
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

10

Manuscript received June 5, 2013
Manuscript revised June 20, 2013

Techniques for Concurrent Access to Different Data Structure:
A Research Review

Ranjeet Kaur† and Pushpa Rani Suri ††,

Kurukshetra University, Kurukshetra
Summary
The data structures used in concurrent systems need to be
modified. Modifications of shared data structures are done in
several steps. If these steps are interleaved with modifications
from other tasks, this can result in inconsistency of the data
structure. Therefore the data structure needs to be protected from
other tasks modifying it while the operation is executing. This
can either be done using mutual exclusion(locks)/non-
blocking/optimistic methods. The focus of this paper is to give a
preview on data structure with efficient and practical approach of
concurrency control.
Key words:
Concurrency, lock-free, non-blocking, memory management,
compares and swap, Elimination.

1. Introduction

Multi-processor or multi-core machine is much better at
power-performance ratio than a single processor machine
with the same performance. In this era every computer
must be at least dual-core. A dual-core machine can
perform two computing tasks simultaneously.
The basic unit of scheduling is generally the thread; if a
program has only one active thread, it can only run on one
processor at a time. If a program has multiple active
threads, then multiple threads may be scheduled at once. In
a well-designed program, using multiple threads can
improve program throughput and performance. There is a
technical distinction between thread and processes. a
process can be whole program such as emacs, word,
Mozilla. The OS allows more than one process to run at
the same time. A thread is a unit of execution with in a
process that has less overhead and quicker context switch
time. The multiple threads of a single process can share the
variables and data structure i.e. access to the memory. The
environment in which threads share the common data
structure is called a concurrent access. Below sections
discussed concurrency and the various techniques related
to it.

2. Concurrency control techniques

Simultaneous execution of multiple threads/process over a
shared data structure access can create several data
integrity and consistency problems:

• Lost Updates.
• Uncommitted Data.
• Inconsistent retrievals

All above are the reasons for introducing the concurrency
control over the concurrent access of shared data structure.
Concurrent access to data structure shared among several
processes must be synchronized in order to avoid
conflicting updates. Synchronization is referred to the idea
that multiple processes are to join up or handshake at a
certain points, in order to reach agreement or commit to a
certain sequence of actions. The thread synchronization or
serialization strictly defined is the application of particular
mechanisms to ensure that two concurrently executing
threads or processes do not execute specific portions of a
program at the same time. If one thread has begun to
execute a serialized portion of the program, any other
thread trying to execute this portion must wait until the
first thread finishes.
Concurrency control techniques can be divided into two
categories.

• Blocking
• Non-blocking

Both of these are discussed in below sub-sections.

2.1 Blocking

Blocking algorithms allow a slow or delayed process to
prevent faster processes from completing operations on the
shared data structure indefinitely. On asynchronous
(especially multiprogrammed) multiprocessor systems,
blocking algorithms suffer significant performance
degradation when a process is halted or delayed at an
inopportune moment. Many of the existing concurrent data
structure algorithms that have been developed use mutual
exclusion i.e. some form of locking.
Mutual exclusion degrades the system’s overall
performance as it causes blocking, due to that other
concurrent operations cannot make any progress while the
access to the shared resource is blocked by the lock. The
limitation of blocking approach are given below

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

11

• Priority inversion: occurs when a high-priority
process requires a lock holded by a lower-priority
process.

• Convoying: occurs when a process holding a lock is
rescheduled by exhausting its quantum, by a page fault
or by some other kind of interrupt. In this case, running
processes requiring the lock are unable to progress.

• Deadlock: can occur if different processes attempt to
lock the same set of objects in different orders.

• locking techniques are not suitable in a real-time
context and more generally, they suffer significant
performance degradation on multiprocessors systems.

2.2 Non-blocking

Non-blocking algorithm Guarantees that the data structure
is always accessible to all processes and an inactive
process cannot render the data structure inaccessible. such
an algorithm ensure that some active process will be able
to complete an operation in a finite number of steps
making the algorithm robust with respect to process failure

In the following sections we discuss various non-blocking
properties with different strength.

Wait-freedom
A method is wait-free if every call is guaranteed to finish
in a finite number of steps. If a method is bounded wait-
free then the number of steps has a finite upper bound.
From this definition it follows that wait-free methods are
never blocking, therefore deadlock cannot happen.
Additionally, as each participant can progress after a finite
number of steps (when the call finishes), wait-free methods
are free of starvation.

Lock-freedom
Lock-freedom is a weaker property than wait-freedom. In
the case of lock-free calls, infinitely often some method
finishes in a finite number of steps. This definition implies
that no deadlock is possible for lock-free calls. On the
other hand, the guarantee that some call finishes in a finite
number of steps is not enough to guarantee that all of them
eventually finish. In other words, lock-freedom is not
enough to guarantee the lack of starvation.

Obstruction-freedom
Obstruction-freedom is the weakest non-blocking
guarantee discussed here. A method is called obstruction-
free if there is a point in time after which it executes in
isolation (other threads make no steps, e.g.: become
suspended), it finishes in a bounded number of steps. All
lock-free objects are obstruction-free, but the opposite is
generally not true.

Optimistic concurrency control (OCC) methods are usually
obstruction-free. The OCC approach is that every
participant tries to execute its operation on the shared
object, but if a participant detects conflicts from others, it
rolls back the modifications, and tries again according to
some schedule. If there is a point in time, where one of the
participants is the only one trying, the operation will
succeed.

3. Literature reviewed:

Concurrent access to shared data in preemptive multi-tasks
environment and in multi-processors architecture has been
subject to many works. Based on these works, we will
review the work done on blocking as well as non-blocking
approach. The last section of the paper comprises of a
comparative study of these approaches.

3.1 Blocking based Algorithms:

Based on the approach of locking Philp et al [1] algorithm
has property that any process for manipulating the tree uses
only a small number of locks at any time, no search
through the tree is ever prevented from reading any node,
for that purpose they have considered a variant of B* -Tree
called Blink- tree (in figure 1).

The Blink-tree is a B*-tree modified by adding a single
“link” pointer field to each node This link field points to
the next node at the same level of the tree as the current
node, except that the link pointer of the rightmost node on
a level is a null pointer. This definition for link pointers is
consistent, since all leaf nodes lie at the same level of the
tree. The Blink-tree(in figure 2) has all of the nodes at a
particular level chained together into a linked list.

 Fig.2. B link-nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

12

The main priority given by previous concurrency control
algorithm for solution to concurrency control problem was
characterized by the use of just one lock types but this
solution does not use catenations and distributions and
permits the existence of underflown nodes. The system that
he has sketched is far simpler than one that requires
Underflows and concatenations. It uses very little extra
storage under the assumption that insertions take place
more often than deletions.
The aim of number of solutions given for handling
concurrency control (in pessimistic approach) is to reduce
the number of locks required on B-tree data structure. In
this direction Mond et. al. [2] suggested the idea based on
top-down approach. The idea was immediate splitting or
merging of unsafe nodes (those nodes which have no space
for more insertion or those which haven’t a key for
deletion) in order to avoid long chains of locks, By making
these preparatory operations only a pair of locks has to be
kept: on the current node and on its father node. Thus the
portion of the tree locked by the process is getting smaller
as the process advances. In order to carry out the idea of
preparatory operations basic B+ tree was modified and
called preparatory operations B+ tress (PO-B+-tree). This
approach has introduced some overhead by increasing the
number of operations performed upon the tree, but as the
rate of the tree increases the relative number of unsafe
nodes in the tree are reduced, hence this overhead become
small.

Goal of Concurrency control Algorithms
The goals of concurrency control algorithms are
(I)Reduce the collision occurred during the concurrent
execution of transactions using efficient locking
mechanism.
(II)Reduce the access time, increase throughput, and
minimize the frequency of tree restructuring.
Sakti et al [3] tried to achieve later one goal by introducing
node partitioning scheme for large node B-trees to enhance
concurrency. In his proposed scheme, each node is
partitioned into multiple sub nodes to be distributed for
parallel processing.The proposed B-tree structure is called
as PNB-trees (partitioned node B-trees). The node size of
PNB trees is large, but I/O and computation time improves
significantly because large nodes are split into smaller sub
nodes and these sub nodes are processed in parallel.
Another important factor is how many transactions wait for
an access to a data object locked by a given transactions.
Avoiding such bottleneck as much as possible is a
reasonable Concurrency control on data structures requires
solutions that should meet, in addition to correctness
criteria, those of high throughput. To achieve high
throughput, it is necessary to maximize parallelism of
transactions execution. Common factor in parallelism is the
period of time for which data objects become unavailable

due to the concurrency control technique purpose in design
of concurrent data structure algorithms.
Methods for controlling concurrent access to B-trees have
been studied for a long time [17,18,19] none of those
considered thoroughly the problem of efficiently
guaranteeing serializability [20] of transactions containing
multiple operations on B-trees, in the face of transaction
and system failures, and concurrent accesses by different
transactions with fine-granularity locking. [21] Presents an
incomplete (in the not found case and locking for range
scans) and expensive (using nested transactions) solution
to the problem. In spite of the fine-granularity locking
provided via record locking for data and key value locking
for the index information, the level of concurrency
supported by the System R protocols, which are used in the
IBM product SQUDS, has been found to be inadequate by
some customers [22].There was need of improvement in
System R index concurrency control, performance, and
functionality.
C. MOHAN [4] drastically improves the problems of
System R. He has proposed a method for Concurrency
control in B-tree indexes according to that a transaction
may perform any number of non index and index
operations, including range scans. ARIES/KVL (Algorithm
for Recovery and Isolation Exploiting semantics using
Key-Value Locking) guarantees serializability and it
supports very high concurrency during tree traversals,
structure modifications, and other operations. Unlike in
System R, when one transaction is waiting for a lock on a
key value in a page, reads and modifications of that page
by other transactions are allowed. Further, transactions that
are rolling back will never get into deadlocks.

3.2 Non-Blocking based algorithm:

With the goal of designing a concurrent queue that
supports the normal ENQUEUE and DEQUEUE
operations J.D valois et.al[5] implemented a lock-free
FIFO queue. the data structure ,in this algorithm is
composed of records,each containing two fields:next,a
pointer to the next record in the list,and value, the data
value stored in the record. Two global pointers , head and
tail ,point to records on the list:these pointers are used to
quickly find the correct record while dequeuing and
enqueuing ,recpectively.
The algorithm first link the new node to the end of the
list ,and then updates the tail pointer. the DEQUEUE
operation work slightly different, however. Rather than
having head point to the node currently at the front of the
queue ,it points at the last node that was dequeued.
drawing ideas from previous authors, Maged M.Michel[6]
presented a new non-blocking concurrent queue
algorithm ,which is simple, fast , and practical. The
algorithm implements the queue as a singly-linked list with

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

13

Head and Tail pointers. As in Valois’s [5] algorithm, Head
always points to a dummy node, which is the first node in
the list. Tail points to either the last or second to last node
in the list. The algorithm uses compare and swap,
with modification counters to avoid the ABA problem. To
allow dequeuing processes to free dequeue nodes, the
dequeue operation ensures that Tail does not point to the
dequeued node nor to any of its predecessors. This means
that dequeued nodes may safely be re-used. To obtain
consistent values of various pointers we rely on sequences
of reads that re-check earlier values to be sure
they haven’t changed. These sequences of reads are similar
to, but simpler than, the snapshots of Prakash et al[22’].
(we need to check only one shared variable rather than
two). A similar technique can be used to prevent the race
condition in Stone’s blocking algorithm. We use Treiber’s
simple and efficient non-blocking stack algorithm [21’] to
implement a non-blocking free list. For making the non-
blocking algorithms cost-effective, Laden et.al[7] has tried
to remove the usage of costly CAS operations. The key
idea behind his new algorithm was to replaced the singly-
linked list of Michael and Scott[6], whose pointers are
inserted using a costly compare-and-swap (CAS) operation,
by an “optimistic” doubly-linked list whose pointers are
updated using a simple store, yet can be “fixed” if a bad
ordering of events causes them to be inconsistent. It was a
practical example of an “optimistic” approach to reduction
of synchronization overhead in concurrent data structures.
The key idea behind his new algorithm is to (literally)
approach things from a different direction... by logically
reversing the direction of enqueues and dequeues to/from
the list. If enqueues were to add elements at the beginning
of the list,they would require only a single CAS, since one
could first direct the new node’s next pointer to the node at
the beginning of the list using only a store operation, and
then CAS the tail pointer to the new node to complete the
insertion.
The new technique for lock free FIFO queue was
introduced by mark et al.[8] that elimination , a scaling
technique formerly applied only to LIFO structures, can be
applied to FIFO data structures, specifically, to
linearizable FIFO queues. They transformed existing
nonscalable FIFO queue implementations into scalable
implementations using the elimination technique, while
preserving lock-freedom and linearizablity.
For that purpose they modified Michael and scott[6] and
ladan et al.[7] FIFO queue algorithms. The key feature of
MS-queue was that concurrent accesses to the head and tail
of the queue do not interfere with each other as long as the
queue is non-empty. Ladan et al. [7] introduced an
optimistic queue that improves on the performance of the
MS-queue in various situations by reducing the number of
expensive compare-and-swap (CAS) operations performed.

Unfortunately, like all previous FIFO queue algorithms,
these state-of-the-art algorithms do not scale.
In all previous FIFO queue algorithms, all concurrent
Enqueue and Dequeue operations synchronize on a small
number of memory locations, such as a head or tail
variable, and/or a common memory location such as the
next empty array element. Such algorithms can only allow
one Enqueue and one Dequeue operation to complete in
parallel, and therefore cannot scale to large numbers of
concurrent operations. In the LIFO structures elimination
works by allowing opposing operations such as pushes and
pops to exchange values in a pairwise distributed fashion
without synchronizing on a centralized data structure. This
technique was straightforward in LIFO ordered structures.
As noticed by Shavit and Touitou [17]: a stack’s state
remains the same after a push followed by a pop are
performed. This means that if pairs of pushes and pops can
meet and pair up in separate random locations of an
“elimination array”, then the threads can exchange values
without having to access a centralized stack structure.
However, this approach seemingly contradicts the very
essence of FIFO ordering in a queue: a Dequeue operation
must take the oldest value currently waiting in the queue. It
apparently cannot eliminate with a concurrent Enqueue.
For example, if a queue contains a single value 1, then
after an Enqueue of 2 and a Dequeue, the queue contains 2,
regardless of the order of these operations.
The figure.3 shows an example execution

figure.3

Thus, because the queue changes, we cannot simply
eliminate the Enqueue and Dequeue. Note that if the queue
were empty, we could eliminate an Enqueue-Dequeue pair,
because in this case the queue is unchanged by an Enqueue
immediately followed by a Dequeue. There algorithm
exploits this observation, but also goes further, allowing
elimination of Enqueue-Dequeue pairs even when the
queue is not empty. To understand why it is acceptable in
some cases to eliminate Enqueue-Dequeue pairs even
when the queue is not empty, one must understand the
linearizability correctness condition [18], which requires
that we can order all operations in such a way that the
operations in this order respect the FIFO queue semantics,
but also so that no process can detect that the operations

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

14

did not actually occur in this order. If one operation
completes before another begins, then we must order them
in this order. Otherwise, if the two are concurrent, we are
free to order them however we wish. Key to their approach
was the observation that they wanted to use elimination
when the load on the queue is high. In such cases, if an
Enqueue operation is unsuccessful in an attempt to access
the queue, it will generally backoff before retrying. If in
the meantime all values that were in the queue when the
Enqueue began are dequeued, then we can “pretend” that
the Enqueue did succeed in adding its value to the tail of
the queue earlier, and that it now has reached the head and
can be dequeued by an eliminating Dequeue. Thus, they
used time spent backing off to “age” the unsuccessful
Enqueue operations so that they become “ripe” for
elimination. Because this time has passed, we ensure that
the Enqueue operation is concurrent with Enqueue
operations that succeed on the central queue, and this
allows us to order the Enqueue before some of them, even
though it never succeeds on the central queue. The key is
to ensure that Enqueues are eliminated only after sufficient
aging.
A large number of lock-free (and wait-free) queue
implementations have appeared in the literature, e.g.
[14][12][8] being the most influential or recent and most
efficient results. These results all have a number of
specialties or drawbacks as e.g. limitations in:

• Allowed concurrency.
• Static in size.
• Requiring atomic primitives not available on

contemporary architectures.
• Scalable in performance but having a high

overhead.

The algorithm given by Anders et al.[9] improves on
previous results by combining the underlying approaches
and designing the algorithm cache-aware and tolerant to
weak memory consistency models in order to maximize
efficiency on contemporary multi-core platforms. The
underlying data structure that his algorithmic design uses is
linked list of arrays. depicted in below fig.4

figure.4

The lock-free algorithm has no limitations on concurrency,
was fully dynamic in size, and only requires atomic
primitives available on contemporary. Anders et al.[9]
presented a lock-free FIFO queue data structure that was
presented in[22]. The algorithm supports multiple
producers and multiple consumers and weak memory
models. It has been designed to be cache-aware in order to
minimize its communication overhead and work directly
on weak memory consistency models (e.g. due to out-of-
order execution).
In resemblance to [8][6][23] the algorithm discussed here
was dynamic, and in resemblance to [23] removed blocks
are logically deleted, blocks are being traversed and
creation of long chains are avoided. In contrast to [6][23]
the algorithm employs no special strategy for increasing
scalability besides allowing disjoint Enqueue and Dequeue
operations to execute in parallel.
The algorithm presented by Anders et al. [9] was the first
lock-free queue algorithm with all of the following
properties:
(i) Cache-aware algorithmic handling of shared pointers
including lazy updates to decrease communication
overhead.
(ii) Linked-list of arrays as underlying structure for
efficient dynamic algorithmic design.
(iii) Exploitation of thread-local static storage for efficient
communication.
(iv) Fully dynamic in size via lock-free memory
management.
(v) Lock-free design for supporting concurrency.
(vi)Algorithmic support for weak memory consistency
models, allowing more efficient implementation on
contemporary hardware.
In the above review we talk about tree and FIFO queue
now in the remaining section we discuss the concurrent
priority queue.

A priority queue is an abstract data type that allows n
asynchronous processors to each perform one of two
operations: an Insert of an item with a given priority, and a
Delete-min operation that returns the item of highest
priority in the queue.
There exist several algorithms and implementations of
concurrent priority queues. The literature on concurrent
priority queues consists mostly of algorithms based on two
paradigms: search trees and heaps .The majority of the
algorithms are lock-based, either with a single lock on top
of a sequential algorithm, or specially constructed
algorithms using multiple locks, where each lock protects a
small part of the shared data structure. lets review the
various algorithm proposed for concurrent priority queue
either lock based or lock free.
Most of the concurrent priority queue have been
proposed ,usually based on heap structure tree,[17,4,15]

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

15

etc. an obvious problem with these algorithms was that the
root is serialization bottleneck. To avoid this problem
Theodore et.al [10] proposed a concurrent priority queue
based on the B-link tree. It is a B+ tree in which each node
has a pointer to its right neighbor. The leftmost child of the
B-tree is always containing the smallest key.the search
operations continues in this manner until it finds the leaf
that might contain the key it is searching for ,at which
point it searches that leaf,unlocks the leaf ,and returns. An
insert operation starts by searching for the key that is
inserting. The insert operations places an exclusive lock on
the leaf ,locks the parent , and insert a pointer to the sibling
in the parent. if the parent is too full, the parent is half-split
and the restructuring continues until a non-full parent node
is reached or the root is split.
Empirical evidence collected in recent years [24, 11, 25]
shows that heap-based structures tend to outperform search
tree structures. This is probably due to a collection of
factors, among them that heaps do not need to be locked in
order to be \rebalanced," and that Insert operations on a
heap can proceed from bottom to root, thus minimizing
contention along their concurrent traversal paths. The
algorithm given by Michel et.al[11] was based on the array
based priority queue heaps. in it the deletions proceed top-
down but the insertions proceed bottom- up and
consecutive insertions use a bit-reversal technique to
scatter across the fringe of the tree, to reduce contention.
the algorithm augments the heap data structure with mutual
exclusion lock on the heap ‘s size and locks on each node
in the heap. Each node also has tag that indicates whether
it is empty, valid , or in a transient state due to an update to
the heap by an inserting process.
Unfortunately, again the empirical evidence shows, the
performance of [11] does not scale beyond a few tens of
concurrent processors. As concurrency increases, the
algorithm's locking of a shared counter location, however
short, introduces a sequential bottleneck that hurts
performance. The root of the tree also becomes a source of
contention and a major problem when the number of
processors is in the hundreds. In summary, both balanced
search trees and heaps suffer from the typical scalability
impediments of centralized structures: sequential
bottlenecks and increased contention.
The solution we propose in this paper by lotal et.al[12] is
to design concurrent priority queues based on the highly
distributed SkipList data structures of Pugh [26,27].
SkipLists are search structures based on hierarchically
ordered linked-lists, with a probabilistic guarantee of being
balanced. The basic idea behind SkipLists is to keep
elements in an ordered list, but have each record in the list
be part of up to a logarithmic number of sub-lists. These
sub-lists play the same role as the levels of a binary search
structure, having twice the number of items as one goes
down from one level to the next.To search a list of N items,

O(log N) level lists are traversed, and a constant number of
items is traversed per level, making the expected overall
complexity of an Insert or Delete operation on a SkipList
O(logN).
Author introduced the SkipQueue, a highly distributed
priority queue based on a simple modification of Pugh's
concurrent SkipList algorithm [27]. Inserts in the
SkipQueue proceed down the levels as in [27]. For Delete-
min, multiple \minimal" elements are to be handed out
concurrently. This means that one must coordinate the
requests, with minimal contention and bottlenecking, even
though Delete-mins are interleaved with Insert operations.
The solution was as follows. keep a specialized delete
pointer which points to the current minimal item in this list.
By following the pointer, each Delete-min operation
directly traverses the lowest level list, until it finds an
unmarked item, which it marks as \deleted." It then
proceeds to perform a regular Delete operation by
searching the SkipList for the items immediately preceding
the item deleted at each level of the list and then
redirecting their pointers in order to remove the deleted
node.
Sundell et.al [13] given an efficient and practical lock-free
implementation of a concurrent priority queue that is
suitable for both fully concurrent (large multi-processor)
systems as well as pre-emptive (multi-process) systems.
Inspired by Lotan and Shavit [12], the algorithm was based
on the randomized Skiplist [28] data structure, but in
contrast to [12] it is lock-free.
The algorithm was based on the sequential Skiplist data
structure invented by Pugh [28]. This structure uses
randomization and has a probabilistic time complexity of
O(logN) where N is the maximum number of elements in
the list. The data structure is basically an ordered list with
randomly distributed short-cuts in order to improve search
times,
In order to make the Skiplist construction concurrent and
non-blocking, author used three of the standard atomic
synchronization primitives, Test-And-Set (TAS), Fetch-
And-Add (FAA) and Compare-And-Swap (CAS).
To insert or delete a node from the list we have to change
the respective set of next pointers. These have to be
changed consistently, but not necessary all at once. the
solution was to have additional information on each node
about its deletion (or insertion) status. This additional
information will guide the concurrent processes that might
traverse into one partial deleted or inserted node. When we
have changed all necessary next pointers, the node is fully
deleted or inserted.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

16

4. Comparison and Analysis:

Various algorithm based on blocking and non-blocking
can be compared by their techniques used for concurrency
control and their respective merits and demerits.shown in
below table-1

Algorithm Merits Demerits
Efficient Locking

for Concurrent
Operation on B-

Tree[1]

Small number of
locks used Expansive

locks
 Using preparatory

operations on
B+Trees[2]

High degree
concurrency

ARIES/KVL: key
value locking

method for
concurrency

control of multi
action

transactions
operating on B-
Trees indexes[3]

-high concurrency
during tree
traversal.

-several B-tree
operation be can

part of large
transaction.

Parallel
processing of
large node B-

Trees[4]

-Improve response
time.

-Reduce tree
restructuring.

Implementing
Lock-Free
queues[5]

Algorithm no
longer needs the

snapshot of prakash
[21],since the only
intermediate state
that the queue can
be in is if the tail
pointer has not
been updated

It required
either an
unaligned
compare &
swap or a
Motorola

like
double-

compare –
and-swap,

both of
them are

not
supported

on nay
architecture

.

Simple, Fast, and
Practical Non-
Blocking and

Blocking
Concurrent

Queue
Algorithms[6]

The algorithm was
simple,fast and

practical.it was the
clear algorithm of

choice for machine
that provides a

universal atomic
primitive.

Poinets are
inserted

using costly
CAS

An optimistic
approach to lock-

free fifo
queues.[7]

It reduces the
synchronization

overhead in
concurrent data

structure

Poor in
performanc

e

Using elimination
to implement

scalable and lock-
free FIFO
queues.[8]

1. Due to scaling
technique, this

algorithm allows
multiple enqueue

and dequeue
operations to
complete in

parallel.
2. The concurrent
access to the head

and tail of the
queue do not

interfere with each
other as long as the

queue is non-
empty.

1. The
elimination

backoff
queue is
practical
only for

very short
queues as
in order to
keep the
correct
FIFO
queue

semantics,
the

enqueue
operation
cannot be
eliminated
unless all
previous
inserted

nodes have
been

dequeued.
2. This

approach is
scalable in
performanc

e as
compare to

previous
one but

having high
overhead.

Efficient lock-free
queue that mind

the cache.[9]

All above
algorithms do not
consider the cache
behavior ,this one

improves on
previous result by

combining the
underlying

approaches and
designing the

algorithm cache
aware

This
algorithm
does not
used any

strategy for
increasing
scalability

besides
allowing
disjoint
enqueue

and
dequeue

operations
to execute
in parallel

. A Highly
Concurrent

Priority Queue
Based on the B-
link Tree.[10]

Avoid the
serialization
bottleneck

Needs node
to be

locked in
order to be
rebalance

An Efficient
Algorithm for

Concurrent
Priority Queue

Allows concurrent
insertion and

deletion in opposite
direction.

The
performanc
e does not

scale

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

17

Heaps.[11] beyond a
few tens of
concurrent
processors.

Skiplist-Based
Concurrent

Priority
Queues.[12]

Designed a scalable
concurrent priority

queue for large
scale

multiprocessor.

Algorithm
based on
locking

approach.

Fast and Lock-
Free Concurrent
Priority Queues
for Multithread

System.[13]

This was a first
lock-free approach

for concurrent
priority queue

5. Conclusion

This paper reviews the concurrency control techniques with
respect to different data structures (tree, queue, priority queue).
The algorithms are categorized on the concurrency control
techniques like blocking and non-blocking. former based on
locks and later one can be lock-free, wait-free or obstruction
free .in the last we can see that lock free approach outperforms
over locking based approach.

References
[1] P. Lehman and S. Yao, Efficient Locking for Concurrent

Operations on B-trees, ACM Trans. Database Systems,
vol. 6,no. 4, 1981

[2] Y. Mond and Y. Raz , Concurrency Control on B+-Trees
Databases Using Preparatory Operations, Technion - Israel
Institute of Technology,1985

[3] Sakti Pramanik and Myoung Ho Kim, Parallel Processing of
Large Node B-Trees,IEEE Transactions on Computers,
Vol,No. 9, September 1990

[4] C. Mohan, ARIES/KVL: A Key-Value Locking Method for
Concurrency Control of Multiaction Transactions Operating
on B-tree Indexes, Proc. 16th Int'l Conf. Very Large Data
Bases, Sept.1990.

[5] J. D. Valois. Implementing Lock-Free queues. In Seventh
International Conference on Parallel and Distributed
Computing Systems, Las Vegas, NV, October 1994.

[6] M. M. Michael and M. L. Scott. “Simple, Fast, and Practical
Non-Blocking and Blocking Concurrent Queue
Algorithms.” 15th ACM Symp. On Principles of Distributed
Computing (PODC), May 1996. pp.267 - 275

[7] E. Ladan-Mozes and N. Shavit. An optimistic approach to
lock-free fifo queues. In proceedings of the 18th
International Conference on Distributed Computing (DISC),
pages 117–131. Springer-Verlag GmbH, 2004.

[8] Mark Moir, Daniel Nussbaum, Ori Shalev, Nir Shavit:
Using elimination to implement scalable and lock-free FIFO
queues. SPAA 2005

[9] Anders Gidenstam, Håkan Sundell, Philippas Tsigas
Efficient lock-free queue that mind the cache.2010

[10] T. Johnson. A Highly Concurrent Priority Queue Based on
the B-link Tree. Technical Report,University of Florida, 91-
007. August 1991.

[11] G.C. Hunt, M.M. Michael, S. Parthasarathy and M.L. Scott.
An Efficient Algorithm for Concurrent Priority Queue
Heaps. In Information Processing Letters, 60(3):151{157,
November 1996.

[12] LOTAN, N. SHAVIT. Skiplist-Based Concurrent Priority
Queues. International Parallel and Distributed Processing
Symposium, 2000.

[13] H.Sundell and P.tsigas. Fast and Lock-Free Concurrent
Priority Queues for Multithread System.

[14] Silberschatz, A., Galvin, P.: Operating System Concepts.
Addison Wesley (1994)

[15] Dominique Ffober, Yann Orlarey, Stephane Letz Optimised
Lock-Free FIFO Queue. Grame-Computer Music Research
Laboratory January 2001

[16] Dominique Fober. Yann Orlarey. Stephane Letz Lock-Free
Techniques for. Concurrent Access to Shared Objects.
Grame - Centre National de Création Musicale sept 2003

[17] N. Shavit and D. Touitou. Elimination trees and the
construction of pools and stacks. Theory of Computing
Systems, 30:645–670, 1997.

[18] M. Herlihy and J. Wing. Linearizability: A correctness
condition for concurrent objects.

[19] Bayer, R., Schkolnick, M. Concurrency of Operations on
B-Trees, Acta Informatica, Vol. 9, No. 1. p l-21, 1977

[20] R. K. Treiber. Systems Programming: Coping with
Parallelism. In RJ 5118, IBM Almaden Research Center,
April 1986.

[21] J. Turek, D. Shasha, and S. Prakash. locking without
Blocking: Making Lock Based concurrent DataStructure
Algorithms Nonblocking. In Proceedings of the 11th ACM
SIGACT-SIGMOD-SIGARTSymposium on Principles of
Database Systems, pages 212–222, 1992

[22] Gidenstam, H. Sundell, and P. Tsigas. Cache-aware lock-
free queues for multiple producers/consumers and weak
memory consistency. In Proc. of the 14th Int. Conf. on
Principles of Distributed Systems (OPODIS 2010), 2010.

[23] M. Hoffman, O. Shalev, and N. Shavit. The baskets queue.
In Proc.of the 11th Int. Conf. on Principles of Distributed
Systems (OPODIS 2007), volume 4878 of LNCS, pages
401–414. Springer, 2007.

[24] N. Deo and S. Prasad. Parallel Heap: An Optimal Parallel
Priority Queue. In The Journal of Supercomputing, Vol. 6,
pp. 87-98, 1992

[25] N. Shavit and A. Zemach. Concurrent Priority Queue
Algorithms. In Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Distributed Computing, pages
113-122, Atlanta, GA, May 1999.

[26] W. Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. In Communications of the ACM,
33(6):668{676, June 1990.

[27] W. Pugh. Concurrent Maintenance of Skip Lists. Technical
Report, Institute for Advanced Computer Studies,
Department of Computer Science, University of Maryland,
College Park, CS-TR-2222.1, 1989.

	Goal of Concurrency control Algorithms
	The goals of concurrency control algorithms are
	[3] Sakti Pramanik and Myoung Ho Kim, Parallel Processing of Large Node B-Trees,IEEE Transactions on Computers, Vol,No. 9, September 1990
	[4] C. Mohan, ARIES/KVL: A Key-Value Locking Method for Concurrency Control of Multiaction Transactions Operating on B-tree Indexes, Proc. 16th Int'l Conf. Very Large Data Bases, Sept.1990.

