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Summary 
The privacy invasion of the biometric technology is getting 
public concerns due to the fact that biometric characteristics are 
immutable. In other words, their compromise is permanent. 
Reissuable biometrics was devised to make the reissuable or 
replaceable of biometric templates possible once they are found 
compromised. Biometric Strengthening is a form of reissuable 
biometrics. It strengthens the biometric templates by 
transforming the original template values to form a new set of 
values through the Gaussian distribution. The performance of 
Biometric Strengthening is evaluated in three possible intrusion 
scenarios. Probabilistic neural network (PNN) is employed as 
classifier. The compatibility of Biometric Strengthening and PNN 
shows the potential of using them in real world application. The 
experiments are tested on own image-based handwritten 
signature data set due to the lack of benchmark database. 
Key words: 
Biometrics (Cancellable); Biometrics (Verification); Image 
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1. Introduction 

Biometrics itself contains no personal information, as in it 
never reveals the real name or address like what 
identification card does. This makes it more difficult to 
forge or steal. However, the real fear occurs when a 
biometric identifier (i.e. face image, fingerprint image, 
handwritten signature image, etc) and a person are linked 
together in a database. Unlike names, or addresses, which 
can be changed over time, most of the biometrics are 
relatively stable and cannot be replaced once it is 
compromised. Therefore, the most serious privacy 
dilemma confronting biometric technology is not one of 
physical intrusiveness, but rather one of personal 
autonomy. 

2. Motivation and Contribution 

Due to the privacy concerns, Bolle et al. [1] proposed the 
methodology of cancellable biometrics. It has received 

wide attentions to protect the secrecy of the biometrics 
database throughout the years. General idea of cancellable 
biometrics is to store a transformed version of the 
biometric data (cipher data). It provides a higher level of 
privacy in terms of its ability to generate multiple different 
templates from the same biometric data. Different 
templates can be created easily by just swapping the set of 
cancellable keys. This is to ensure that each template 
stored in every single application will not be repeated. The 
detailed survey of these approaches can be found in 
manuscript by Uludag et al. [2]. 
Cancellable biometrics consists of an intentional and 
repeatable distortion of a biometric data based on a 
specific transform. Once a transform method has been 
defined, the biometric data will be distorted in the same 
fashion at each presentation (from the process of 
enrollment to authentication). Some relevant works are 
discussed below. 
Ratha et al. [3] used a high-order polynomials function to 
transform the fingerprint minutia features in non-invertible 
manner. Goh and Ngo [4] combined the extracted face 
features with a set of pseudo random data (one-way hash 
function) to generate a unique discretized code for every 
individual. This method is named as BioHashing. 
BioHashing is implemented through iterated inner product 
between the pseudo random number/key and the face 
features. Each bit on the sign is determined based on a 
predefined threshold. During verification process, the 
input face template is biohashed and matched against the 
stored non-invertible discretized code. This work was 
extended by Teoh et al. [5] later. The error rate was 
minimized when a legitimate token was used. However, 
the performance degraded remarkably when the legitimate 
token was stolen and used by the imposter to claim as the 
legitimate user (stolen-token verification scenario). 
 This creates a serious problem especially in practical 
application. This issue was widely discussed by Cheung et 
al. [6] and Nanni et al. [7]. Cheung et al. [6] commented 
that the non-invertible random mixing process, i.e. 
BioHashing will destroy the optimality of most feature 
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representations. They believed this may lead to 
deterioration of recognition accuracy. Nanni et al. [7] 
rebutted Cheung et al.’s argument by using a 
multi-matcher fusion technique to alleviate the 
stolen-token problem. However, the reduction in error rate 
was not significant and the method used was complex. 
Later, Teoh et al. [8] employed a modified probabilistic 
neural network as the classifier to solve the problem. 
In this work, we proposed the Biometric Strengthening as a 
reissuable biometrics. The idea is adopted in the 
application of handwritten signature verification. The word 
of “reissuable” denoted that a template can be reissue and 
replace once it is found compromised. The main function 
of Biometric Strengthening is to combine a helper data 
(strengthen data in our case) with biometric data. Posses 
the same problem as other cancellable biometric 
techniques, the performance degraded greatly in 
stolen-token verification scenario. However, this problem 
can be entirely solved by using the original probabilistic 
neural network (PNN) as the classifier. PNN able to learn 
the Biometric Strengthening training samples very fast and 
the new training data can be added anytime without the 
need to retrain the entire network. This is an important 
factor especially for real-time application. Furthermore, 
PNN discriminates the distinct templates very well and is 
able to provide low error rates in both legitimate token and 
the stolen-token scenarios. 

3. Preprocessing 

Any ordinary scanner can be used as an image acquisition 
device. However, the scanning hardware may introduce 
certain noises to a signature image. Another source of 
noise may be speckled paper background where the 
signature is signed on. These noises on signature image 
may affect the feature extraction process. Therefore, they 
need to be removed. But preprocessing methods should be 
selected carefully as they may also remove the signature 
properties which are peculiar to a signatory. 
We used a median filter to smooth the image of a signature 
although the real noise distribution is not figured out. The 
using of median filtering is quite similar to the mean 
filtering. Each output pixel will be set to an average of the 
pixel values in the neighborhood of the corresponding 
input pixel. The only difference is during the median 
filtering, the value of an output pixel is determined by the 
median of the neighborhood pixels, instead of mean. 
The median is calculated by first sorting all the pixel 
values from the surrounding neighborhood into numerical 
order, and the considered median would be the middle 
pixel value. If the neighborhood under consideration 
contains an even number of pixels, the average of the two 
middle pixel values is used. 

The median is a more robust average than the mean. This 
is because the single very unrepresentative pixel in a 
neighborhood will not affect the median value significantly. 
Besides, due to the fact that median value must actually be 
the value of one of the pixels in the neighborhood, the 
median filter does not create new unrealistic pixel values 
when the filter straddles an edge. Therefore, we believed 
that the median filter is much better at preserving sharp 
edges than the mean filter. 

4. Feature Extraction 

4.1 Discrete Radon Transform (DRT) 

Inspired by the works of Coetzer et al. [9], discrete Radon 
transform (DRT) is used to transform the signature images 
into a feature space. This transformed feature space is very 
useful in our subsequent matching process. Assume that 
each signature image consists of N pixels in total, and 
intensity of the ith pixel is denoted by Ii, i = 1,…, N. The 
DRT is calculated by using β non-overlapping beams per 
angle and Θ angles in total. The cumulative intensity of the 
pixels that lie within the jth beam (jth beam sum) can be 
denoted as Rj, j = 1,…, βΘ. In discrete form, the Radon 
transform can therefore be expressed as below: 
  

∑
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wij indicates the contribution of the ith pixel to the jth beam 
sum. The value of wij is determined through 
two-dimensional interpolation. Each projection contains 
the beam sums which calculated at a given angle (Θ). In 
this work, Θ is set as 180°. 
 

4.2 Principle Component Analysis (PCA) 

 
 The limitation is that the DRT-transform values are 
quite massive to process. Therefore, principle component 
analysis (PCA) (Turk et al., [10]) is adopted to compress 
the said values. The compressed group of signatures is 
known as eigensignature. If the training sets of signature 
images are I1, I2, I3, …, IM. Then, the average signature of 
the set can define as below: 
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 Each signature differs from the average by the 
vector Υ−Ι=Φ ii . This set of very large vectors is then 
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subject to principal component analysis, which seeks a set 
of M (number of images in the training set) orthonormal 
vectors nn and their associated eigenvalues kλ which best 

describes the distribution of the data. The vectors nn and 

scalars kλ are the eigenvectors and eigenvalues of the 
covariance matrix: 
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where the matrix A = [Φ1, Φ2, …, ФM]. Obviously, the 
matrix C is of dimensions N2 X N2 where N2 is 
representing the number of pixels in the images. It is 
evident that the eigenvectors of C can span an algebraic 
eigenspace and provide an optimal approximation for 
those training samples in terms of the mean-square error. 

5. Biometric Strengthening 

The Biometric Strengthening transforming the feature 
values through the Gaussian distribution. It is believed to 
preserve enough actual identification markers to make the 
distortion repeatable. Each bit on the sign is decided based 
on the particular feature value. These transformed feature 
values are known as strengthen data (act as helper data in 
our algorithm). The general idea of methodology is 
described as below: 

1. Feature extraction: DRT is used to extract the 
image-based signature feature. The 
dimensionality of the DRT-transformed values is 
reduced through PCA. The final output is in 
vector format. The normalized PCA extracted 
coefficient, v: 
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2. The probability density function (p.d.f) of vi is 
computed with:  
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3. Compute the pi with
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Λ
,

, where the operation 

may take in either vi +k* pi or vi − k* pi. k 
denotes a constant value while the occurrence of 
addition (+) and subtraction (−) is followed by the 
sign of v, sign (vi). There are two ways to assign 
the sign bit: (a) store the sign bit straightforward 

from the PCA feature during enrolment and use it 
for authentication; or (b) using the token to 
generate the sign bit and applying it in the 
Biometric Strengthening process. 

4. Finally, the strengthen data, sv is done via: 
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The strengthen data, sv is represented by real number 
instead of binary number. Despite of maintaining the 
original handwritten signature image, a template of the 
distorted image (strengthen data) will be stored in the 
centered database. When the user returned to the scanner, 
his or her signatures will be transformed according to the 
same pattern via the token-stored sequence map. This will 
create a match with the transformed image (cipher data) in 
the database. 

6. Probabilistic Neural Network (PNN) 

PNN is a kind of radial basis network based on the 
Bayes-Parzen classification ([11], [12]). PNN consists of 
three layers. Besides the input layer, it contains a pattern, 
summation and output layers. The pattern layer contains 
one neuron for each input vector in the training set, while 
the summation layer contains one neuron for each class to 
be recognized. The output layer merely holds the 
maximum value of the summation neurons to yield the 
final outcome. 
In the learning mode, a collection of training signature 
samples is used to train PNN. Each of them models a 
Gaussian function centered at the training case. There is 
only one output unit per signatory. Each connected to all of 
the summation layers which are belong to the respective 
signatory, and at the same time, with zero connections 
from all other summation layers (representing other 
signatories). Hence, the output units simply add up the 
responses of the units which belong to the respective 
signatory. To estimate the probability density functions of 
the various signatories, each of the outputs is proportional 
to the kernel-based. This makes the interpretation of output 
easier. 
PNN can be trained in a much easier way as compared to 
backpropagation. The network is established by setting the 
weights of the network with the training sets. The 
modifiable weights of the first layer are set by: 
 

ijij P=ϖ                  (7) 
 

whereϖ ij denotes the weight between ith neuron of the 
input layer and jth neuron in the pattern layer. Pij is the 
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value of the ith variable of pattern j in training set. The 
second layer weights are set by:  

 

jkjk T=ϖ                  (8) 
 

where ϖ jk  is the weight between neuron j in pattern 
layer and neuron k of the output layer, and T jk = 1 if 
pattern j of the training set belongs to class k, else, T jk = 0. 
After the network is trained, it can be used for 
classification task. The output of the pattern layer is 
calculated through the radial basis function: 
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where outj is the output of neuron j in pattern layer, xi is 
the value of variable i for an input pattern in the testing set. 
The input of the summation layer is calculated with the 
following equation: 

∑
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where ink  is the input of neuron k in output layer. The 
outputs of summary layer are binary values, outj = 1 if ink 
is larger than input of other neurons, else outj = 0. 
The smoothing parameters (σ1, σ2, …, and σ j) need to 
determine carefully in order to obtain an optimal network. 
This factor needs to be selected wisely so that a reasonable 
amount of overlap can be obtained; too small deviations 
will cause a very spiky approximation which makes the 
generalization impossible, while too large deviations will 
smooth out the details. The straightforward way to obtain 
an appropriate figure is to select a number which produces 
a low selection error. This can be done through 
experiments. Fortunately, PNNs are not too sensitive to the 
precise choice of smoothing factor. 
For convenience sake, we use a straightforward procedure 
to select the best value for σ. Firstly, an arbitrary value of 
σ is chosen to train the network, and then test on a test set. 
This procedure is repeated for another σ’s values and the σ 
giving the least errors will be selected. 
The training time complexity can be represented as: 

 
)(MpO                 (11) 

 
M denotes the input vector dimension (for our case, 
depicts the length of PCA-compressed feature data), while 
p denotes the size of training samples. 
 

7. Experiments and Discussion 

7.1 Database Set-Up 

Due to the lack of benchmark image-based handwritten 
signature database, we constructed own database with total 
of 1000 signatures: 500 genuine signatures, 250 casual 
forgeries and 250 skilled forgeries. They are collected 
from 50 signatories and 5 forgers for a period of 2 months.  
Due to the non-repetitive nature of variation in the 
produced signatures (even among the same writers), the 
data preparation was intentionally divided into two stages. 
In the first stage, five sample signatures were collected 
from each writer. This session producing 250 samples. 
Second stage was conducted one month after the initial 
session. Another five sample signatures were collected 
from each writer again. This yields another 250 samples. 
To obtain casual forgeries, the forgers were allowed to 
view the writer’s name but not the writer’s real 
handwritten signatures. After obtaining the casual forgeries, 
the same group of forgers was requested to produce the 
skilled forgeries. In order to get high quality skilled 
forgeries, the forgers were provided with several real 
handwritten signature samples for each writer to refer and 
practice on.  
The pen or pencil used is not prescribed but signatures are 
written within a pre-drawn 5 x 2 grid on A4 paper. These 
signatures were scanned into the computer using a 24-bit 
millions of colors, 600 dot-per-inch resolutions. The 
individual images are extracted and labeled with the writer 
names and the signature class number. Only ‘perfect’ 
signatures are considered, i.e. no deterioration of the 
signatures such as the introduction of smears, scratches, 
etc, is allowed. 
The experiment schemes are designed as follow: four 
samples of each person are sequentially selected for Eigen 
basis construction and the remaining six samples are used 
for testing. The distance metric used is cosine angle. 

7.2 Performance Evaluation 

The system is evaluated based on false acceptance rate 
(FAR), false rejection rate (FRR), total success rate (TSR), 
equal error rate (EER) and genuine acceptance rate (GAR). 
Table 1 shows the verification rates for the different 
groups of forgery after combining with strengthen data. 
Biometric Strengthening has significantly increased the 
overall performance of the three forgery types. This 
indicate that the more powerful the original method (in our 
case, when PCA length = 100), the higher verification rate 
can be yield when combined with strengthen data. From 
the result, it is able to yield EER of 1.10%, 1.20% and 
2.10% for random forgery, casual forgery and skilled 
forgery respectively. This is a significant improvement to 
the accuracy of the contemporary biometric system as the 
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interdependency between FAR and FRR can be 
eliminated. 
To fully utilize the Biometric Strengthening, a constant 
value, k needs to be determined. Different constant values 
(k = 0.1; 0.3; 0.5; 0.7; 0.9) have been tested, and we found 
that the constant value of k = 0.7 leads to a better result 
with low FAR and high GAR in this application. Thus, 0.7 
has been set as k for the entire experiments. 
 
Table 1: Verification rates of the three forgery types after combining with 

strengthen data, tested on bit lengths from 10 to 150 

 

Besides being able to achieve high verification rate, 
another superiority of Biometric Strengthening is that it 
can separate the genuine and imposter into two clean 
distributions. Figures 1, 2 and 3 illustrate this phenomenon 
clearly by plotting the genuine and imposter population of 
the respective forgery. 
From the figures, there are two peaks in the distributions at 
each histogram. One peak corresponds to genuine 
matching and another one corresponds to imposter 
matching. The left statistical distributions on each graph 
show the result when genuine population are compared; 
while the distributions on the right are the results for the 
comparison among different signatures (imposter 
populations).

 

 
Fig. 1 Genuine and imposter distribution for random forgery when (a) original method and (b) combining with strengthen data. 

 

 
Fig. 2 Genuine and imposter distribution for casual forgery when (a) original method and (b) combining with strengthen data. 
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Fig. 3  Genuine and imposter distribution for skilled forgery when (a) original method and (b) combining with strengthen data.

 
 
The clear separation between the two populations is a good 
indicator for the FAR-FRR interdependency problem. 
Besides that, the decreasing mean and variance values 
obtained from the histograms denote that the Biometric 
Strengthening is able to minimize the intra-class 
(intrapersonal) distance while maximizing the inter-class 
(interpersonal) distance. The mean and variance values can 
be found in Table 2. 
 

Table 2: Statistic data for the genuine and imposter population for: 
random forgery, casual forgery and skilled forgery 

 
 
From the result, we can see that the proposed technique – 
Biometric Strengthening is able to narrow the imposters’ 
opportunities to gain access to the users’ personal data. 

7.3 Security Analysis: Performance Evaluation 

Application of Biometric Strengthening for image-based 
signature verification presumes that each signatory is 
associated with a portable device (for instance, it can be a 
USB token or a smart card) where the unique formulation 
map sequence is derived. This could raise the possibility of 
two identity theft scenarios: 
 

1. Stolen-token: the fraudulent verification which 
attempted using only the legitimate token without 
knowledge of the user-specific signature 
(applicable to random and casual forgeries). 

2. Stolen-biometrics: the fraudulent verification 
which attempted using only the intercepted 
signature of sufficiently high quality (applicable 
to skilled forgery) associated with the genuine 
user, but without the associated token. 

 
Scenario 1: 
 
This case presumes that the identity theft gets hold of the 
genuine signatory’s token credential without possessing 
the valid signature. To simulate the scenario, the respective 
external input (i.e., USB token or smart card) is used to 
generate the unique map sequence for all 50 user classes in 
our random and casual forgeries database respectively. The 
simulation results are shown in Figure 4 when random 
forgery combined with valid map sequence and Figure 5 
when casual forgery combined with valid map sequence. 
 

 
Fig. 4  Genuine and imposter populations of random forgery 

for stolen-token case. 
 

 
 

Fig. 5  Genuine and imposter populations of casual forgery for 
stolen-token case. 
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Both having strong overlapping in between two 
populations and blunt drop-off in the genuine population 
addressed the loss of unique map sequence for the genuine 
signatory. This depicts that when the respective map 
sequence combined with non-legitimate signatures, our 
system will treat it as a fraudulent validation. 
 
Scenario 2: 
 
This case presumes that the identity theft gets accessed to 
the signatory’s original signature, and producing a high 
quality skilled forgery which is closely similar with the 
original signature without possessing the valid sequence 
map (token). To simulate the scenario, the different 
external input (i.e., USB token or smart card) is used to 
generate the non valid map sequence for all 50 user classes 
in our skilled forgery database respectively. The simulation 
result is shown in Figure 6. 
 

 
Fig. 6  Genuine and imposter populations of skilled forgery for 

stolen-biometrics case. 
 
Again, a similar outcome as Figure 4 and 5 is obtained. 
The strong overlapping in between genuine and imposter 
population reveals that the uniqueness of combination for 
strengthen data and genuine signature vanished when 
different random sequence pattern is used to mix with the 
skilled forgery. This depicts that although identity theft can 
hold the actual signature, but without the valid sequence 
map (token), our system will treat it as fraudulent 
validation. This experiment also proving its diversity 
property in which the different map sequence will be used 
for different applications or agencies, where there is no 
chance for the identity theft to access through the 
signatory’s other profiles even he has accessed through 
one of them. 
However, it would not entirely solve the replaceability 
problem of biometrics in the sense that if an imposter gets 
hold of a user’s actual signature (skilled forgery case) and 
makes a passable model (stolen-token case); he could still 
wreak havoc with it. By illustrating the reality of risk, our 
system would let the user to quickly reissue the 

compromised biometric profile (signature) and generate a 
new one, akin to replacing a lost or stolen credit card. 

8. Compatibility with Probabilistic Neural 
Network (PNN) 

As mentioned previously, the main drawback of Biometric 
Strengthening is its great degradation in performance when 
the legitimate token and legitimate biometrics are being 
stolen together and used by the imposter to claim as the 
legitimate user.  Although the Biometric Strengthening 
alteration is invertible, in which there is no way to 
intercept the strengthen code by knowing either the 
alteration or biometric data (signature) alone; but if this is 
the case where the skilled forger can produce exactly the 
signature and by holding the strengthen code, he still can 
hack into the system. Therefore, detecting skilled forgery 
becomes a challenging task in real world application. To 
alleviate this problem, we proposed to employ a 
probabilistic neural network (PNN) as the classifier. 
 This method is evaluated by using only the skilled 
forgery from the same independent database. We randomly 
select 4 Biometric Strengthening templates for training and 
the other for testing purposes. 10C4 = 210 runs are 
performed with different partitions between the training 
and testing sets by using a smoothing parameter of σ = 10. 
This process is repeated for five times per each run and the 
results are averaged to reduce the statistical frustration 
caused by the random alteration from Biometric 
Strengthening process. The association of Biometric 
Strengthening and PNN yielding EER of 1.5% with PCA 
length = 100, Biometric Strengthening constant value, k = 
0.7 and PNN smoothing parameter, σ = 10, which is better 
than the association of Biometric Strengthening and cosine 
angle (EER of 2.1%). The result is shown in Figure 7 
(Legitimate-Token: PNN). 
 

 
 

Fig. 7  ROC curve of skilled forgery for the association of 
Biometric Strengthening and PNN for: legitimate-token case and 
stolen-token case compared against the stolen-token case for the 

association of Biometric Strengthening and cosine angle. 
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This process is also applied to the stolen-token scenario, in 
which we mix the legitimate token with the imposter 
signature template (skilled forgery). From the Figure 7, it 
shows that the performance of Biometric Strengthening in 
the stolen-token scenario (Stolen-Token: Cosine Angle) is 
degraded significantly (EER = 20%), which is worse than 
result provided by the original method. However, the 
association of Biometric Strengthening and PNN 
(Stolen-Token: PNN) depicts prominent performance 
improvement in the stolen-token scenarios. Note that the 
error rate is reduced to 4.4%. This is an important 
performance improvement of practical concern. PNN 
works well in this context due to the high distinctive 
characteristic of the Biometric Strengthening training 
templates. 
Besides, the experiment also shows that the computation 
time can be reduced significantly with just slight 
performance drop when only one template per user is used 
(as compared to the case of 4 training samples as shown in 
Table 3). 
 

Table 3: Total time spent to run one course of experiment and the 
accuracy of PNN in stolen-token scenario 

 
  
In this case, the time complexity of PNN that depends on 
the input vector dimension, M and the number of training 
samples, p can be decreased notably due to the compressed 
feature data length through PCA and single training 
sample per user settings. As such, the association of 
Biometric Strengthening and PNN is feasible in practical 
usage due to its high speed and accuracy performance. 

9. Conclusion 

We have proven that the holistic analysis statistical 
approach is very suitable for image-based signature 
verification task. It is faster, less computationally intensive 
and less prone to misconceptions during the extraction 
stage as there is no priori assumptions will be made on the 
structure of the signature. Biometric Strengthening is able 
to increase the accuracy of the system. Given the 
robustness of our algorithm and the fact that only concern 
on global features, optimum results are obtained when our 
algorithm is applied to our own independent database of 
1000 signatures from 50 writers and 5 forgers. PNN is 
used to rectify the problem when the legitimate token is 
stolen and used against by the imposter to claim as the 
legitimate user. The high accuracy and speed of the 
combination of Biometric Strengthening and PNN are 
feasible to be used in a practical verification scenario. To 
make this system applicable to real world transaction such 

as to verify the signatures from credit card transaction 
receipts or bank cheques, we need to know that a client’s 
signature tends to evolve over a long period of time. Thus, 
to deal with this problem is to collect training signatures at 
regular intervals or direct replace those training signatures 
that differs the most from the client’s current signature 
model with one or more test signatures, yet adapt the 
signature model accordingly. 
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