
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

31

Manuscript received June 5, 2013
Manuscript revised June 20, 2013

An Optimal Algorithm for Matching String Patterns in Large
Text Databases

K.s.m.v.Kumar†, S.Viswanadha Raju††, and KA.Govardha

†Assoc.Professor in Department of CSE ,SIET ,IBP, AP-501506, India
††Professor in Deparment of CSE, JNTUH University, Jagityal,AP-505501, India

†††Professor in Department of CSE, JNTUH, Hyderabad, Ap-500085, India

Summary
Modern parallel distributed string matching algorithms are
always based on networked computation model. Those
algorithms depends on the cost optimal design and the
theoretical speed. The motive of current research
challenges and identified the new directions I.e distributed
environment where in which the given text file is divided
into subparts and distributed to P1 to PN no. of processors
organized in parallel environment called as hypercube
network. Based on the distributed memory machine string
matching algorithms proposed by CHEN and BI-Kun, a
optimal algorithm for matching string patterns in large text
databases over parallel distributed hypercube networked
architecture is proposed in this paper. And also an
improved parallel string matching algorithm based on a
variant Boyer-Moore algorithm is presented. We
implement our hype and integrated algorithms on the
above architecture and the experiments are proven that it is
truly practical and efficient on parallel distributed
Hypercube networked model. Its computation complexity
is O(T/p + m-1), where T is text file of length n characters,
and m is the length of the pattern, and p is the number of
the processors.
Keywords:
Boyer-Moore algorithm, distributed networked model,
parallel string matching, optimal design, and patterns.

1. Introduction

Pattern matching diversely used in many Applications
of computer sciences and it received much attention over
the years due to its importance in various applications
such as text processing, Search patterns , information
retrieval, computational biology, address lookup, and
intrusion detection [3]. All those applications require
highly efficient and fast-search algorithm to find all the
occurrences of a given pattern in the text. Rapid growth
of abundant information makes necessary to have efficient
methods for information retrieval. Now a days commercial
search engines are totally dynamic and their web indexing
is done on a few data centers [6]. It is necessary to come up
with scalable indexing, searching and query processing

techniques for next generation IRS in the nearest future.
The web comprises wide variety of content in the form of
unstructured meta data, databases, Google maps, images,
Audio/videos and textual documents etc.[3]. The main
challenge of present day IRS design is scalability. A recent
studies says that the number of servers required by a search
engines to keep up with the load in 2013 may be in the
order of millions as such the text size is increasing
exponentially, tens of billions of pages[3,6]. Hence it is
very urgent to develop a truly distributed very large scale
systems that enables fast and accurate search over very
huge amount of information content [12].
Actually the string Matching problem is classified into two
major categories, known as Exact and Approximate string
matching. The Exact string-matching was Further
sub- divided into single String Matching and parallel
String Matching. Similarly approximate string matching is
divided into K-mismatches problem and K-differences
problem [20]. All these problems can be solved by either
software-based solutions or Hardware- based solutions.
Since software-based solutions are slower and less
efficient, hardware-based solutions are highly preferred.
This section continues with a brief discussion and
classification of all early string matching algorithms was
covered.
The Knuth-Morris-Pratt(KMP) algorithm[2] and the
Boyer-Moore(BM) algorithm[7] both a re more
fami l ia r single string matching algorithms. The KMP
algorithm gives guaranty that it is independent of t e x t
size and linear worst-case execution time in the pattern
length, and the worst-case computation complexity is O(n
+ m); on the other hand, the BM algorithm provides near
optimal average case and best-case behavior, and it only
needs O(n / m) comparisons in the best case. More than
hundreds of algorithms has been proposed based on the
KMP or BM algorithm, such as BMH algorithm [24], QS
algorithm Rabin-krap, fast search, Bi-kun [20,8] and so
on [12]. Based on the critical observation on the
characteristics of the “bad character” and “good suffix” in
BM algorithm, Cantone and Faro [25] designed a more
efficient algorithm called Fast Search. Though it keeps the
good characteristics of the BM algorithm, its worst-case
computation complexity is still O(n × m). BI-kun proposed

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

32

an improved single string matching algorithm by making
some modifications on the algorithm proposed by
Cantone and Faro[25]With those Modifications, the good
characteristics of the algorithm are still preserved, while
the worst-case computation complexity has reduced from
O(n × m) to O(n + m)
In this paper we mainly focus on string matching on
distributed environment called as hypercube network
model using RMI method [10]. Given a pattern length
may be smaller or bigger, we wish to count how many
times it occurs in the text and its positions of occurances.
For pattern matching we used two distributed algorithms
called as integrated algorithm (KMP and Boyer-Moore)
and hype algorithm (Boyer Moore string matching on
hypercube network). The text file is processed in two ways,
one is non-overlapping and second is overlapping text
partitioned processing[8]. In both the cases integrated and
hype algorithms are applied for string matching and the
remote server will be invoked using JAVA RMI method on
hypercube networked model to reduce the search
time[1,8,10] . Our proposed Algorithm result performances
and time complexities are compared with others
Algorithms called as BMH, Fast-search, and BI-Kun
Algorithms. The performance differences are clearly
discussed in the result analysis chapter [20,29] .The
proposed algorithm computation complexity is O(T/p +
m-1), where T is text file of length n characters, and m is the
length of the pattern, and p is the number of the processors.
It shows that the search time is inversely proportional to No.
of processors.
The paper is organized as follows Chapter II deals with
Related work of single and parallel string matching
algorithms in both software and hardware approaches,
Chapter III deals with text processing techniques. Chapter
IV explains about the Distributed Hypercube Network
Architecture And Algorithms. Chapter V presents
Experimental Setup. Result analysis and discussions were
discussed in Chapter VI and ChapterVII is conclusion.
Acknowledgements and the References are added at the
end.

2. Related Work

In This chapter we discussed the all the algorithms which
gives an overview that, how often the algorithms used in
achieving the desired information along with its time
complexities. String matching can be achieved by
designing algorithms in two categories namely, exact
string matching algorithms that locates exact match of the
pattern in the text string. and approximate string matching
algorithms that finds closest possible match of pattern in
the text with some mismatches. We can address Exact
string matching problem in two ways single string
Matching and parallel string matching, can be

implemented using software based approach or hardware
based approach[7]. Software based algorithms are slow in
performance compare with hardware based algorithms
[16,22]. Hardware based solutions to string matching
provides efficient data storage and fast matching .

2.1 Software-based Single String Matching
Algorithms :

In 1972, Cook experimented string matching problem
using two way push down auto meta and solved pattern
matching in O(m+n) time in worst case where m and n
are the lengths of text and pattern respectively[5]. In
Succeeding with Cooks experiments in 1977 Rivest
determined that every string matching algorithm must go
through at least n-m+1 comparisons at worst case. This
shows there is no solution of obtaining a sub linear n
worst time in solving the issue. Donald Knuth- Voughan
Pratt-James H. Morrris (1977) basing on modifications of
Cook’s theorem came up with a new string matching
algorithm popularly known as KMP Algorithm, briefly
discussed below[2]. It is the first linear pattern matching
algorithm discovered with a run time of O(m+n).

Aho-Corasick Algorithm
Unix fgrep command implementation is based on
Aho-Corasick algorithm which locates finite and fixed set
of strings in a file and outputs the lines containing at least
one of the strings[9].The time complexity of this
operation will be O(m+n*k), where m is the sum of the
lengths of the k strings of dictionary X and n is the length
of the text Y. This indicates the weakness of this approach
as the text has to be read for k times.
Boyer Moore Algorithm
Bob Boyer and J.Strother Moore discovered this algorithm
in the year 1977 which is known as one of the most
familiar algorithms and also stands as a benchmark for
string matching process[7]. The algorithm compares
pattern within a sliding window over a text string,
applying right to left scan of alphabets inside the window
where as the window slides from left to right over the text.
The goal of this algorithm is to skip certain fragments of
text that are not good for comparison. This decision is
taken by placing the window in left alignment with text.
The algorithm begins to comparing the pattern characters
with the text characters in the order of right to left. If ‘m’
being the length of pattern (x), the algorithm compares
xm=ym, where ‘y’ symbolizes text. On true result of this
comparison the procedure continues with xm-1=ym-1 and on
the occurrence of false, the algorithm makes two ways out.
One is named as bad character shift or occurrence shift
and the other is called as good suffix shift or better factor
shift or sometimes matching shift. On grounds of these
two measures the window makes shifts and locates the

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

33

pattern.

Horspool Algorithm
Boyer Moore algorithm uses two gauges to know shift
distance. Good suffix shift is quite complicate to
implement so there was a need of a simplified algorithm
using bad character measure[7]. This algorithm is a
simplification of Boyer –Moore algorithm based on bad
character shift. It has been produced by Nigel Horspool in
the year 1980.The reason for this simplification is pattern
is not always periodic[29]. The concept used is when a bad
character, reason for a mismatch is encountered; the shift
decision is made by analyzing the characters towards the
right of the text window. Horspool explained this problem
in two cases.
Case I: Suppose the bad character does not exist in the
pattern then shift the whole window of size pattern.
Case II: There exists two matches of the bad character in
the pattern then the rightmost character is preferred.
With KMP and the BM string matching algorithms, lots
many a lgor i thms are d eve loped to improve the
efficiency of the original algorithms. When the text size
is large enough, Horspool[24] suggested using only “bad
character” rule shifts when a mismatch occurs. This
algorithm is practically faster when the text size is big
because it does not need to make a comparison between
the “bad character” shift and the “good suffix” shift which
is used to shift the pattern when a mismatch occurs.
Hundreds of other algorithm variants based on KMP or
BM and a fairly complete bibliography are available on the
web site [27]. Cantone and Faro [25] discovered that “the
Horspool bad character rule leads to larger shift increments
than the good suffix rule if and only if a mismatch occurs
immediately, while comparing the pattern p with the
window”, so they suggested using the “bad character” rule
when the mismatch occurred immediately in comparing
the text, otherwise, using the “good suffix” rule. If the
pattern is periodical, the worst-case computation
complexity of BM algorithm is O(n × m), so are the BMH
algorithm, the QS algorithm and the Fast-Search
algorithm[29]. Galil [21] proposed an algorithm to
improve the worst case running time of the BM algorithm,
and he proved the improving BM algorithm is O(n+m) in
worst case.

2.2 Software Based Parallel String Matching
Algorithms:

The first optimal parallel string matching algorithm was
proposed by Galil [21]. On SIMD-CRCW model, this
algorithmis required n / log n processors, and the time
complexity is O(logn); on SIMD-CREW model, it
required n/log 2n processors and the time complexities is
O (log 2n).Vishkin [28] improved this algorithm to

ensure it is still optimal when the alphabet size is not
fixed. In [20], an algorithm used O(n × m)processors was
presented, and the computation time is O(log log n). A
parallel KMP string matching algorithm on distributed
memory machine was proposed by CHEN[26]. The
algorithm is efficient and scalable in the distributed
memory environment. Its computation complexity is O(n /
p + m) , and p is the number of the processors . Cantone
and Faro [25] designed a more efficient algorithm called
Fast Search. Though it keeps the good characteristics of
the BM algorithm, its worst-case computation complexity
is still O(n× m). BI-kun proposed an improved single string
matching algorithm by making some modifications on the
algorithm proposed by Cantone and Faro [25]. With those
modifications, the good characteristics of the algorithm
are still preserved, while the worst-case comp-utation
complexity has reduced from O(n × m) to O(n + m) .

2.3. Hard ware Based Single String Matching
Algorithms:

Mishina Algorithm
Mishina et al produced a string matching algorithm for
vector processors in the year 1993.This algorithm is used
by Hitachi’s pipelined vector processor and Integrated
vector processor. A vector processor also known as an
array processor is a CPU which executes instructions in a
single dimensional array of data items[14]. Here
Aho-Corasick algorithm is applied to all substrings drawn
from the cutout part. This way of applying string matching
is ten times faster than the scalar string matching using
Aho-Corasick algorithm.
Sidhu’s et al proposed a Algorithm for String Matching
using Hardware Technology. The algorithm is grounded on
non-deterministic finite state machine (NFSM) for regular
expression matching[15]. A regular expression is a pattern
that matches one or more strings of characters. This
approach needs a time of O(m), m symbolize pattern
length.
Tuck et al. projected few alterations to Aho-Corasick
algorithm to lessen the memory needed to storage of
malicious strings and also made worst case time better.
This compressed data storage is projected to accommodate
the data in the cache of commodity processors or on-chip
SRAM, abbreviates Static Random Access Memory[13].
Experiments showed that the compression techniques
specified above could run in 50 times less amount of
database size over by Aho-Corasick algorithm.

2.4 Hardware Based Parallel String-Matching
Algorithms:

String Matching based on FM-Index
FM-Index is a full text indexing procedure that combines
Burrows-Wheeler Transformation and suffix array to

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

34

locate pattern. This technique was given by Paolo
Ferragina and Giovanni Manzini in 2000.The benefit of
using this approach is FM-Indexing is very space efficient
and extremely fast. FM-Index has two pointers namely T
and B that initially points at top and end of the suffix
array[16]. T and B pointers point to the indices that refer
suffix locations where a pattern can occur. The pointer ‘T’
points to a suffix location where there is a possibility of
first occurrence of pattern and ‘B’ points to a suffix
location where a pattern can occur for the last time. If the
index pointed by T is greater than or equal to an index
pointed by B then the pattern does not occur in the string.
In 1979, Commentz- Walter brought up a format by
concatenating Boyer-Moore algorithm with the above
method so that an automaton for opposite set of keywords
is build. This worked well for small length pattern string
that original Aho-Corasick algorithm, running in a
quadratic amount of time in worst case[9]. By adopting
preprocessing, it achieved a linear time of O(n). An
identical style of addressing pattern matching was given
by Kim and Shawe Taylor in 1992 employing Boyer
Moore- Horspool [7,24]algorithm by Baeza-Yates,
1990.Multiple-String search using shift-add algorithm by
Baeza-Yates and Gonnet, in 1989, 1992 presents a flexible
numerical access taking O ([n/w]*m) time, w representing
computer word size in bits. If m < w, then text is scanned
in a linear time.For searching a text repeatedly to locate
occurrences of heterogeneous pattern it is good to
construct an auxiliary text index. One of this is presented
by Weiner, 1973 or a suffix tree that can be put up in a
linear time .

3. Text Processing Techniquices

3.1. Overlapping Text Partition

Making text ready to be scanned for string search so that it
helps yield reduced search time is text processing. The
root lead towards this starts with divide and conquer
procedure and dynamic partition techniques intended for
parallel processing. For a text of length n and pattern of
length m, and n ≥ 2m cut text into n-m+1 partitions. The
length of each partition equals the length of the pattern, m.
To make text partitions overlap, the next successive
partition starts from the position | Bi |-m+1 of the current
partition/block on the text where Bi is the length of the
current partition[8]. Assign each partition and the pattern
string to one of the n-m+1 processors. Each processor
looks for the equality of the partitioned text substring and
the pattern using any one of the linear string matching
algorithms and returns 1 if a match is found and 0 on
mismatch.

3.2. Non-Overlapping Text Partition

Divide and conquer paradigm using non-overlapping
partitions is the other way of solving string matching.
Non-overlapping text partition results in a drawback of
pattern bifurcation among partitioned sub texts; this loses
the pattern string continuity. For example for a text string
ABCDCDAA, and pattern string CDCD, the
non-overlapping text partitions of pattern length would be
ABCD, CDAA. The Pattern ‘CDCD’s search in these
substrings would result in non-occurrence of pattern string
but pattern very much exists[8,10]. To overcome the above
problem, instead of slicing text, decompose pattern string
into its partitions employing divide and conquer strategy
and addressing string matching in multi processor
environment.

4. Distribured Hypercube Network
Architecture and Algorithms

Experimental setup required for the above implementation
is more processors P(at least four) connected with
hypercube model on INTERNET of either similar systems
or dissimilar systems[1,8,10]. P processors where 0<P<5
and time, by taking K patterns where 0<K<4 as key factor,
before conducting test.
In computer science, a hypercube network is a
configuration of multiple parallel processors having
distributed memory such that the locations of the
processors are analogous to the vertices of a mathematical
hypercube and the links correspond to the edges. For an
n-dimensional hypercube, as mentioned above, it has 2n
processing nodes and n*2n-1 edges coupled in an
n-dimensional cube network. The 2n nodes are designated
by binary numbers from 0 to 2n-1. The nodes are
connected by links responsible for intercommunication[8].
The two nodes are connected if the binary numbers
assigned to it stand apart by exactly one bit position.

4.1 Message Transmission in Hypercube Network:

Parallel broadcasting n-dimentional network assumption:
For degree d forwarding, we assume inputs are arranged in
d different input streams as we described in algorithms 2
and 3 [8,10,12].

Let subtext i represents the ith (from left) input stream of
size (T/p+m-1) and let m be the size of input pattern and
d be the degree of parallelizium.
Procedure Hypercube(myid,input text,input pattern, logP,
 output)
begin
 Node(state)= input //local node.
 For i= 0 to logP-1 // repeat log

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

35

P times
 dest= myid XoR 2i // determine common server
 send state to dest // Exachnge data
 receive message from dest
 node /state =OP(state, message)
 end for
 Output=state(input node)
end.

Algorithm 1: In the hypercube communication, the above
procedure is executed by each task in a hypercube
communication structure, with logP denoting the size of
the hypercube (P = 2logp) and myid is the tasks identified
in the range 0....2logP-1 . XOR denotes an exclusive or
operation and OP is the user specified operator used to
combine local data with data received from the ith
neighbor in the hypercube .

4.2. String-Matching Algorithms:

The integrated and hype algorithms implements Boyer
Moore string matching algorithm in a parallel environment.
The input text string is sliced into ‘i’ subtexts such that
each text partition holds (n/P)+m-1 text string characters
with m-1 text characters overlapping
and non-overlapping fashion in each partition, here P
refers to the number of processors in the topology, m and n
being the lengths of text and pattern string
respectively[12] .The number of sub texts obtained after
partitioning the text string using the above formula equals
the number of processors allotted in the architecture, i.e.,
i=P, thereby representing the static allocation of the
processors. The complete idea behind the working of this
procedure can be well understood by the algorithm given
below[8].

Hype Algorithm:(Overlapped String Matching on
hypercube network)
Begin
 Step 1: Inputs :Text file T of size n, pattern p file of
size m and No.of processors (P).
 Step2: Text file division into ‘ i ‘ No.of subtexts,
of size (n/P)+m-1 text characters using m-1 overlapping
text characters are stored in a directory.
 Step 3: Broadcast these sub text files to each
processor in the hyper cube network topology.
 Step 4: Each Processor searches the pattern string in
the given Sub text file using the Boyer Moore Algorithm
and sends back the result.
 Step 5: A window of size pattern slides over the text
Scanning m elements of text string with the pattern string
of length m from right to left.
 Step 6 : On a successful match of all the pattern
characters with the text characters in the window, locate
the pattern string and continue matching for the next

occurrence skipping m characters of the text.
 Step 7 : Repeat steps 5.1 to 5.3 till n-m+1 position of
the text string.
 Step 8: Each processor stores the sub results and
sends back to the main program to sum up the obtained
results.
End.
Integrated Algorithm:(Non-Overlapping String-Matching)
\
Algorithm (pattern, text)
Begin
Step1:Divide text string into equal length partitions. For
odd length text, fill the empty space with null characters.
 Step2:Broadcast subtext and the pattern string to the
processors in the network.
Step3:Parallel pattern search, Each of the processor
attempts to locate the pattern in the assigned subtext using
Boyer Moore Algorithm.
Step4:Form the connector strings Join the first and last
m-1 characters of the adjacent partitions giving a new
connector string.
Step4:Sequential search Applying Boyer Moore algorithm
on the above strings locates the existence of the pattern.
Step5:Sum Up The results generating from multi
processing search and the single search is summed up to
know the total number of occurrences of the pattern.
End.

Figure.1 Overlapped and Non overlapped Partition algorithm on

distributed network.

5. Time Complexity Analysis

The time complexity of our improved Parallel single
string matching algorithm is O(n / p + m) , because
the text of length n is partitioned and then
assigned to each processor before processing
by each processor, the length of the assigned text is n
/ p , and p is the number of the processors, at most 2m
− 2 characters need to be checked further, so the
complexity is O(m). So the total time
complexity of the [25] algorithm is O(n / p + m).
Practical distributed string-matching algorithm
architecture proposed by Bi-kun, the pattern of length m
need to be broadcasted to all of the processors[29]. If
Binary-tree communications strategy is used, the

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

36

communication compleity is O(m logP) and total time
complxity is estimated as O(m logP+m).
Hype and integrated algorithms on the distributed
hypercube networked architecture are implemented and
the experiments results are proven that it is truly practical
and efficient. Its computation complexity is O(T/p+m-1),
where T is text file of length n characters , and m is the
length of the pattern, and p is the number of the processors.

6. Experimental Results and discussions

We have considering one text files for the implementation
discussed in the previous chapter such as f1 of size 3 Mb
from TREC- 05psn datasets . The pattern files are p1, p2,
p3 with respect to files(23, 5,6 bytes). Here bytes mean
number of characters. Time is measured in milli seconds
 pi,j, represents pattern i in file j
Ex : p1, 1 gives pattern 1 in file 1 (f1), p1, 2
gives pattern 1 in file 2 (f2)

File 1 The pattern files that are searched in the
text file f1 are p1, 1 of size23 bytes, p2, 1 of size 5 bytes, and
p3, 1 of size 6 bytes has to be found using Hype Exact
string matching algorithlm and Integrated
Algorithms.

The program gives the output results in the form of text
file along with the instant graphs . The output results text
file gives the test parameters like start time ,end
time and elapse time , along with the time taken for
reading the text file and broad costing(communication)
timings of sub text files . It also gives other kinds of
out put parameters called as position of the pattern
occurrences and size. The figure.2 and 4 in tables we
shown only the elapse time and average time of the
processors involved in milliseconds, along with the
no.of times the pattern is occurred . Actual test is
conducted separately for single processor, two processors,
three processors and four processors. Every time,while the
test is conducted the program gives elapse time for each
processor separately. Therefore the average time is
calculated from output result based on the maximum time
taken by the individual processor among the processors
involved for the particular test. The table shows that for
each pattern, as the No. of processors increases the time
reduces and accuracy Increases. The graph's shows that the
search time taken by single processor is more when
compared with multiple processors. It is also observed that
as the pattern size increases the search time decreases
further. For bigger pattern sizes string matching is more
easier for Boyer moore algorithm because of less number
of mismatches .

6.1 Hype Algorithm Results:

Table 1: Hype Algorithm’s Results are Tabulated.

Figure 2: Hype Algorithm’s variation of time among the

processors for File 1

Table 1 shows the output results of file1 of 2 MB, for three
patterns of different sizes P1 (23 bytes), P2 (5 bytes) and
P3 (6 bytes). The table gives the understanding that the
algorithm takes less time when number of processors
increase and the time also varies with the pattern size. It is
evident that, If pattern size increases and also No.of
occurrences increases then the computing time reduces for
given text file. The table gives the reading that the size of
the pattern is proportional to the elapse time. In general it
can be concluded that the results are effective when
number of processors increases. The table also shows the
communication time and pattern sizes .
The variation in timings for three search patterns are
compared with the help of combined graph constructed
using on line graph method shown above. In the above
graph with the processors on X-axis and time on Y-axis
in milliseconds, shows the three patterns in three different
lines with different colors and timing mentioned with
numerics on graphs .As the number of processors
increases each of the pattern’s search time reduced to a
better extent. The pattern of bigger sizes(in case of
pattern 1) the computing time is very less shown in the
above graph. This algorithm works well for any pattern
size with respect to No. of processors involved and the
performance will be improved further for bigger pattern
sizes and alsoif more no. of processors involved.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

37

Figure 3 :On line graph for Comparison of three patterns for text file 1

6.2 Integrated Algorithms Results:

Table 2: Integrated Algorithm results are tabulated

Figure .4: Integrated Algorithm Shows the variation of time among the

processors for File 1

Table 2 shows the output results of file1 of 2 MB, for three
patterns of different sizes P1 (23 bytes), P2 (5 bytes) and
P3 (6 bytes). The table gives the understanding that the
algorithm takes less time when number of processors
increase and the time also varies with the pattern size. It is
evident that, If pattern size increases and also No .of
occurrences increases then the computing time reduces for
given text file .The table gives the reading that the size of
the pattern is proportional to the elapse time. But as the No.
of processors increases, it gives the abnormal
computing/search timings was observed (increasing and
again decreasing).
The variation in timings for three search patterns are
compared with the help of combined graph constructed
using on line graph method shown above. In the above
graph processor mentioned on x-axis computing time
mentioned on y-axis in milliseconds. From the graph it is
evident that three patterns are behaving abnormally, some
times computing time increases as the No. of processors

increases and again decreases was observed. Hence
ingeneral we can conclude that integrated algorithm
performance is not good when compared with hype
algorithm. So hype algorithm is excellent for string
matching in large text data bases, because it gives smart
results and performances.

Figure 5 :On line graph for Comparison of three patterns for Text

File 1.

6.3 Performances Comparison of Five
Different Algorithms:

The experimental results presented in this paper which
allows comparing of search /computing time of five
different algorithms. Fast-search, BMH, Bi-Kun,
Integrated and Hype Algorithms implemented in the JAVA
programming language using RMI method. For simplicity
reasons we experimented on only N= 4 No. of processors
and are heterogeneous systems of each configuration is
more than 650GB HDD, 6GB RAM and intel processor
2.5Ghz. The length of text is 2 MB and pattern file of
size ranges from 2 bytes to 26 bytes and experiment is
conducted almost 12 time I.e 2,4, 6, 8,10,12,14,16,18,20,
22 24 and 26 bytes, each time pattern size increasing to
2 bytes. The text file taken from TREC -05psn and each
time pattern is selected randomly. The test results shows
that the pattern size is small then fast-search and Bi-kun
Algorithms are having better performance than BMH. As
pattern size increases Bi-kun Algorithm is little better than
BMH and fast-search algorithms. But in case of Hype and
Integrated Algorithms the performances are improved to
the better extent when compared with oher three
algorithms. The search timings of all five Algorithms are
tabulated in the table, and it is evident that The Hype
algorithm works well and the performance is almost
double when compare with Bi-kun algorithm. It also
identified that for bigger pattern sizes the Hype algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

38

gives phenomenal growth in the performance and search
time reduces further. In the other hand integrated
algorithm gives the non-uniform performance.

Table .3 BMH,Fast Search , BI-KUN Integrated and Hype Algorithms
test results are tabulated.

Figure .6: BMH,Fast Search , BI-KUN Integrated and Hype Algorithms

Shows the variation of time among the processors for give Text File.

Table 3 shows the output results of file2 of 2MB, for 12
patterns of size ranges from 2bytes 26 bytes in increase
of multiples of 2bytes each time. In the table the results
of five algorithms called as BMH, Fast-search, BI-Kun
and integrated & Hype algorithms are tabulated. The table
gives comparison of five different algorithms and we can
understand how the algorithms are behaving with different
pattern sizes for given text file.It is evident that the
pattern size increases the search time reduces for given
text file was observed and it is also identified
search/computing time is always inversely proportional
to No. of processors involved. From the table we can
easily conclude that the HYPE Algorithm exhibits the
highest performance.
This graphs is constructed on line by feeding the results
from the above table. The variation in time for twelve
search patterns are compared with help of combined graphs
constructed using online graph method shown above. It is
evident that the pattern of size 2 bytes and for text file
of size 2MB and No.of processor involved is four then ,
the BMH takes the 100 ms, Fast-search takes 45 ms,
Bi-kun takes 42 ms , where as our own algorithms takes
very less time when compare with other three algorithms,
integrated algorithm takes 25 ms and Hype algorithm takes
16 ms. It is identified that, If No.of processors increase the
search time reduces further and also it decreases drastically
as the pattern size increases. Hence our experimental results
give excellent out puts and we also conducted more
experiments but, results are not presented due space
problem , and it is discussed theoretically. From the table

we can easily conclude that the HYPE Algorithm
exhibits the highest performance.

Figure .7 :On line graph for Comparison of BMH,Fast
Search, BI-KUN Integrated and Hype Algorithms for

different input patterns .

7. Conclusion

In this paper, we presented Hype and Integrated
Algorithms on multi-processors in parallel
environment called as hypercube network. And also we
compared the performances of above algorithms with a
practical distributed string matching algorithm
developed by Bi-kun , which is suitable and efficient in
distributed memory computing environment. We also
presented an improved single string matching algorithm
based on the Fast-Search algorithm proposed by Cantone
and Faro and BMH algorithms. This distributed
architecture is also suitable for paralleling the multi
pattern string matching algorithms and approximate string
matching algorithms. The experimental results shows that
our Hype and Integrated Algorithms gives better
performance over other Algorithms. This application
developed for text documents of size only MB. It may
extend to any size I.e GB to TB also and any other format
like image and video files etc.

Acknowledgment

 At the outset I sincerely thank our guides Prof. S.
Viswandha Raju and Prof. A govardhan for their never
ending guidance and cooperation. I am also thankful to my
dear students Mr. Mohmad Akram and Sana fathima for
their hard work while developing this algorithms and
writing this paper. I also extend my thanks to all who are
directly or indirectly helped me to archive this. finally, I
thank to my wife for understanding me and allowing me to
do my PhD work day and night.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

39

References

[1] S.ViswanadhaRaju, K.S.M.V.kumar,”Implementation of
String Matching on Multiprocessors Using Divide and
Conquer Technique “ in 20113rd international Conference on
Machine Learning and Computing
(ICMLC) WWW.Elsevier.com,Dec2011.

[2] D. E. Knuth, J. Morris, and V. Pratt, “ Fast Patern Matching
in Strings,” SIAM J. of Comput., Vol. 6, pp. 323-350, 1977.

[3] Roi Blanco ,B.Barla cambazoglu “8th LSDS-IR’10
–ACMSIGIR FORM,Vol 44 No.2 Dec-2010

[4] http://www.worldwidewebsize.com
[5] Cooks and Rivest “Two-way Pushdown Automata For

String Matching”journal of IEEE.1977.
[6] www.lsdsir.org-page-id=21
[7] R.S. Boyer and J.S.Moore. Afast String Searching

Algo-rithm Communications of the ACM, 20(10):762–772,
1977.

[8] KSMVKumar, S Viswanadharaju and A Govardhan
“Overlapped Text Partion Algorithm For Pattern Matching
On Hypercube Networked Model”Global Journal of
Computer Sceince and Technology ,Vol 13, issue
4,April2013.

[9] A. V. Aho and M. J. Corasick. Efficient String Matching: An
Aid to Bibliographic Search. Communicationof
theACM,18(6):333–340, 1975.

[10] KSMVKumar,SViswanadharaju andAGovardhan
“APartition Algorithm For Matching String Patterns
In Large Databases” IJCSMR ,Vol 1, issue 2,sept 2012.

[11] M Allen, B. Wilkinson,“Parallel Programming: Techniques
and Applications using Networked Workstations
and Parallel Computers”, Prentice Hall, 1999.

[12] S.Viswanadha Raju and A.Vinaya Babu, 2006,” Optimal
Parallel Algorithm for String Matching On Mesh
Network Structure”, International Journal Applied
Mathematical Sciences, 3 No.2, 167-175

[13] N. Tuck, T. Sherwood, B. Calder and G. Varghese,
"Deterministic memory-efficient string matching algorithms
for intrusion detection," in Proc. IEEE INFOCOM, vol. 4,
pp. 2628-2639, March 2004.

[14] Y.Mishina and K.Kojima string-matching algorithms for
vector processing and its implementation in proceedings of
1993 IEEE international conference on computer
design(ICCD'93) 1993.

[15] R.Sidhu's V.K Prasarna “ Fast regular Expession Matching
using FPGA's “ In IEEE symposium on FPCCM;
Rohnertpark,CA USA,April2001.

[16] Edward Frenandez, W Najjar and S Lonardi
“ String-matching in Hardware using the FM-Index”In
IEEE1998.

[17] Snort. www.snort.org.
[18] S.Viswanadha Raju, S.R.Mantena, A.Vinayababu and

GVSRaju, 2006, “Efficient Parallel String
Matching Using Partition Method”, Proc PDCAT-2006,
IEEE Computer Society, 281-284.

[19] Herbert Scheldt’s (Osborne) Java 2--Complete Reference,
5th edition-2008.

[20] RMI:http://java.sun.com/products/jdk/rmi/, http://www.e
ce.vill.edu/~khenry/rmiapp/

[21] Bi Kun ,Gu Nai-jie,Tu Kun,Liu Xiao-Hu,and Liu Gang “A
Practical Distributed String matching Algoritm Architecture

and Implementation WASET
vol .19,pp.156-162,oct.2005

[22] Z. Galil, “Optimal parallel algorithms for string matching,”
in Proc. 16thAnnu. ACM symposium on Theory of
computing, pp. 240-248, 1984.

[23] Hiroki Arimura,Atsushi waraki Ryoichi Fujino and Stno
Arikawa “ A Fast Algorithm for Discovering optimal String
Parrens in Large Text Databases”

[24] Zheng Liu, Xin Chen, James Borneman and Tao Jiang, “A
fast algorithm for approximate string matching on gene
sequences,” in Symposium. 16th Annu. Combinatorial
Pattern Matching, LNCS, Springer-Verlag, vol.3537, pp.
79-90, June 2005.

[25] R. N. Horspool, “Practical Fast Searching in Strings,”
Software - Practice and Experience, vol. 10, pp. 501-506,
1980.

[26] D. Cantone and S. Faro, “Fast-Search: A new efficient
variant of the Boyer-Moore string matching algorithm,”
in Proc. Second International Workshop on
Experimental and Efficient Algorithms, LNCS,
Springer-Verlag, Vol. 2647, pp. 47–58, May 2003.

[27] CHEN Guo-liang, LIN-Jie, and GU Nai-jie, “Design and
analysis of string matching algorithm on distributed
memory machine,” Journal of Software, vol. 11, pp.
771-778, 2000.

[28] C. Charras and T. Lecroq, “Exact string matching
algorithms,” Laboratoire d'Informatique de Rouen
Université de Rouen. Available:
http://www-igm.univ-mlv.fr/~lecroq/string/

[29] U. Vishkin, “Optimal parallel matching in strings,”
Information and control, vol. 67, pp. 91-113, 1985.

[30] B i K un , Gu N ai - j i e, Tu K un , L i u X i a o- h u, a nd
L i u Ga n g , "A Practical Distributed String Matching
Algorithm Architecture and Implementation" in Proc. World
Academy of Science, Engineering and Technology 10 2007.

K S M V Kumar did his Intermediate
from Dr.G.G Degree college W.G Dt,AP
during 1989-1991, B.Tech From
Nagarjuna University,Guntur in 1997, and
M.Tech from JNTUH Engineering college
Hyderabad in 2003. Presently he is
pursuing PhD From JNTUH ,Hyderabad,

AP,INDIA. He worked as Asstitant .professor in GRIET,
HYD.and he worked in anther college as an Associate Professor
in cse department. Presently he is working as an professor in
CSE department in SIET,HYD. Mr. Kumar is life time member
for ACM , CSI and also Member in Various Editorial Boards
like IJCSMR, IJEIT,IJESIT and IJCRT

S.Viswanadha Raju is a distinguished
academician whose advanced research
work in the field of Information Retrieval,
Data Mining and Biometric Systems are
globally recognized. After schooling and
graduation he joined the JNTUniversity
Hyderabad for his Postgraduate Program

MTech (CSE) and subsequently Ph. D., from Acharya
NagarjunaUniversity in Computer Science and Engineering in
the area of Information Retrieval. He served as a Director of

http://www.elsevier.com/
http://www.worldwidewebsize.com/
http://www.snort.org/
http://java.sun.com/products/jdk/rmi/
http://www.ece.vill.edu/~khenry/rmiapp/
http://www.ece.vill.edu/~khenry/rmiapp/
http://www-igm.univ-mlv.fr/~lecroq/string/
http://www-igm.univ-mlv.fr/~lecroq/string/

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.6, June 2013

40

MCA (Accredited by NBA) at Gokaraju Rangaraju Institute of
Engineering and Technology (GRIET) during the period of June
2009 to July 2010 and preceding to this served as a Head of the
Dept of CSE/MCA (CSE- twice accredited by NBA) at GRIET
for a period of 7 Years. Presently he is HOD and Professor in
the Department of CSE in JNTUH jagityal,AP,INDIA. S.V.Raju
substantial and outstanding contribution to the field of academics
in general and Computer Science and Engineering in particular
has been duly recognized by National and International
Organizations. To cite a few, he is the life member of IETE, life
member of ISTE, life member of CSI and life member of
IACSIT etc. His expertise is widely utilized by academic bodies
such as NBA-AICTE, JNTUH and other universities.

A .Govardhan did his Intermedi from
APRJC Nagarjuna Sagar, during
1986-1988, B.E in Computer Science and
Engineering from Osmania University
College of Engineering, Hyderabad in
1992, M.Tech from Jawaharlal Nehru
University(JNU), Delhi in 1994 and he
earned his Ph.D from Jawaharlal Nehru

Technological University,Hyderabad He has been conferred
A.P.State Best Teacher Award, Indian Glory Achievers Award,
Mother Theresa Seva Ratna Award , Indira Gandhi Seva Ratna
Award, Rajiv Gandhi Seva Ratna Award for the year 2012, CSI
Chapter Patron Award (2010-2011), Shining Image of India
Award , Seva Chakra Puraskar, Best Principal Award for the year
2011, Bharat Jyoti Award, Rajiv Gandhi Excellence Award, Best
Citizens of India Award, Life Time Achievement Gold Medal
Award, Rashtriya Vidya Saraswati Puraskar, Eminent
Educationist Award for the year 2010 and Certificates of
Excellence for Outstanding services, Dr. Govardhan is a member
in Executive council,JNTUH,Member of Standing Committee for
Academic Senate,Member of of Finance Committee and Member
in Sports Council, JNT University Hyderabad. He is a Member
on Board of Studies, JNT University Hyderabad, Adikavi
Nannaya University,Rajahmundry, Satavahana University,
Karimnagar and VR Siddhartha Engineering College,
Vijayawada. He is the Vice-Chairman for CSI Hyderabad
Chapter. He is a Member on the Editorial Boards for Eight
International Journals

