Geometric Routing Protocol based on Genetic Algorithm for Delay Minimization in MANETs

Sonam Jain† and Sandeep Sahu††

†Pursuing Master of Engineering, Shri Ram Institute of Technology, Jabalpur, India
††Assistant Professor, Shri Ram Institute of Technology, Jabalpur, India

Summary
Mobile Ad hoc Networks are consisting of mobile nodes having limited radio range and bandwidth without having any fixed infrastructure. Thus to deliver the message from source to destination does not only require to establish the shortest route for message delivery to the destination. But also to establish such a route that can deliver the message with minimum delay so that the message can be sent from source to destination with the maximum data rate with minimum delay. To establish such a route with minimum delay we attempt to propose a Genetic based Algorithm for establishing a route with minimum delay in Geometric Routing.

Key words:
Position-based (geometric) routing ;mobile adhoc nets (MANETs); Genetic Algorithm; bandwidth ; delay , simulation.

I. Introduction
A mobile ad hoc (MANET) [1, 2] is an infrastructure less network that is consisting of mobile nodes that communicate with each other via wireless links. Such types of networks are the best suitable for use in the areas where the establishment of the fixed infrastructure is not possible, not trusted, or unreliable. For example a network of notebook computers or Personal Data Assistances in a conference or campus setting, rescue operations and head quarts industries. In infrastructure less networks mobile nodes have to cooperate to provide the network functionality. Thus each node works as a routing node and has to perform the routing to establish the route between the mobile nodes that are not directly within each other’s transmission range. Thus the development of efficient routing protocol is a non trivial and a challenging task due to the specific character of a MANET scenario.

- Due to the mobility of the nodes the network topology changes randomly and rapidly.
- The bandwidth availability for the each mobile node is limited and varies due to noise, fading and interference effects.
- Most mobile devises are battery operated thus the energy consumption plays a vital role.

As existing routing algorithms can be broadly classified into two categories [12].

- Topology-based routing protocols
 - Proactive protocols
 - Reactive protocols
- Position-based routing protocols
 - Greedy Routing protocols
 - Geographical Routing protocols

This paper focuses on the position based routing (also called the geometric or geographic routing). Position-based routing protocols are attractive because they have the lower route discovery overhead as compared to proactive and reactive topology-based protocols using flooding. In position based routing each mobile node knows its position and the positions of their neighbor nodes using location service of the GPS modeems by the satellite attached with each mobile node. Thus the source node knows the position of the destination node. As the position based routing protocols employ the greedy forwarding as basic routing operation. In Greedy forwarding based protocols we establish a shortest route between source to destination node without checking for the compatibility of the established shortest route for the message size which is to be sent to the destination node, means that either the message can be sent with minimum delay or not. Unlike the Greedy forwarding protocols our proposed algorithm is based on Genetic Algorithm to establish a route with minimum delay for the message delivery.

The rest of the paper is organized as follows: Section II introduces the genetic algorithm as an optimization technique Section III deals with the proposed GA based routing algorithm for minimized delay. The simulation environment is described in Section IV. The experimental results are shown in Section V and conclusion is given in Section VI.

II. GENETIC ALGORITHM
Genetic Algorithm [2, 14, 15, and 16] was first proposed by John Holland, was adopted from natural evolution of
new species in the nature. As the natural evaluation has the
following feature:

1) The individual characteristics are encoded on a
chromosome.

2) Each chromosome has a certain fitness function
value according to the environment in which it
exists.

3) Individual chromosomes judged stronger are able
to survive and produce next generations of strong
individual chromosomes.

Thus GA is general purpose optimization tool based on the
natural selection of the fittest individual for the production
of the new generation. In Genetic Algorithm the solution
of the problem is encoded on a string of bits that is
comparable with the chromosome of the biological system
analogy. The Genetic Algorithm keeps a population of
randomly selected chromosomes to combine by mutation
or crossover techniques and produce the offspring having
new characteristics, which in turn replaces the low fitness
old chromosomes. This process is repeated until we find a
chromosome with best and repeated characteristics for the
successive generations of the population. Which finally
represent the optimal solution for the problem. There are
two mechanisms are used that link a genetic algorithm to
the problem it is solving. These mechanisms are:

1) Encoding of the possible solutions to the problem
on the chromosomes in the form of the parameters
that are desired to optimized for the given problem
environment.

2) Evaluation function that returns a fitness value of a
chromosome in the context of the problem. Thus
the evaluation function is environment in natural
evaluation.

In order to use Genetic Algorithms for networking
applications, the chromosome consists of the network
parameters as the genes of the chromosomes. A possible
chromosome would be a string consisting of the various
mobile nodes parameters for the wireless network. The
fitness function assigns the fitness value to each
chromosome that is assigned according to the objective of
the design problem. If the objective is to minimize the
route delay between source and destination, then the
fitness function will compute the route delays of all
possible paths between source to destination and return the
minimum delay path among the all possible paths between
source to destination

III. THE PROPOSED TECHNIQUE

The proposed Genetic based algorithms for the route
discovery with minimized delay in geometric routing are
as follows:

Genetic Algorithm for the Delay Minimization

Step1: Let each node have route table with delay,
distance, bandwidth and mobility characteristics for each node.

Step2: Categorize the ranks of routes according to
the number of hopes (node).

Step3: Now for each group apply the Genetic
Algorithm with number of chromosomes equal to the number of nodes.

Step4: Now for each chromosome set minimize the
fitness function.

\[
= \sum_{i=1}^{N} (D_i) + \sum_{i=1}^{N} (DIST_i) + \max \left(\frac{1}{(BW_i)} \right) + \max((MOV_i))
\]

Step5: Repeat the algorithm for all groups and form
the final route table by storing the best route from all groups (of different hop counts).

Step6: Select the route with minimum fitness value
from this final route table.

Step7: If more than one route having the same
minimum value then randomly select any one
route of them

In Geometric Routing each node is attached with a GPS
Modem thus Source Node is aware of the Destination
Node location. Thus the routing is performed in the
Expected Zone consisting of the mobile nodes by which
the message can be sent to the destination node. The
Source Node S is having a Route table *(Table-2)*
consisting of all the possible routes by which the message
can be sent to the destination node.
The detailed description of the Genetic Algorithm for Delay Minimization is as follows:

Step 1: In this step of the algorithm initially all the nodes in the network have a route table with delay, distance, bandwidth and mobility characteristics for each node as shown in the *Table 3*.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di</td>
<td>Processing Delays at Nodes</td>
</tr>
<tr>
<td>DIST</td>
<td>Distance to the next Node</td>
</tr>
<tr>
<td>BWi</td>
<td>Bandwidth available at the Node</td>
</tr>
<tr>
<td>MOVi</td>
<td>Mobility Ratio of the Node</td>
</tr>
<tr>
<td>N</td>
<td>Hop Count for the Route</td>
</tr>
</tbody>
</table>

Table 1

| Group-A (Chromosomes) for Route Hop Count N = 4 |
|---|---|---|---|---|
| D9 | N9 | N14 | N11 | N12 | S |
| D1 | N1 | N10 | N11 | N12 | S |
| D3 | N9 | N14 | N13 | N12 | S |
| D4 | N9 | N14 | N13 | N12 | S |
| D7 | N1 | N2 | N3 | N4 | S |

Group-B (Chromosomes) for Route Hop Count N = 5

D9	N9	N8	N14	N11	N12	S
D1	N9	N14	N13	N11	N12	S
D3	N9	N8	N7	N13	N12	S
D4	N9	N14	N7	N13	N12	S
D7	N1	N10	N11	N13	N12	S
D8	N9	N14	N13	N5	N12	S
D9	N9	N14	N11	N12	N5	S
D10	N9	N8	N7	N5	S	
D11	N9	N14	N6	N5	S	
D12	N1	N10	N13	N6	S	
D13	N1	N10	N11	N13	N5	S
D14	N1	N2	N3	N4	S	
D15	N9	N14	N11	N12	N4	S

Group-C (Chromosomes) for Route Hop Count N = 6

| Group-D (Chromosomes) for Route Hop Count N = 7 |
|---|---|---|---|---|---|---|
| D9 | N9 | N14 | N11 | N10 | N2 | N3 | N4 | S |
| D1 | N9 | N8 | N7 | N13 | N11 | N12 | N4 | S |
| D3 | N9 | N8 | N7 | N6 | N11 | N12 | N4 | S |
| D4 | N1 | N2 | N10 | N11 | N13 | N6 | N5 | S |
| D6 | N9 | N8 | N7 | N6 | N13 | N12 | N5 | S |
| D7 | N9 | N8 | N7 | N14 | N11 | N12 | N5 | S |
| D8 | N9 | N8 | N14 | N7 | N11 | N12 | N5 | S |
| D9 | N9 | N8 | N7 | N14 | N13 | N12 | N5 | S |
| D10 | N1 | N10 | N11 | N12 | N6 | N5 | S |
| D11 | N1 | N10 | N11 | N12 | N5 | S |
| D12 | N1 | N2 | N3 | N4 | S |

Group-E (Chromosomes) for Route Hop Count N = 8

| D1 | N9 | N8 | N7 | N6 | N13 | N11 | N12 | N5 | S |
| D2 | N9 | N14 | N11 | N10 | N2 | N3 | N4 | N12 | S |

Step 2: In this step the grouping of routes (chromosomes) is done according to the numbers of hop counts as shown *Table 2*.

Step 3: Now for each group apply the genetic algorithm with number of routes (chromosomes) each having the equal number of nodes.

Step 4: Now for each chromosome set of a group apply the fitness function.

Table 2

<table>
<thead>
<tr>
<th>Groups</th>
<th>No of Genes N^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-A (Chromosomes) for Route Hop Count N = 4</td>
<td>16</td>
</tr>
<tr>
<td>Group-B (Chromosomes) for Route Hop Count N = 5</td>
<td>20</td>
</tr>
<tr>
<td>Group-C (Chromosomes) for Route Hop Count N = 6</td>
<td>24</td>
</tr>
<tr>
<td>Group-D (Chromosomes) for Route Hop Count N = 7</td>
<td>28</td>
</tr>
<tr>
<td>Group-E (Chromosomes) for Route Hop Count N = 8</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 3

Similarly other chromosomes of the different hop count groups have the same structure for the chromosomes but having only difference in the hop counts which decides the number of genes in a chromosome as shown in *Table 4*.

Table 4

<table>
<thead>
<tr>
<th>Groups</th>
<th>No of Genes N^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-A (Chromosomes) for Route Hop Count N = 4</td>
<td>16</td>
</tr>
<tr>
<td>Group-B (Chromosomes) for Route Hop Count N = 5</td>
<td>20</td>
</tr>
<tr>
<td>Group-C (Chromosomes) for Route Hop Count N = 6</td>
<td>24</td>
</tr>
<tr>
<td>Group-D (Chromosomes) for Route Hop Count N = 7</td>
<td>28</td>
</tr>
<tr>
<td>Group-E (Chromosomes) for Route Hop Count N = 8</td>
<td>32</td>
</tr>
</tbody>
</table>

But the Source Node can’t decide about the route with the minimum delay among all the possible routes in the route table thus the GA based algorithm helps the source node to find out the route with minimum delay.
For example for the Group-A chromosome with hop count $(N=4)$ $(N9, N14, N11, N12)$ for which the chromosome structure is given in Table-3. The fitness function value will be evaluated as follows:

$$\text{Fitness} = \sum_{i=1}^{N} (D_i) + \sum_{i=1}^{N} (DIST_i) + \text{Max} \left(\frac{1}{(BW_i)} \right) + \text{Max}((MOVi))$$

Similarly the fineness function value is evaluated for the other chromosomes of different hop count groups.

$$\text{Fitness} = \sum_{i=1}^{N} (D_i) + \sum_{i=1}^{N} (DIST_i) + \text{Max} \left(\frac{1}{(BW_i)} \right) + \text{Max}((MOVi))$$

$$=(D9+D14+D11+D12)+(DIST9+DIST14+DIST11+D12) + (1/BW11) + (MOVi4)$$

Step 5: Repeat the above algorithm for all the groups each having the routes (chromosomes) of different hop counts and forming the final route table by storing the best routes (chromosomes) from all the groups of different hop counts.

Step 6: Select the route with minimum fitness value from this final route table.

IV. SIMULATION ENVIRONMENT

OPNET Modeler [2, 17, 18, and 19] is used as a simulation tool that accelerates the R&D process for analyzing and designing communication networks, devices, protocols, and applications. Users can analyze simulated networks to compare the impact of different technology designs on end-to-end behavior. Modeler incorporates a broad suite of protocols and technologies, and includes a development environment to enable modeling of all network types and technologies including: VoIP, TCP, OSPFv3, MPLS, IPv6, Others. Key Features of OPNET Modeler are as follows [17]:

- Fastest discrete event simulation engine among leading industry solutions
- Hundreds of protocol and vendor device models with source code (complete OPNET Model Library)
- Object-oriented modeling
- Hierarchical modeling environment
- Discrete Event, Hybrid, and optional Analytical simulation
- 32-bit and 64-bit fully parallel simulation kernel
- Grid computing support for distributed simulation
- Optional System-in-the-Loop to interface simulations with live systems
- Realistic Application Modeling and Analysis
- Open interface for integrating external object files, libraries, and other simulators
- Integrated, GUI-based debugging and analysis

Mobile Ad hoc Networks (MANETs) refer to a family of routing protocols developed to route traffic through mobile wireless networks. These networks place special requirements on routing protocols due to the unpredictable nature of the radio links and changing network topology due to node mobility. OPNET provides several MANET routing protocol models that are integrated with the IP and wireless LAN models. In addition, a MANET framework is available for rapid development of new MANET protocol models. OPNET developed the MANET model in close collaboration with over 150 MANET protocol modeling experts from the government, industry, and academia. OPNET Modeler provides the largest, most comprehensive library of open source, discrete event simulation models...
for the information technology industry. Most modeling capabilities are included in OPNET’s Standard Model Library, which is included with OPNET’s Network R&D and network planning solutions. The capabilities of the model library are not limited as it is possible to develop any type of protocol or device model with OPNET process and node editors.

V. EXPERIMENTAL RESULTS

We conducted experiments to evaluate and compare the performance of the following protocols: Greedy, GRP and the Proposed protocol. In these experiments, we used the discrete event simulator, opnet, which offers high fidelity in mobile ad hoc networks.
VI. CONCLUSION

In this paper we proposed a genetic algorithm as an optimization technique for minimizing routing delay in geometric routing for MANETs. The results show that, with the genetic algorithmic technique the message routing with proposed protocol is having minimum delay as compared to other protocols for geometric routing.

References

[5] P. Sateesh Kumar, Dr. S. Ramachandram (Member, IEEE) “Scalability of Network Size on Genetic Zone Routing Protocol for MANETs”.
[8] Muthuregunathn,Srivathsan ,R,Dr VR Uthariaraj”An Improved Parallel Genetic Algorithm for Path Bandwidth calculation in TDMA-based Mobile Ad hoc Networks”.

Sonam Jain received the B.E. degree in Computer Science & Engineering from Guru Ramdas Khalsa Institute of Science & Technology, Jabalpur, India in 2009. And presently pursing Master of Engineering in Computer Science & Engineering from Shri Ram Institute of Science & Technology, Jabalpur, India

Sandeep Sahu received the B.E. degree in Computer Science & Engineering from Samart Ashok Technological Institute, Vidisa, India in 2008 And Master of Technology in Computer Science & Engineering from Indian Institute of Technology, Guwahati, India in 2011,and presently working as a Assistant Professor in Shri Ram Institute of Technology, Jabalpur, India.