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Summary 
The data structures used in concurrent systems need to be 
modified. Modifications of shared data structures are done in 
several steps. If these steps are interleaved with modifications 
from other tasks, this can result in inconsistency of the data 
structure. Therefore the data structure needs to be protected from 
other tasks modifying it while the operation is executing. This 
can either be done using mutual exclusion(locks)/non-
blocking/optimistic methods. The focus of this paper is to give a 
preview on data structure with efficient and practical approach of 
concurrency control. 
Key words: 
Concurrency, lock-free, non-blocking, memory management, 
compares and swap, Elimination. 

1. Introduction 

Multi-processor or multi-core machine is much better at 
power-performance ratio than a single processor machine 
with the same performance. In this era every computer 
must be at least dual-core. A dual-core machine can 
perform two computing tasks simultaneously. 
The basic unit of scheduling is generally the thread; if a 
program has only one active thread, it can only run on one 
processor at a time. If a program has multiple active 
threads, then multiple threads may be scheduled at once. In 
a well-designed program, using multiple threads can 
improve program throughput and performance. There is a 
technical distinction between thread and processes. a 
process can  be whole program such as emacs, word, 
Mozilla. The OS allows more than one process to run at 
the same time. A thread is a unit of execution with in a 
process that has less overhead and quicker context switch 
time. The multiple threads of a single process can share the 
variables and data structure i.e. access to the memory. The 
environment in which threads share the common data 
structure is called a concurrent access. Below sections 
discussed  concurrency and the various techniques related 
to it. 
 
2. Concurrency control techniques 

Simultaneous execution of multiple threads/process over a 
shared data structure access can create several data 
integrity and consistency problems:  

 
• Lost Updates.  
• Uncommitted Data. 
• Inconsistent retrievals  

 
All above are the reasons for introducing the concurrency 
control over the concurrent access of shared data structure. 
Concurrent access to data structure shared among several 
processes must be synchronized in order to avoid 
conflicting updates. Synchronization is referred to the idea 
that multiple processes are to join up or handshake at a 
certain points, in order to reach agreement or commit to a 
certain sequence of actions. The thread synchronization or 
serialization strictly defined is the application of particular 
mechanisms to ensure that two concurrently executing 
threads or processes do not execute specific portions of a 
program at the same time. If one thread has begun to 
execute a serialized portion of the program, any other 
thread trying to execute this portion must wait until the 
first thread finishes.  
Concurrency control techniques can be divided into two 
categories. 
 

• Blocking 
• Non-blocking 

Both of these are discussed in below sub-sections. 

2.1 Blocking 

Blocking algorithms allow a slow or delayed process to 
prevent faster processes from completing operations on the 
shared data structure indefinitely. On asynchronous 
(especially multiprogrammed) multiprocessor systems, 
blocking algorithms suffer significant performance 
degradation when a process is halted or delayed at an 
inopportune moment. Many of the existing concurrent data 
structure algorithms that have been developed use mutual 
exclusion i.e. some form of locking. 
Mutual exclusion degrades the system’s overall 
performance as it causes blocking, due to that other 
concurrent operations cannot make any progress while the 
access to the shared resource is blocked by the lock. The 
limitation of blocking approach are given below 
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• Priority inversion: occurs when a high-priority 
process requires a lock holded by a lower-priority 
process. 

• Convoying: occurs when a process holding a lock is 
rescheduled by exhausting its quantum, by a page fault 
or by some other kind of interrupt. In this case, running 
processes requiring the lock are unable to progress. 

• Deadlock: can occur if different processes attempt to 
lock the same set of objects in different orders. 

•  locking techniques are not suitable in a real-time 
context and more generally, they suffer significant 
performance degradation on multiprocessors systems. 

2.2 Non-blocking 

Non-blocking algorithm Guarantees that the data structure 
is always accessible to all processes and an inactive 
process cannot render the data structure inaccessible. such 
an algorithm ensure that some active process will be able 
to complete an operation in a finite number of steps 
making the algorithm robust with respect to process failure 
 
In the following sections we discuss various non-blocking 
properties with different strength. 
 
Wait-freedom 
A method is wait-free if every call is guaranteed to finish 
in a finite number of steps. If a method is bounded wait-
free then the number of steps has a finite upper bound. 
From this definition it follows that wait-free methods are 
never blocking, therefore deadlock cannot happen. 
Additionally, as each participant can progress after a finite 
number of steps (when the call finishes), wait-free methods 
are free of starvation. 
 
Lock-freedom 
Lock-freedom is a weaker property than wait-freedom. In 
the case of lock-free calls, infinitely often some method 
finishes in a finite number of steps. This definition implies 
that no deadlock is possible for lock-free calls. On the 
other hand, the guarantee that some call finishes in a finite 
number of steps is not enough to guarantee that all of them 
eventually finish. In other words, lock-freedom is not 
enough to guarantee the lack of starvation. 
 
Obstruction-freedom 
Obstruction-freedom is the weakest non-blocking 
guarantee discussed here. A method is called obstruction-
free if there is a point in time after which it executes in 
isolation (other threads make no steps, e.g.: become 
suspended), it finishes in a bounded number of steps. All 
lock-free objects are obstruction-free, but the opposite is 
generally not true. 

Optimistic concurrency control (OCC) methods are usually 
obstruction-free. The OCC approach is that every 
participant tries to execute its operation on the shared 
object, but if a participant detects conflicts from others, it 
rolls back the modifications, and tries again according to 
some schedule. If there is a point in time, where one of the 
participants is the only one trying, the operation will 
succeed. 

3. Literature reviewed: 

Concurrent access to shared data in preemptive multi-tasks 
environment and in multi-processors architecture has been 
subject to many works. Based on these works, we will 
review the work done on blocking as well as non-blocking 
approach. The last section of the paper comprises of a 
comparative study of these approaches. 

3.1 Blocking based Algorithms: 

Based on the approach of locking Philp et al [1] algorithm 
has property that any process for manipulating the tree uses 
only a small number of locks at any time, no search 
through the tree is ever prevented from reading any node, 
for that purpose they have considered a variant of B* -Tree 
called Blink- tree (in figure 1). 

 

 
  

The Blink-tree is a B*-tree modified by adding a single 
“link” pointer field to each node This link field points to 
the next node at the same level of the tree as the current 
node, except that the link pointer of the rightmost node on 
a level is a null pointer. This definition for link pointers is 
consistent, since all leaf nodes lie at the same level of the 
tree. The Blink-tree(in figure 2) has all of the nodes at a 
particular level chained together into a linked list. 
 

 
 Fig.2. B link-nodes  
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The main priority given by previous concurrency control 
algorithm for solution to concurrency control problem was 
characterized by the use of just one lock types but this 
solution does not use catenations and distributions and 
permits the existence of underflown nodes. The system that 
he has sketched is far simpler than one that requires 
Underflows and concatenations. It uses very little extra 
storage under the assumption that insertions take place 
more often than deletions. 
The aim of number of solutions given for handling 
concurrency control (in pessimistic approach) is to reduce 
the number of locks required on B-tree data structure. In 
this direction Mond et. al. [2] suggested the idea based on 
top-down approach. The idea was  immediate splitting or 
merging of unsafe nodes (those nodes which have no space 
for more insertion or those which haven’t a key for 
deletion) in order to avoid long chains of locks, By making 
these preparatory operations only a pair of locks has to be 
kept: on the current node and on its father node. Thus the 
portion of the tree locked by the process is getting smaller 
as the process advances. In order to carry out the idea of 
preparatory operations basic B+ tree was modified and 
called preparatory operations B+ tress (PO-B+-tree). This 
approach has introduced some overhead by increasing the 
number of operations performed upon the tree, but as the 
rate of the tree increases the relative number of unsafe 
nodes in the tree are reduced, hence this overhead become 
small.  
 
Goal of Concurrency control Algorithms 
The goals of concurrency control algorithms are 
(I)Reduce the collision occurred during the concurrent 
execution of transactions using efficient locking 
mechanism. 
(II)Reduce the access time, increase throughput, and 
minimize the frequency of tree restructuring. 
Sakti et al [3] tried to achieve later one goal by introducing 
node partitioning scheme for large node B-trees to enhance 
concurrency. In his proposed scheme, each node is 
partitioned into multiple sub nodes to be distributed for 
parallel processing.The proposed B-tree structure is called 
as PNB-trees (partitioned node B-trees). The node size of 
PNB trees is large, but I/O and computation time improves 
significantly because large nodes are split into smaller sub 
nodes and these sub nodes are processed in parallel. 
Another important factor is how many transactions wait for 
an access to a data object locked by a given transactions. 
Avoiding such bottleneck as much as possible is a 
reasonable Concurrency control on data structures requires 
solutions that should meet, in addition to correctness 
criteria, those of high throughput. To achieve high 
throughput, it is necessary to maximize parallelism of 
transactions execution. Common factor in parallelism is the 
period of time for which data objects become unavailable 

due to the concurrency control technique purpose in design 
of concurrent data structure algorithms. 
Methods for controlling concurrent access to B-trees have 
been studied for a long time  [17,18,19] none of those 
considered thoroughly the problem of efficiently 
guaranteeing serializability [20] of transactions containing 
multiple operations on B-trees, in the face of transaction 
and system failures, and concurrent accesses by different 
transactions with fine-granularity locking. [21] Presents an 
incomplete (in the not found case and locking for range 
scans) and expensive (using nested transactions) solution 
to the problem. In spite of the fine-granularity locking 
provided via record locking for data and key value locking 
for the index information, the level of concurrency 
supported by the System R protocols, which are used in the 
IBM product SQUDS, has been found to be inadequate by 
some customers [22].There was need of improvement in 
System R index concurrency control, performance, and 
functionality. 
C. MOHAN [4] drastically improves the problems of 
System R. He has proposed a method for Concurrency 
control in B-tree indexes according to that a transaction 
may perform any number of non index and index 
operations, including range scans. ARIES/KVL (Algorithm 
for Recovery and Isolation Exploiting semantics using 
Key-Value Locking) guarantees serializability and it 
supports very high concurrency during tree traversals, 
structure modifications, and other operations. Unlike in 
System R, when one transaction is waiting for a lock on a 
key value in a page, reads and modifications of that page 
by other transactions are allowed. Further, transactions that 
are rolling back will never get into deadlocks. 

3.2 Non-Blocking based algorithm: 

With the goal of designing a concurrent queue that 
supports the normal ENQUEUE and DEQUEUE 
operations J.D valois et.al[5] implemented a lock-free 
FIFO queue. the data structure ,in this algorithm is 
composed of records,each containing two fields:next,a 
pointer to the next record in the list,and value, the data 
value stored in the record. Two global pointers , head and 
tail ,point to records on the list:these pointers are used to 
quickly find the correct record while dequeuing and 
enqueuing ,recpectively. 
The algorithm  first link the new node to the end of the 
list ,and then updates the tail pointer. the DEQUEUE 
operation work slightly different, however. Rather than 
having head point to the node currently at the front of the 
queue ,it points at the last node that was dequeued. 
drawing ideas from previous authors, Maged M.Michel[6] 
presented a new non-blocking concurrent queue 
algorithm ,which is simple, fast , and practical. The 
algorithm implements the queue as a singly-linked list with 
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Head and Tail pointers. As in Valois’s [5] algorithm, Head 
always points to a dummy node, which is the first node in 
the list. Tail points to either the last or second to last node 
in the list. The algorithm uses compare and swap, 
with modification counters to avoid the ABA problem. To 
allow dequeuing processes to free dequeue nodes, the 
dequeue operation ensures that Tail does not point to the 
dequeued node nor to any of its predecessors. This means 
that dequeued nodes may safely be re-used. To obtain 
consistent values of various pointers we rely on sequences 
of reads that re-check earlier values to be sure 
they haven’t changed. These sequences of reads are similar 
to, but simpler than, the snapshots of Prakash et al[22’]. 
(we need to check only one shared variable rather than 
two). A similar technique can be used to prevent the race 
condition in Stone’s blocking algorithm. We use Treiber’s 
simple and efficient non-blocking stack algorithm [21’] to 
implement a non-blocking free list. For making the non-
blocking algorithms cost-effective, Laden et.al[7] has tried 
to remove the usage of costly CAS operations. The key 
idea behind his new algorithm was to  replaced the singly-
linked list of Michael and Scott[ 6], whose pointers are 
inserted using a costly compare-and-swap (CAS) operation, 
by an “optimistic” doubly-linked list whose pointers are 
updated using a simple store, yet can be “fixed” if a bad 
ordering of events causes them to be inconsistent. It was a 
practical example of an “optimistic” approach to reduction 
of synchronization overhead in concurrent data structures. 
The key idea behind his new algorithm is to (literally) 
approach things from a different direction... by logically 
reversing the direction of enqueues and dequeues to/from 
the list. If enqueues were to add elements at the beginning 
of the list,they would require only a single CAS, since one 
could first direct the new node’s next pointer to the node at 
the beginning of the list using only a store operation, and 
then CAS the tail pointer to the new node to complete the 
insertion. 
The new technique for lock free FIFO queue was 
introduced by mark et al.[8] that elimination , a scaling 
technique formerly applied only to LIFO structures, can be 
applied to FIFO data structures, specifically, to 
linearizable FIFO queues.  They   transformed existing 
nonscalable FIFO queue implementations into scalable 
implementations using the elimination technique, while 
preserving lock-freedom and linearizablity. 
For that purpose they modified Michael and scott[6] and 
ladan et al.[7] FIFO queue algorithms. The key feature of 
MS-queue was that concurrent accesses to the head and tail 
of the queue do not interfere with each other as long as the 
queue is non-empty.  Ladan et al. [7] introduced an 
optimistic queue that improves on the performance of the 
MS-queue in various situations by reducing the number of 
expensive compare-and-swap (CAS) operations performed. 

Unfortunately, like all previous FIFO queue algorithms, 
these state-of-the-art algorithms do not scale.  
In all previous FIFO queue algorithms, all concurrent 
Enqueue and Dequeue operations synchronize on a small 
number of memory locations, such as a head or tail 
variable, and/or a common memory location such as the 
next empty array element. Such algorithms can only allow 
one Enqueue and one Dequeue operation to complete in 
parallel, and therefore cannot scale to large numbers of 
concurrent operations. In the LIFO structures elimination 
works by allowing opposing operations such as pushes and 
pops to exchange values in a pairwise distributed fashion 
without synchronizing on a centralized data structure. This 
technique was straightforward in LIFO ordered structures. 
As noticed by Shavit and Touitou [17]: a stack’s state 
remains the same after a push followed by a pop are 
performed. This means that if pairs of pushes and pops can 
meet and pair up in separate random locations of an 
“elimination array”, then the threads can exchange values 
without having to access a centralized stack structure. 
However, this approach seemingly contradicts the very 
essence of FIFO ordering in a queue: a Dequeue operation 
must take the oldest value currently waiting in the queue. It 
apparently cannot eliminate with a concurrent Enqueue. 
For example, if a queue contains a single value 1, then 
after an Enqueue of 2 and a Dequeue, the queue contains 2, 
regardless of the order of these operations.  
The figure.3 shows an example execution 

                                              
figure.3 

Thus, because the queue changes, we cannot simply 
eliminate the Enqueue and Dequeue. Note that if the queue 
were empty, we could eliminate an Enqueue-Dequeue pair, 
because in this case the queue is unchanged by an Enqueue 
immediately followed by a Dequeue. There algorithm 
exploits this observation, but also goes further, allowing 
elimination of Enqueue-Dequeue pairs even when the 
queue is not empty. To understand why it is acceptable in 
some cases to eliminate Enqueue-Dequeue pairs even 
when the queue is not empty, one must understand the 
linearizability correctness condition [18], which requires 
that we can order all operations in such a way that the 
operations in this order respect the FIFO queue semantics, 
but also so that no process can detect that the operations 
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did not actually occur in this order. If one operation 
completes before another begins, then we must order them 
in this order. Otherwise, if the two are concurrent, we are 
free to order them however we wish. Key to their approach 
was the observation that they wanted to use elimination 
when the load on the queue is high. In such cases, if an 
Enqueue operation is unsuccessful in an attempt to access 
the queue, it will generally backoff before retrying. If in 
the meantime all values that were in the queue when the 
Enqueue began are dequeued, then we can “pretend” that 
the Enqueue did succeed in adding its value to the tail of 
the queue earlier, and that it now has reached the head and 
can be dequeued by an eliminating Dequeue. Thus, they 
used time spent backing off to “age” the unsuccessful 
Enqueue operations so that they become “ripe” for 
elimination. Because this time has passed, we ensure that 
the Enqueue operation is concurrent with Enqueue 
operations that succeed on the central queue, and this 
allows us to order the Enqueue before some of them, even 
though it never succeeds on the central queue. The key is 
to ensure that Enqueues are eliminated only after sufficient 
aging.  
A large number of lock-free (and wait-free) queue 
implementations have appeared in the literature, e.g. 
[14][12][8] being the most influential or recent and most 
efficient results. These results all have a number of 
specialties or drawbacks as e.g. limitations in: 
 

• Allowed concurrency. 
• Static in size.  
• Requiring atomic primitives not available on 

contemporary architectures. 
• Scalable in performance but having a high 

overhead.  
 
The algorithm given by Anders et al.[9] improves on 
previous results by combining the underlying approaches 
and designing the algorithm cache-aware and tolerant to 
weak memory consistency models in order to maximize 
efficiency on contemporary multi-core platforms. The 
underlying data structure that his algorithmic design uses is 
linked list of arrays. depicted in below fig.4 

 

figure.4 
 

The lock-free algorithm has no limitations on concurrency, 
was fully dynamic in size, and only requires atomic 
primitives available on contemporary. Anders et al.[9] 
presented a lock-free FIFO queue data structure that was 
presented in[22]. The algorithm supports multiple 
producers and multiple consumers and weak memory 
models. It has been designed to be cache-aware in order to 
minimize its communication overhead and work directly 
on weak memory consistency models (e.g. due to out-of-
order execution).  
In resemblance to [8][6][23] the algorithm discussed here 
was dynamic, and in resemblance to [23] removed blocks 
are logically deleted, blocks are being traversed and 
creation of long chains are avoided. In contrast to [6][23] 
the algorithm employs no special strategy for increasing 
scalability besides allowing disjoint Enqueue and Dequeue 
operations to execute in parallel. 
The algorithm presented by Anders et al. [9] was the first 
lock-free queue algorithm with all of the following 
properties: 
(i) Cache-aware algorithmic handling of shared pointers 
including lazy updates to decrease communication 
overhead. 
(ii) Linked-list of arrays as underlying structure for 
efficient dynamic algorithmic design. 
(iii) Exploitation of thread-local static storage for efficient 
communication. 
(iv) Fully dynamic in size via lock-free memory 
management. 
(v) Lock-free design for supporting concurrency. 
(vi)Algorithmic support for weak memory consistency 
models, allowing more efficient implementation on 
contemporary hardware. 
In the above review we talk about tree and FIFO queue 
now in the remaining section we discuss the concurrent 
priority queue. 
 
A priority queue is an abstract data type that allows n 
asynchronous processors to each perform one of two 
operations: an Insert of an item with a given priority, and a 
Delete-min operation that returns the item of highest 
priority in the queue.  
There exist several algorithms and implementations of 
concurrent priority queues. The literature on concurrent 
priority queues consists mostly of algorithms based on two 
paradigms: search trees  and heaps .The majority of the 
algorithms are lock-based, either with a single lock on top 
of a sequential algorithm, or specially constructed 
algorithms using multiple locks, where each lock protects a 
small part of the shared data structure. lets review the 
various algorithm proposed  for concurrent priority queue 
either lock based or lock free. 
Most of the concurrent priority queue have been 
proposed ,usually based on heap structure tree,[17,4,15] 
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etc. an obvious problem with these algorithms was that the 
root is serialization bottleneck. To avoid this problem 
Theodore et.al [10] proposed a concurrent priority queue 
based on the B-link tree. It is a B+ tree in which each node 
has a pointer to its right neighbor. The leftmost child of the 
B-tree is always containing the smallest key.the search 
operations continues in this manner until it finds  the leaf 
that might contain the key it is searching for ,at which 
point it searches that leaf,unlocks the leaf ,and returns. An 
insert operation starts by searching for the key that is 
inserting. The insert operations places an exclusive lock on 
the leaf ,locks the parent , and insert a pointer to the sibling 
in the parent. if the parent is too full, the parent is half-split 
and the restructuring continues until a non-full parent node 
is reached or the root is split. 
Empirical evidence collected in recent years [24, 11, 25] 
shows that heap-based structures tend to outperform search 
tree structures. This is probably due to a collection of 
factors, among them that heaps do not need to be locked in 
order to be \rebalanced," and that Insert operations on a 
heap can proceed from bottom to root, thus minimizing 
contention along their concurrent traversal paths. The 
algorithm given by Michel et.al[11] was based on the array 
based priority queue heaps. in it  the deletions proceed top-
down  but the insertions proceed bottom- up and 
consecutive insertions use a bit-reversal technique to 
scatter across the fringe of the tree, to reduce contention. 
the algorithm augments the heap data structure with mutual 
exclusion lock on the heap ‘s size and locks on each node 
in the heap. Each node also has tag  that indicates whether 
it is empty, valid , or in a transient state due to an update to 
the heap by an inserting process.  
Unfortunately, again the empirical evidence shows, the 
performance of [11] does not scale beyond a few tens of 
concurrent processors. As concurrency increases, the 
algorithm's locking of a shared counter location, however 
short, introduces a sequential bottleneck that hurts 
performance. The root of the tree also becomes a source of 
contention and a major problem when the number of 
processors is in the hundreds. In summary, both balanced 
search trees and heaps suffer from the typical scalability 
impediments of centralized structures: sequential 
bottlenecks and increased contention. 
The solution we propose in this paper by lotal et.al[12] is 
to design concurrent priority queues based on the highly 
distributed SkipList data structures of Pugh [26,27]. 
SkipLists are search structures based on hierarchically 
ordered linked-lists, with a probabilistic guarantee of being 
balanced. The basic idea behind SkipLists is to keep 
elements in an ordered list, but have each record in the list 
be part of up to a logarithmic number of sub-lists. These 
sub-lists play the same role as the levels of a binary search 
structure, having twice the number of items as one goes 
down from one level to the next.To search a list of N items, 

O(log N) level lists are traversed, and a constant number of 
items is traversed per level, making the expected overall 
complexity of an Insert or Delete operation on a SkipList 
O(logN). 
Author introduced the SkipQueue, a highly distributed 
priority queue based on a simple modification of Pugh's 
concurrent SkipList algorithm [27]. Inserts in the 
SkipQueue proceed down the levels as in [27]. For Delete-
min, multiple \minimal" elements are to be handed out 
concurrently. This means that one must coordinate the 
requests, with minimal contention and bottlenecking, even 
though Delete-mins are interleaved with Insert operations. 
The  solution was as follows. keep a specialized delete 
pointer which points to the current minimal item in this list. 
By following the pointer, each Delete-min operation 
directly traverses the lowest level list, until it finds an 
unmarked item, which it marks as \deleted." It then 
proceeds to perform a regular Delete operation by 
searching the SkipList for the items immediately preceding 
the item deleted at each level of the list and then 
redirecting their pointers in order to remove the deleted 
node. 
Sundell et.al [13] given an efficient and practical lock-free 
implementation of a concurrent priority queue that is 
suitable for both fully concurrent (large multi-processor) 
systems as well as pre-emptive (multi-process) systems. 
Inspired by Lotan and Shavit [12], the algorithm was based 
on the randomized Skiplist [28] data structure, but in 
contrast to [12] it is lock-free. 
The algorithm was based on the sequential Skiplist data 
structure invented by Pugh [28]. This structure uses 
randomization and has a probabilistic time complexity of 
O(logN) where N is the maximum number of elements in 
the list. The data structure is basically an ordered list with 
randomly distributed short-cuts in order to improve search 
times,  
In order to make the Skiplist construction concurrent and 
non-blocking, author used three of the standard atomic 
synchronization primitives, Test-And-Set (TAS), Fetch- 
And-Add (FAA) and Compare-And-Swap (CAS).  
To insert or delete a node from the list we have to change 
the respective set of next pointers. These have to be 
changed consistently, but not necessary all at once. the 
solution was to have additional information on each node 
about its deletion (or insertion) status. This additional 
information will guide the concurrent processes that might 
traverse into one partial deleted or inserted node. When we 
have changed all necessary next pointers, the node is fully 
deleted or inserted. 
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4. Comparison and Analysis: 

Various algorithm based on  blocking and non-blocking 
can be compared by their techniques used for concurrency 
control and  their respective  merits and demerits.shown in 
below table-1 
 

Algorithm Merits Demerits 
Efficient Locking 

for Concurrent 
Operation on B-

Tree[1] 

Small number of 
locks used Expansive  

locks 
 Using preparatory 

operations on 
B+Trees[2] 

High degree 
concurrency 

ARIES/KVL: key 
value locking 

method for 
concurrency 

control of multi 
action 

transactions 
operating on B-
Trees indexes[3] 

-high concurrency 
during tree 
traversal. 

-several B-tree 
operation be can  

part of large 
transaction. 

 

Parallel 
processing of  
large node B-

Trees[4] 

-Improve response 
time. 

-Reduce tree 
restructuring. 

Implementing 
Lock-Free 
queues[5] 

Algorithm no 
longer needs the 

snapshot of prakash 
[21],since the only 
intermediate state 
that the queue can  
be in is if the tail 
pointer has not 
been updated 

It required 
either an 
unaligned 
compare & 
swap or a 
Motorola 

like 
double-

compare –
and-swap, 

both of 
them are 

not 
supported 

on  nay 
architecture

. 

Simple, Fast, and 
Practical Non-
Blocking and 

Blocking 
Concurrent 

Queue 
Algorithms[6] 

The algorithm was 
simple,fast and 

practical.it was the 
clear algorithm of 

choice for machine 
that provides a 

universal atomic 
primitive. 

Poinets are 
inserted  

using costly 
CAS 

An optimistic 
approach to lock-

free fifo 
queues.[7] 

It reduces  the 
synchronization 

overhead in 
concurrent data 

structure 

Poor in 
performanc

e 

Using elimination 
to implement 

scalable and lock-
free FIFO 
queues.[8] 

1. Due to scaling 
technique, this 

algorithm allows 
multiple enqueue 

and dequeue 
operations to 
complete in 

parallel. 
2. The concurrent 
access to the head 

and tail of the 
queue do not 

interfere with each 
other as long as the 

queue is non-
empty. 

1. The 
elimination 

backoff 
queue is 
practical 
only for 

very short 
queues as 
in order to 
keep the 
correct 
FIFO 
queue 

semantics, 
the 

enqueue 
operation 
cannot be 
eliminated 
unless all 
previous 
inserted 

nodes have 
been 

dequeued. 
2. This 

approach is 
scalable in 
performanc

e as 
compare to 

previous 
one but 

having high 
overhead. 

Efficient lock-free 
queue that mind 

the cache.[9] 

All above 
algorithms do not 
consider the cache 
behavior ,this one 

improves on 
previous result by  

combining the 
underlying 

approaches and 
designing the 

algorithm cache 
aware 

This 
algorithm 
does not 
used any 

strategy for 
increasing 
scalability 

besides 
allowing 
disjoint 
enqueue 

and 
dequeue 

operations 
to execute 
in parallel 

. A Highly 
Concurrent 

Priority Queue 
Based on the B-
link Tree.[10] 

Avoid the 
serialization 
bottleneck 

Needs node 
to be 

locked in 
order to be 
rebalance 

An Efficient 
Algorithm for 

Concurrent 
Priority Queue 

Allows concurrent 
insertion and 

deletion in opposite 
direction. 

The 
performanc
e does not 

scale 
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Heaps.[11] beyond a 
few tens of 
concurrent 
processors. 

Skiplist-Based 
Concurrent 

Priority 
Queues.[12] 

Designed a scalable 
concurrent priority 

queue for large 
scale 

multiprocessor. 

Algorithm 
based on 
locking 

approach. 

Fast and  Lock-
Free  Concurrent 
Priority Queues 
for Multithread 

System.[13] 
 

This was a first 
lock-free approach 

for concurrent 
priority queue 

 

5. Conclusion 

This paper reviews the concurrency control techniques with 
respect to different data structures (tree, queue, priority queue). 
The algorithms are categorized on the concurrency control 
techniques like blocking and non-blocking. former based on 
locks and later one can be lock-free, wait-free or obstruction 
free .in the last we can see that lock free approach outperforms 
over locking based approach. 
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