machine state

Machine state is the representation of rules firing map and
density through a specific run this is representing the
internal processing of the machine while producing a
telepathic sequence. Machine state is a graphical
representation of rules firing, it is a grid with its columns
and rows are rules and ticks in sequence. Through the
machine run, if a word matched a rule input, it fires, and
its value lasts in memory for the next ticks, the tick it fires
in is recorded and highlighted on the state grid. The
constraint of only one rule fires per tick makes the
machine state row has either one black cell, or none.
Continuing the machine run and rules firing, a map of
black cells in the grid is constructed showing the locality
of firing rules, its firing frequency and firing density.
frequency and firing density are high, but when rules
number is big, frequency and density decreases for the
same firing rate. By knowing other information as (recall
factor r and forget factor f, much information can be
extracted from the machine state, as:

Which rule is fired more frequently?
Depending on the firing percentage and the number of
rules in the system, the density of firing is increased or
decreased, as with little number of rules, the firing

(i) What is the active period through the run?
(ii) When does short-term memory gain a new item? And

how much time an item stays in it longer than the
recall factor r maximum value.

(iii) Is the rule fired from indexer (if it is the second fire or
greater) or rules database?

(iv) The order of rules indexes in indexer.

7.4 Results and analysis

All experiments were conducted upon two SNP A-
Machines in multiple iterations in order to check their
performance under the Telepathic Process. When applying
the same number of rules and a randomized external input
trains, at some iteration we find that some patterns are
almost similarly occurring at the same time window.
The following curves show that also under some similar
configurations, randomized input streams, yet constrained
by time, the accepted words, constructing the success
curve, performance and the memory access are going
similar at that very time window.

Fig.3. Machine state showing some telepathic sequence at a
time window

Clock
ticks –
time
window

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 67

Fig.4. Success curves for the two machines.

Fig.5. Performance curves for the two machines.

Fig.6. Memory Access curves for the two machines, showing a similar
learning rate at some time window

8. Conclusions and Future work

From the experiments run over two SNP A-machines, it is
found that when applying the telepathic model on such
computational devices, some patterns appear to take place
during the computational processing of incoming spikes
(inputs) trains going into the system, the one thing obvious
here, is that the two machines are not sharing any types of
messages, or communication channels, which means that
at some time window, and under some certain
configurations a resulting value can occur simultaneously
inside the two machines, this can be used as a parallel
computational approach to tackle some problems. Set a
telepathic processing environment, train the machines over
time and expose them to similar criteria working factors,
this might lead to some new types of solving algorithms
with new types of performance. Also from a biological
sense, and since SNP systems are derived from nature,
simulating the cell computational models, after all,
telepathy phenomenon itself might have some basic
materialistic foundation inside the physical brain.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 68

Fig.7. Telepathic parallel search logic flow.

References
[1] Spiking Neural P Systems with Memory Ammar Adl, Amr

Badr, Ibrahim Farag, IJCSNS International Journal of
Computer Science and Network Security, VOL.11 No.10,
October 2011.

[2] M. Ionescu, Gh. P˘aun and T. Yokomori: Spiking neural P
systems. Fundamenta Informaticae, 71, 2-3, 279-308, 2006.

[3] Gh. P˘aun: Membrane Computing–An Introduction.
Springer-Verlag, Berlin, 2002.

[4] W. Gerstner, W Kistler: Spiking Neuron Models. Single
Neurons, Populations, Plasticity. Cambridge Univ. Press,
2002.

[5] Collective representational content for shared extended
mind, Tibor Bosse a, Catholijn M. Jonker, Martijn C. Schut ,
Jan Treur, 2006 Elsevier, November 2005 .

[6] The Extended Mind, Rupert Sheldrake July-August 2003
issue of The Quest.

[7] P systems web page http://ppage.psystems.eu/.
[8] A First Model for Hebbian Learning with Spiking Neural

P Systems. Miguel A. Guti´errez-Naranjo, Mario J. P´erez-
Jim´enez Research Group on Natural Computing.2008

Ammar Adl received the Ph.D. degree in computer science from
Cairo Univ. in 2012. His research interests include software
design and architecture, soft, cellular, organic and Bio-
computing.

http://ppage.psystems.eu/

