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Summary 
The idea of telepathy has been always tackled as a paranormal 
phenomenon, and when some efforts were introduced in pursuit 
for explanation, the extended mind notion with morphic fields 
appeared, and a tendency for dealing with the matter outside the 
physical brain was the case. This paper is an attempt to study 
whether it is possible to extract a parallel computational model 
from such phenomena, and to propose another perspective 
explaining telepathy from inside the brain itself. The use of SNP 
Systems principles and their derivatives especially the SNP A-
Machine will be the path to follow. A software was developed to 
simulate the environment providing a set of experiments to 
induce some factors as a simulation of the process. 
Keywords: 
SNP Systems, SNP A-Machine, Telepathy, Parallel 
Computational Models. 

1. Introduction 

A Spiking Neural P system is a class of P systems inspired 
by the functioning of neural networks, and the ways they 
use to exchange signals through their specialized junctions 
called chemical synapses. Go to [2] for more details. SNP 
System is a construction of a networked membranes 
hosting a multi-set of objects and being in a certain state 
according to which objects are dealt with. The 
communication channels among different cells are 
specified in advance and correspond to axons in neural 
cells. To consider a spiking neural P system - recalling 
from [2] - of degree m ≥ 1, in the form: 

Π = (O, σ1, . . . , σm, syn, i0), 
Where: 
 
(i).O = {a} is the singleton alphabet (a is called spike); 
(ii).σ1, . . . , σm  are neurons, of the form  
    σi  = (ni, Ri), 1 ≤ i ≤ m,  
 Where: 

a) ni ≥ 0 is the initial  number of spikes contained by the 
cell; 

b) Ri is a finite set of rules of the following two forms: 

(i) E/ar → a; t, where E is a regular expression 
over O, r ≥ 1, and t ≥ 0; 

(ii) as → λ,  for some s ≥ 1, with  the restriction 
that  as ∈/ E/ar → a; t of type (1) from Ri; 
L(E)  for any rule. 

 

(iii). syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) ∈/ syn for 
    1 ≤ i ≤ m (synapses among cells); 
(iv). i0 ∈ {1, 2, . . . , m} indicates the output neuron. 
 
First type of rules are the firing rules: provided that the 
contents of the neuron, is introduced by the regular 
expression E, and there are r spikes are consumed, the 
neuron is fired, and it produces a spike which will be sent 
to other neurons after t time units, considering the usage 
of a global clock all across the system, identifying the time 
for the whole system, hence the functioning of the system 
could be set as a synchronized model. There are two 
actions that take place in a single step: firing and spiking. 
A neuron fires when using a rule E/ar→ a; t, this is only 
if the neuron contains n spikes and an L (E) a n d  n ≥ r.  
T he regular expression E represents the contents of the 
neuron. Here, at the level of a single neuron computation 
is in sequential mode, i.e. a single rule is to be fired at 
each step. Still, the maximal parallelism is at the level of 
the whole system, in the sense that in each step all neurons 
which can evolve (use a rule) have to do it.  For spiking, 

the use of a rule E/ar→ a; t in a step q means firing in 
step q and spiking in step q + t.  That is, if t = 0, then the 
spike is produced immediately, in the same step when the 
rule is used. If t = 1, then the spike will leave the neuron 
in the next step, if we consider that t is represented by a 
time interval t = {0,…tn}, then moving from 0 → tn in 
time will be simulating a recalling factor (r) and moving 
from tn → 0 in time will be simulating a forgetting process 
by a forget factor (f). In the time between firing a rule and 
producing a spike, the neuron is assumed to be building up 
for next firing stage (the refractory period); so it will not 
be able to accept any more incoming spikes, this much 
like going into a short hibernation state. [2] 

2. The SNP A-Machine 

As in [1] SNP A-Machine is a SNP system with one 
working neuron. A neuron is considered a living cell, this 
leads to the idea that it encapsulates the features of a 
specialized computational model inside, and based on the 
fact that if the same inputs are fed to the neuron it 
produces the same outputs and that some types of neurons 
deliver different outputs over processing time, these 
deliver more evidences on the neuron containing some 
kind of memory, and a learning mechanism. [2], refer to 
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[1], for a detailed structure and design of the machine. 
Also refer to [4], for the single neuron discussion. 
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Fig.1.The SNP A-Machine structure. [1] 

Definition.1.  
 
An SNP A-Machine unit of degree m, m ≥ 1, is a 
construct: [1] 
 
Ʌ = (O, PreSyn, ,…, ,…, , N, Ru, ʍ, PostSyn), 

 
Where, 

(i) O = {a} is the alphabet (the object a is called spike); 
(ii) PreSyn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) 

PreSyn for 1≤ i ≤ m (input synapses); where: 
(iii) ʍ is a dynamic array based sub-system. 
(iv) N = {n},  ni ≥ 0; is the initial  number of spikes 

contained by the machine; 
(v) Ru is a finite set of rules {Rs, R, F} of the following 

forms: 
 
1. Rs where:  

1. E/ → a; t. E is a regular expression over O, r ≥ 1, 

and t ≥ 0; (firing Rule). 

2.  → λ,  for some s ≥ 1, with  the restriction that 

L(E)  for any rule    E/  → a; t of type (1) 
from Rsi; (forgetting Rule). 

2. R = {    ,..., }, for each i ∈  {1,... , m} and j    
∈  {1,... , },  where: 

E/ak → (am , r ); t is a rule with recalling factor, k 
≥  ≥ 0 and  ≥ 0. The sequence f = 
( , ,…,  ) is a finite sequence of natural 
numbers called the recalling sequence where  = k 
and   ≥ 0. Inspired by rules in [8]. 
 

3. F = {  ,..., }, for each i ∈  {1,... , m} and j ∈ 
{1,… , },  where: 

E/ak → (am , f ); t is a rule with forget factor, k ≥ 
 ≥ 0 and  ≥ 0. The sequence                f = 

( , ,…,  ) is a finite sequence of natural 
numbers called the decaying (forgetting) sequence 
where  = k and   ≥ 0. Inspired by rules in [8]. 

 
− PostSyn ⊆ {1, 2,…, m}× {1, 2,…, m} with (i, i)  

PostSyn  for 1≤ i ≤ m (indicates the output neuron 
postsynaptic link.); 

3. The Learning Model 

Referring to rule selection and invocation mechanisms 
discussed in [1], [8], and that if the choice of a firing path 
leads to the success with a higher probability than the 
choice of another, then the device computation process 
being refined by every passing time unit. Recalling from 
[1] the learning machine is a tuple of an SNP A-Machine, 
an input vector for the machine, a learning schema or 
function, a learning time interval, a threshold for recalling 
and forgetting a certain set of rules, a learning curve slope 
(Lr): 

 
Definition.2.   
 
A Learning SNP A-Machine is: [1] 
 

ɅL= (Ʌ, Xinput, L, T, Th, Lr), where: 
 

(i) Ʌ is an SNP A-Machine. 
(ii) Xinput = {x1,..., xn} is a finite set of inputs of  Ʌ. 
(iii) L: Z → Z is a function from the set of integer numbers 

onto the set of integer numbers. The learning function. 
(iv) T = {t1,..., tn} is a finite set of time stamps attached to the 

inputs for  Ʌ. 
(v) Th = {rth, fth} is a set of two values for recall and forget 

values thresholds. 
(vi) Lr is a positive value called the learning rate. 

 
 

4. The Telepathic Process 

The telepathy phenomenon studied here is just an 
assumption, in order to try defining and abstracting the 
concept, in its simplest case we can put it as “Having a 
shared idea, feeling or even doing a certain action at the 
same time, or almost at the same moment among two or 
more actors”. There is no physical contact, defined 
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distance, or any type of communication channels in this 
very case. Unlike the representation in [5] which is 
introducing a physical world or evidences existing among 
agents, so as a shared mind will exist.  
 
(i) The environment 
The factors affecting an actor are the constructing blocks 
for the “world” that telepathy will occur in; these factors 
can be categorized under the following 
 
a. Shared experiences 
For two or more actors, to construct a global extended 
mind, an assumed experience shall exist; this is not a 
shared culture among actors. Yet can be considered as a 
global shared memory among all of them, it is a telepathic 
memory; data inside memory is built along a learning 
curve. 

 
b. External stimuli  
Social interaction, coincident situations, and other 
accidental events like threats and fear, can make a certain 
idea to be initiated due to such stimulating factors as a 
logical consequence. 

 
c. Internal stimuli 
The way an actor is exposed to some inner biological 
structure or developments, or past encounter to some 
events, might be another set of affecting elements, this 
might be observed in flocks of birds, school of fish, but 
this is not limited to the same species rule [6]. It is a 
matter of close interaction, with spending “enough” shared 
time, to start the telepathic sequence. 

 
(iii) The need 
This can be seen as a joint between the latter two types of 
stimuli, need can happen due to some external, internal or 
both of these elements. When taking place also it is 
assumed to trigger a certain sequence of actions that might 
initiate a telepathic sequence 
 
(iv) The time. 
This factor is one of the most important key players in the 
argument, it is occupying the last ring in the telepathic 
chain of reactions, without a shared mind timing window, 
a certain idea or feeling can exist among a number of 
actors, yet will not fall into the telepathic set of actions. 
Time is the carrier that transforms a certain set of ordinary 
actions, feelings, or ideas occurring among some set of 
actors, into a telepathic sequence. 

 
(v) The state of shared mind 
The above assumed playing factors were a trial to describe 
the most obvious elements in the phenomena, when 
combined by time, an initial state of sharing is evolving, 
which can be called a shared mind, and at some break 

point in time a certain telepathic sequence can be triggered 
showing some similarity among different actors behaviors, 
may be with slightly different paths of execution, yet the 
accumulative results can be very close. 

 
(vi) The state of decay 
When the time window of the sequence is beginning to 
narrow, a new state of forgetting can emerge, it is a state 
of losing that moment in time when the actions 
synchronization is being lost among all playing actors, this 
can be described as a fading memory, or loss of factors 
causing telepathy at a very moment in time, the decaying 
sequence doesn’t mean to lose all data, it can be fed back 
into the shared experience stage to be recalled once again, 
like using a long-term memory. 

5. An Abstract Telepathic Model 

With the previously assumed factors, a need for 
abstracting the process arises: 
A Telepathic Model TL is a construct of the form: 
 
TL= (E ), Where, 

(i) E = {Exp, } the telepathic environment, where, 
a. Exp, the set of experiences = ( N, ), 
• N, the set of stimuli = {  }, 

representing the “need”, where Ext and Int = 
{ ,..., } , { ,..., } are finite sets of 
external and internal inputs respectively. 

• , is the telepathic memory. 
b.  , is the learning function, representing the 

number of hits found in memory, and r is a 
positive value called the learning rate. 

(ii) , the global model timing = { ,..., } is a finite set 
of global clock ticks (timestamps) attached to the 
inputs for E. 

(iii)  is the telepathic sequence, representing the 
output of the system 

(iv) = {  } is a set of two values for recall and 
forget values thresholds. The r here represents the 
value that’s when r>0 an initial state of telepathic 
sequence is of higher probability, and f represents the 
state of decay. 

6. Mapping TL to SNP A-Machine 

Using the description in [1], a mapping between the 
original SNP A-Machine and the new TL model can be set 
as follows: 
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(i) The already existing rules inside the neuron.  (The 
ones inside the long term memory) will correspond to 

 in the new model. 
(ii) The initial rules configuration is set by biological 

evolution and genetic structures, constructing also the 
set of internal stimuli  

(iii) The machine’s sub-system (Ʌ) of the predefined 
structured three arrays, the Indexer, Rules Store, and 
a Synchronizer: 

 
- The indexer will be holding the rules indexes; to be 

consulted at first time input is sent to the neuron, to 
check if there are any matching results from 
previous computation. 

- The second array will be representing the short-term 
memory. And the third array will be representing the 
long-term memory, both will be representing .  

 

Fig.2. The Abstract Telepathic Model (TL). 

Listing.1: Fire Search Job Algorithm. 

PROCEUDRE (FIRE_SEARCH_JOB) 
 
BEGIN 
// try to match the searched value with the array item value of 
that job 
IF (searchValue = array item value) // if value found 
STOP (all running jobs) // stop other parallel search jobs, stop 
all threads. 
RETURN TRUE // return true to indicate that value found 
ELSE 
IF (other search jobs are running) // there are still some search 
jobs running 
THEN WAIT. // wait till other jobs finished its search 

ELSE 
RETURN FALSE // all jobs finished search and value was not 
matched with any of them. 
END 

 
Listing.2: Machine Telepathic Parallel Search Algorithm. 

 
PROCEUDRE  
(TELEPATHIC_SEARCH {memoryType, SearchValue}) 
BEGIN 
  DEFINE array. // load the chosen array in. 
  DEFINE event = notFound // Found or Not Found 
    flag, set to its default value. 
  

// Determine the array type to be searched, and load it. 
IF (memoryType = short-term memory) THEN  

LOAD array = short-term memory array. 
ELSE IF (memoryType = long-term memory) THEN  

LOAD array = long-term memory array. 
ELSE 

LOAD array = rules database array. 
END IF. 

 
// If no items in the array, then search result is false. 

IF (array = empty), THEN HALT, RETURN FALSE, 
END IF 

 
// Waiting for parallel search jobs results to determine the final 
search result. 

WHILE (search jobs are running) 
 

// Fire a job for each item in the array to be searched, process is 
in parallel. 

FOREACH array.item (i).value  
PARALLEL BEGIN // start a thread and do the 

          following call in parallel. 
event=CALLPROCEDURE ( 
FIRE_SEARCH_JOB  
{searchValue, array.item(i).value }). 
IF (event = found) THEN HALT, RETURN 

TRUE END IF //a match was found, return true. 
END FOR 
PARALLEL END // end of the parallel section. 
 

END WHILE  
 
IF (event = notFound) THEN //search jobs did not find 

any match. 
RETURN FALSE. //a match was not found, return false. 
 

END 

7. The Simulator Overview 

The SNP A-Machine simulation software is developed 
using Dot Net C#, and is composed of a number of 
components combined together to simulate the rule firing 
idea and memory recall and forget behavior. It has some 
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rules and constraints to control the acceptance process. 
The simulator architecture consists of some layers; 
Presentation, Business logic, View controllers, Machine 
container, Resources manager, and Database layer. The 
core layer of the above ones is the (Machine Container). It 
contains the main components of the machine: Processing, 
Memory, Processing, Rules Database, and Indexer Unit. 
The business logic layer contains the controller that runs 
business workflows. It communicates with the machine 
container, and accesses its different components to 
achieve the simulation tasks. It also contains the model of 
data, and maps it using the resources manager to its 
physical data model.  
The resources manager contains the XML serializer that 
serializes and de-serializes objects encapsulating the 
machine runs. It is used to load data from data layer and 
pass it as objects to the business logic layer. 
The view controllers’ layer is the one used by business 
logic layer to communicate with the presentation one. The 
view controllers take the data from business layer and 
format it in a presentation understandable objects that can 
be easily outputted to the screens. Also it collects data 
from screen and passes it to the business logic to start 
processing the orders of the events raised by the view. The 
final layer is the presentation one that is responsible for 
viewing the machine state and input forms to the user. It 
displays the forms, charts and grids holding the simulation 
runtime state to the user. Experiments were made to test 
different cases and configurations effect on the machine. 
Here is a list of them: 

(i) Performance when learnt words are never forgotten 
from memory, this is like a permanent experience in 
the scope of the TL model. 

(ii) Recall and forget factors difference with memory 
utilization, to represent the state of decay. 

(iii) Memory hits against recall factor r and forget factor f, 
to measure how different time windows can affect the 
telepathic sequence. 

(iv) Rule firing frequency and rule sorting inside the SNP 
A-Machine, showing the effects of the “Need” on the 
TL model. 

The idea of simulation logic is to simulate the processing 
of incoming input patterns, reflecting the  and 
learning them through firing some set of built-in rules in 
the machine  then saving these rules’ learnt values 
in an easy access store .  
Memory is a volatile store, and its volatility ratio is 
controlled by some configurations related to the learnt 
rules themselves. As each rule has a value for recalling 
and forgetting factors [1]. Incoming data pattern is first 
searched for in the memory buffers with its two types 
(short-term and long-term), and if found there, then the 
machine succeeds to recognize an already learnt pattern. If 

not found, a search for a rule begins, when found a Rule 
Firing sequence is started. And matching rule’s output will 
be put into .  
Also the order of firing rules (order of putting values 
inside memory) is kept in the indexer. The benefit of using 
indexer is to search rules in order where the least forgotten 
rule is the first one to be consulted next run. There are 
some constraints that limit and control the learning 
operation of the machine. Those constraints are set by the 
simulator configurations. Here is a list of different factors 
that control the learning process: Number of rules in the 
rules database, The Rule’s recall factor r, The Rule’s 
forget factor f.  

Table 1: Experiment configurations description: 

Table 2: Experiment output description: ( ) 
Name Description 
Avg. words found 
in short-term 
memory 

Average number of words found in short-term 
memory for the whole experiment iterations. 

Avg. words found 
in long memory 

Average number of words found in long-term 
memory for the whole experiment iterations. 

Avg. rules fired in 
Indexer 

Average number of rules fired from the rules 
within the Indexer for the all experiment 
iterations. 

Avg. rules fired in 
rules database 

Average number of rules fired from rules 
database for the whole experiment iterations. 

Avg. not found 
words 

Average number of not found words for the 
whole experiment iterations. 

Avg. success 
Percentage % 

Average percentage of spikes train accepted 
words (found in memory, or matched rule 
input) whole experiment iterations. 

Name Description 
Word 

Length
 

Number of characters making the machine 
unit input. 

Global Clock 
( ) 

Number of clock ticks determining one 
machine run duration. 

Global Clock 
Step 

Duration between two clock ticks. 
(simulating one second) 

Rules 
Number 

) 
Number of rules in the machine rules 

database. 
Forget Factor 
f Maximum 

Value 
The maximum number of ticks a word 

stays in long-term memory. 
Recall Factor 
r Maximum 

Value 
The maximum number of ticks a word 

stays in short-term memory. 
Spikes Trains 

Number 
Number of continuous words’ sections 

(with no spaces) through one run. 

Fired 
Rules % 

Rule is fired when a word matches its input 
pattern. Firing percentage of the spikes 
train words = (words matching rules’ 

inputs / the spikes train) (E.g. 20/100 of the 
train words are generated from rules 

output). 

Memory 
Hits % 

Memory is hit when a word matches a fired 
rule output pattern. Hits percentage of the 
spikes train words = (words equal rules’ 
outputs / the spikes train) (E.g. 20/100 of 
the train words are generated from rules 

output). 
Frequency Number of iterations of the experiment. 

(Number of runs) 
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In the machine’s acceptance mode, it receives some inputs 
(spikes train) and tries to process them (identify the words 
in train using its set of rules) and learn their patterns, so 
that when another train comes, it can recognize it more 
efficiently and fast using its memory. The recognition 
ability of a machine is affected by the learning curve, and 
other properties as: learnt rules recall and forget factors, 
number of rules, and firing rate. Refer to [1] for more 
details about the machine processing mechanisms. 

7.1. The Learning Curve 

Learning curve explains machine learning through a 
specified run. When a word is put in memory (short-term 
or long-term), that word is learnt by the machine. Words 
lifetime in memory is dependent on recall and forget 
factors r and f of the rules. As long as word is in memory, 
the machine can memorize that word and it is still learnt. 
So the number of words in memory at some specific tick is 
an indication on how many words the machine has learnt 
from its total learning capacity (number of rules), this is to 
represent the building an experience for the machine. 

7.2. Success Curve 

Success curve represents the machine input acceptance. 
The word is accepted by the machine in two cases, if an 
input word matched a rule input and fired a rule, or the 
word was found in memory . So machine success 

value is the number of words ( ) accepted by the 
machine during the specified ticks count. Success curve 
plots the number of words accepted against global clock 
ticks. 

7.3. Machine state 

Machine state is the representation of rules firing map and 
density through a specific run this is representing the 
internal processing of the machine while producing a 
telepathic sequence. Machine state is a graphical 
representation of rules firing, it is a grid with its columns 
and rows are rules and ticks in sequence. Through the 
machine run, if a word matched a rule input, it fires, and 
its value lasts in memory for the next ticks, the tick it fires 
in is recorded and highlighted on the state grid. The 
constraint of only one rule fires per tick makes the 
machine state row has either one black cell, or none. 
Continuing the machine run and rules firing, a map of 
black cells in the grid is constructed showing the locality 
of firing rules, its firing frequency and firing density.  
frequency and firing density are high, but when rules 
number is big, frequency and density decreases for the 
same firing rate. By knowing other information as (recall 
factor r and forget factor f, much information can be 
extracted from the machine state, as: 

Which rule is fired more frequently? 
Depending on the firing percentage and the number of 
rules in the system, the density of firing is increased or 
decreased, as with little number of rules, the firing  

(i) What is the active period through the run? 
(ii) When does short-term memory gain a new item? And 

how much time an item stays in it longer than the 
recall factor r maximum value. 

(iii) Is the rule fired from indexer (if it is the second fire or 
greater) or rules database? 

(iv) The order of rules indexes in indexer. 

7.4 Results and analysis 

All experiments were conducted upon two  SNP A-
Machines in multiple iterations in order to check their 
performance under the Telepathic Process. When applying 
the same number of rules and a randomized external input 
trains, at some iteration we find that some patterns are 
almost similarly occurring at the same time window. 
The following curves show that also under some similar 
configurations, randomized input streams, yet constrained 
by time, the accepted words, constructing the success 
curve, performance and the memory access are going 
similar at that very time window. 
 

 

Fig.3. Machine state showing some telepathic sequence at a 
time window 

Clock 
ticks – 
time 
window 
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Fig.4. Success curves for the two machines. 

 

Fig.5. Performance curves for the two machines. 

 

Fig.6. Memory Access curves for the two machines, showing a similar 
learning rate at some time window 

8. Conclusions and Future work 

From the experiments run over two SNP A-machines, it is 
found that when applying the telepathic model on such 
computational devices, some patterns appear to take place 
during the computational processing of incoming spikes 
(inputs) trains going into the system, the one thing obvious 
here, is that the two machines are not sharing any types of 
messages, or communication channels, which means that 
at some time window, and under some certain 
configurations a resulting value can occur simultaneously 
inside the two machines, this can be used as a parallel 
computational approach to tackle some problems. Set a 
telepathic processing environment, train the machines over 
time and expose them to similar criteria working factors, 
this might lead to some new types of solving algorithms 
with new types of performance. Also from a biological 
sense, and since SNP systems are derived from nature, 
simulating the cell computational models, after all, 
telepathy phenomenon itself might have some basic 
materialistic foundation inside the physical brain. 
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Fig.7. Telepathic parallel search logic flow. 
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