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Summery 
Image denoising has remained a fundamental problem in various 
applications of image processing. This paper proposes a new 
denoising algorithm on Cohen-Daubechies-Feauveau wavelets 
(CDF 9/7) wavelet transform. We first applied the lifting structure 
to improve the drawbacks of the wavelet transform where 
conventional wavelet transforms and other classical 
decompositions seem to be restricted or limited to handle.  Our 
proposed algorithm in this paper is very efficient in estimating 
and reducing noises for the contaminated images by the most 
popular noises such as Gaussian noise, Poisson noise and impulse 
(salt& pepper) noise. In this algorithm, the noisy image is first 
decomposed into many levels obtained from different frequency 
bands and then to be found the best decomposition level for the 
noise removal. Experimental results on several conditions are 
investigated for infrared images as study cases under our 
proposed algorithm.  They are very impressive, for example under 
the noise with σ = 0.2 and density = 20%, for mean square error 
(MSE) our method decreasing 83%; peak signal to noise ratio 
(PSNR) increasing 98% and mean of structural similarity 
(MSSIM) increasing 95%, multi-scale structural similarity 
(MSSSIM) enhancing 93%, Feature similarity (FSIM) index 
growing 98.8%, Riesz-transform based Feature Similarity index 
(RFSIM) increasing 83.4% with the same conditions in other 
methods. Obviously, the experimental results shown for our 
proposed algorithm are significantly superior to other related 
methods. 
Keywords: 
Gaussian noise, Infrared (IR), impulse noise, MSSIM, Poisson 
noise. 

1. Introduction 

Image denoising is a procedure in digital image processing 
aiming at the removal of noises from the contaminated 
images, which may occur for an image during its 
acquisition or transmission. Infrared (IR) imaging has been 
used extensively for military and civilian purposes, in 
particular in dark conditions. Those applications include 
thermal efficiency analysis, remote temperature sensing, 
short-ranged wireless communication, spectroscopy, and 
weather forecasting. As another example, infrared 
astronomy uses sensor-equipped telescopes to penetrate 
dusty regions of space, such as molecular clouds; detect 
objects such as planets, and to view highly red shifted 

objects from the early days of the universe [1]. In our paper, 
it investigates the applications of infrared (IR) images 
encountered with various noises such as the most popular 
Gaussian, Poisson, and impulse (salt& pepper), noises [2]. 
These noises are contaminated in image acquisition, 
transmission, storage and processing, etc. Thus, the noises 
of the image could severely degrade the image quality and 
even cause some loss of the information from the image. 
Various filtering techniques have been proposed for 
removing image’s noises by other papers. In particularly, 
mean & median filtering [2] have been used, the mean 
filter is a simple filter and it has the same construction for 
almost all types of noises. But this type filter has shown it 
may blur images and make information lost for the image. 
The median filter is a very effective filter in removing salt 
and pepper (or impulsive) noises while preserving image 
details. The disadvantages of this type filter are 
computational complexity and it will remove both the 
noise and fine details since this type of filters can’t tell the 
difference between them. The adaptive median filter [3] 
does not perform well when the standard division of 
impulse noise is  greater than 0.2. Gaussian filtering [4] is 
very effective for removing Gaussian noise. This filter is 
computationally efficient because large filter is 
implemented by small 1D filter and the degree of 
smoothing is controlled by the standard division σ. Also as 
we know that a Wiener filter [5] can only apply to an 
image  with reasonable large standard deviation, which 
limited its applications in real life. Other paper works have 
been done on wavelet thresholding and threshold selections 
for image denoising become important. Donoho and 
Johnston [6] proposed hard- and soft-threshold methods, 
called VisuShrink, for denoising. However the major 
problem about those methods is how to make the choice of 
suitable threshold value. The detection of coefficients 
independent threshold was given by Donoho and Johnston, 
which depends on the noise power and the size of the 
images.  Obviously, in real life, it is very hard to know the 
noise power and the size about the image before the 
denoising. 
Wavelet transforms have received significant attentions in 
the field of signal and image denoising and compression. 
This is because of their ability to represent and analyse. 
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Recently, a new wavelet construction called lifting scheme, 
has been developed by Wim Sweldens and Ingrid 
Daubechies [7]. It has also other applications, such as the 
possibility of defining wavelet-like transform integers to 
integers. In our proposed algorithm for denoising image, 
decomposition by lifting scheme based on Cohen-
Daubechies-Feauveau (CDF) 9/7 [8] has been used to 
enhance the image quality with filtering methods & 
wavelet threshold technique. The CDF 9/7 [8] filter banks 
is Biorthogonal 9/7 wavelet proposed by Cohen-
Daubechies-Feauveau and adopted by the JPEG2000 
standard, as a core algorithm, for FBI finger print 
compression. The noisy in the image removed by filtering 
methods and wavelet threshold technique can be carried in 
different order. In order to obtain efficient and effective 
image enhancement based on evolutions by  image quality 
matrices,  the standard parameters are used such as  mean 
average error (MAE), mean square error (MSE), the peak 
signal to noise ratio (PSNR) and structural similarity index 
(SSIM) [9], multi-scale structural similarity (MS-SSIM) 
[10],Feature similarity (FSIM) index [11], Riesz-transform 
based Feature Similarity index (RFSIM)[12] . 
This paper is structured as follows. Section II describes the 
wavelet transform. Section III describes Cohen-
Daubechies-Feauveau wavelets (CDF) 9/7 wavelet 
transform. In Section IV, the algorithm for denoising 
image is presented. Section V introduces algorithm 
description of denoising image. Section VI shows 
“Quantitative analysis”. Section VIII demonstrates the 
simulation result & discussion. Finally, in Section IX, a 
conclusion is presented. 

2. Wavelet Transform  

The best way to describe discrete wavelet transform is 
through a series of cascaded filters. We first consider the 
FIR-based discrete transform. The input image x is fed into 
a two analysis filter ℎ�(low pass filter) and 𝑔�(high pass filter) 
separately. The outputs of the two filters are then 
subsampled by 2. The resulting low-pass subband 𝑦𝐿  and 
high-pass subband 𝑦𝐻  are shown in Fig.1. The original 
signal can be reconstructed by synthesis filters h and g 
which take the upsampled by 2 for 𝑦𝐿  and 𝑦𝐻  as inputs [13]. 
An analysis and synthesis system has the perfect 
reconstruction property if and only if x ' = x. 
The mathematical representations of 𝑦𝐿  and 𝑦𝐻  can be 
defined as 

�
𝑦𝐿(𝑛)=∑ ℎ�(𝑖)𝑥(2𝑛−𝑖)𝑁𝐿−1

𝑖=0

𝑦𝐻(𝑛)=∑ 𝑔�(𝑖)𝑥(2𝑛−𝑖)𝑁𝐻−1
𝑖=0

                                        (1) 

where 𝑁𝐿  and 𝑁𝐻   are the lengths of ℎ�  and 𝑔� respectively. 
For a two dimensional image, the Discrete Wavelet 
Transform (DWT) have to be extended to the 2D case. We 
suppose the image to be compressed has a dimension of M 
rows by N columns. The approach of the 2D 

implementation of the DWT is to perform the one 
dimensional DWT in row direction and it is followed by a 
one dimensional DWT in column direction. This 
decomposition technique is shown in Fig.2. A two 
dimensional row and column computation of DWT are 
depicted in Fig.3. In this figure, LL is a coarser version of 
the original image and it contains the approximation 
information which is in low frequency. LH, HL, and HH 
are the high-frequency subband containing the detail 
information [14]. Further computations of DWT can be 
performed as the level of decomposition increases. This 
concept is also illustrated in Fig.4. In Fig.4, the second and 
third level decompositions based on the principle of 
multiresolution analysis show that the LL1 subband in 
Fig.3 is decomposed into four smaller subbands: LL2, HL2, 
LH2, and HH2. 
In order to achieve perfect reconstruction of a signal, the 
two channel filters shown in Fig.1 must satisfy the 
following conditions [7]: 

� ℎ(𝑧)ℎ�(𝑧−1) + 𝑔(𝑧)𝑔�(𝑧) = 2
ℎ(𝑧)ℎ�(−𝑧−1) + 𝑔(𝑧)𝑔�(−𝑧−1) = 0

                  (2) 

 

Figure 1: Discrete wavelet transform (or subband transform) analysis and 
synthesis system: the forward transform consists of two analysis filters 

h�(low pass) and  g�(high pass) followed by subsampling 2, while the 
inverse transform  first up samples by 2 and then uses two synthesis filters 

h (low pass) and  g (high pass). 

 

Figure 2: The 2-D DWT analysis filter bank. 

 

Figure 3: The two dimensional row and column computation of DWT. 
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Figure 4: The (Left) second and (Right) third level row and column 
decomposition. 

In the lifting scheme, the impulse response coefficients 
ℎ and 𝑔 are expressed in Laurent polynomial with the aid 
of Z-transform. For instance, the Laurent polynomial 
representation of filter ℎ and 𝑔 can be defined as 
ℎ(𝑧) = ∑ ℎ𝑖𝑧−𝑖𝑛

𝑖=𝑚          (3) 
𝑔(𝑧) = ∑ 𝑔𝑖𝑧−𝑖𝑛

𝑖=𝑚          (4) 
where m and n are positive integers. The analysis and 
synthesis filters as shown in Fig.1 are further decomposed 
into the polyphase representations which are expressed as 
ℎ(𝑧) = ℎ𝑒(𝑧2) + 𝑧−1ℎ𝑜(𝑧2)        (5) 
𝑔(𝑧) = 𝑔𝑒(𝑧2) + 𝑧−1𝑔𝑜(𝑧2)        (6) 
ℎ�(𝑧) = ℎ�𝑒(𝑧2) + 𝑧−1ℎ�𝑜(𝑧2)        (7) 
𝑔�(𝑧) = 𝑔�𝑒(𝑧2) + 𝑧−1𝑔�𝑜(𝑧2)        (8) 
where ℎ𝑒(𝑧) = ∑ ℎ2𝑘𝑧−𝑘   𝑎𝑛𝑑    ℎ𝑜(𝑧) = ∑ ℎ2𝑘+1𝑧−𝑘𝑘𝑘  or  

ℎ𝑒(𝑧2) =
ℎ(𝑧) + ℎ(−𝑧)

2
  𝑎𝑛𝑑  ℎ𝑜(𝑧2) =

ℎ(𝑧) − ℎ(−𝑧)
2𝑧−1

  

𝑔𝑒(𝑧) = �𝑔2𝑘𝑧−𝑘   𝑎𝑛𝑑    𝑔𝑜(𝑧) = �𝑔2𝑘+1𝑧−𝑘
𝑘𝑘

 

𝑔𝑒(𝑧2) =
𝑔(𝑧) + 𝑔(−𝑧)

2
  𝑎𝑛𝑑  𝑔𝑜(𝑧2) =

𝑔(𝑧) − 𝑔(−𝑧)
2𝑧−1

 
The two polyphase matrices of the filter is defined as 

𝑃(𝑧) = �ℎ𝑒(𝑧)
ℎ𝑜(𝑧)

𝑔𝑒(𝑧)
𝑔𝑜(𝑧)�         (9) 

𝑃�(𝑧) = �ℎ�𝑒(𝑧)
ℎ�𝑜(𝑧)

𝑔�𝑒(𝑧)
𝑔�𝑜(𝑧)�                    (10) 

The variable z is used since the polyphase representations 
are derived using Z-transform and the subscript e and o 
denote the even and odd sub-components of the filters 
which are split into sub sequences. The purpose of the 
polyphase representation is to reduce the computation time. 
The wavelet transform now is represented schematically in 
Fig.5. The perfect reconstruction properties is given by  
𝑃(𝑧)𝑃�(𝑧−1) = 𝐼                                                (11) 
where I is 2 × 2 identity matrix. 
Now the wavelet transform can be expressed using the 
polyphase matrix for forward discrete wavelet transform 
[7], [14] is: 
�𝑦𝐿(𝑧)
𝑦𝐻(𝑧)� = 𝑃�(𝑧) � 𝑥𝑒(𝑧)

𝑧−1𝑥𝑜(𝑧)�                    (12) 

The inverse discrete wavelet transform becomes:  

� 𝑥𝑒(𝑧)
𝑧−1𝑥𝑜(𝑧)� = 𝑃(𝑧) �𝑦𝐿(𝑧)

𝑦𝐻(𝑧)�                    (13) 

Finally, the upper and lower triangular matrices can be 
obtained by the lifting factorization process. The lifting 
sequences are generated by employing Euclidean algorithm 
which factorizes the polyphase matrix for a filter pair [7]. 
 

 

Figure 5: Ployphase representation of wavelet transform: first subsample 
by 2 of input signal x into even as xe and odd as xo, then apply the dual 
polyphase matrix P�(z). For inverse transform first apply the polyphase 

primal matrix P(z) and then upsampled by 2 and join even and odd 
coefficients. 

Cohen-Daubechies-Feauveau 9/7(CDF 9/7) Wavelet 
Transform is a lifting scheme based a wavelet transform 
which can reduce the computational complexity. The 
lifting-based WT is consists of splitting, lifting, and scaling 
modules and the WT itself can be treated as prediction-
error decomposition. From Fig.6 we can find that it 
provides a complete spatial interpretation of WT. In Fig.6, 
let X denote the input signal and XL1 and XH1 be the 
decomposed output signals where they are obtained 
through the following three modules (A, B, and C) of 
lifting base inverse discrete wavelet transform (IDWT), 
which can be described as below: 
A. Splitting-In this module, the original signal X is 

divided into two disjoint parts, i.e., samples X(2n+1) 
and X(2n) that denotes all odd-indexed and even-
indexed samples of X , respectively [15]. 

B. Lifting-Lifting consists of three basic steps: Split, 
Predict, and Updating as shown below.  
1. Split -In this stage the input signal is divided into 

two disjoint sets, the odd (X[2n+1]) and the even 
samples (X[2n]). This splitting is also called the 
Lazy Wavelet transform. 

2. Predict-In this stage the even samples are used to 
predict the odd coefficients. This predicted value, P(X 
[2n]), is subtracted from the odd coefficients to give 
error in the prediction. 

        d[n]=X[2n+1]-P(X[2n])                             (14) 
Here d[n]s are also called the detailed        
coefficients. 
3. Update-In this stage, the even coefficients are 
combined with d[n]s which are passed through an 
update function, U (.) to give 

        c[n]=X[2n]+U(d[n])                                 (15) 
C. Scaling-A normalization factor is applied to 𝑑(𝑛) 

and 𝑐(𝑛), respectively. In the even-indexed part 𝑐(𝑛) 
is multiplied by a normalization factor Ke to produce 
the wavelet sub band XL1. Similarly in the odd-index 
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part the error signal 𝑑(𝑛) is multiplied by Ko to obtain 
the wavelet sub band XH1 . 

 

Figure 6:  The lifting-based WT [15]. 

The Lifting scheme based Cohen-Daubechies-Feauveau 
(CDF) 9/7 wavelet transform goes through of four steps: 
two prediction operators (‘a’ and ‘b’) and two update 
operators (‘c’ and ‘d’) as shown in Fig.7. The analysis 
filter ℎ�  has nine coefficients, while the synthesis filter has 
seven coefficients. Both high pass filters 𝑔 ,𝑔 ̃ have four 
vanishing moments. We chose the filter with seven 
coefficients filter because it gives the rises to a smoother 
scaling function than the nine coefficients. In this fact, we 
run the factoring algorithm starting from the analysis filter 
[7]: 
ℎ�𝑒(𝑧) = ℎ4(𝑧2 + 𝑧−2) + ℎ2(𝑧 + 𝑧−1) + ℎ𝑜  and  ℎ�𝑜(𝑧) =
ℎ3(𝑧2 + 𝑧−2) + ℎ1(𝑧 + 1) 
𝑔�𝑒(𝑧) = −𝑔𝑜 − 𝑔2(𝑧 + 𝑧−1) and 𝑔�𝑜(𝑧) = 𝑔1(1 + 𝑧−1) +
𝑔3(𝑧 + 𝑧−1) 
The coefficients of the remainders are computed as: 

𝑟𝑜 = ℎ𝑜 − 2ℎ4ℎ1/ℎ3 
𝑟1 = ℎ2 − ℎ4 − ℎ4ℎ1/ℎ3 
𝑠𝑜 = ℎ1 − ℎ3 − ℎ3𝑟𝑜/𝑟1 

If we now let 
𝑎 = ℎ4/ℎ3 ≈  −1.58613432, 

𝑏 = ℎ3/𝑟1 ≈  −0.05298011854, 
𝑐 = 𝑟1/𝑠𝑜 ≈  0.8829110762, 
𝑑 = 𝑠𝑜/𝑟𝑜 ≈  0.4435068522, 
𝐾 = 𝑟𝑜 − 2𝑟1 ≈  1.149604398. 

Since the 9/7 tape wavelet filter is symmetric we can 
present h and g in the z-domain. Hence, a poly-phase 
matrix 𝑃�(𝑧) presents the filter pair(ℎ,𝑔): 

𝑃�(𝑧) = �
ℎ�𝑒(𝑧)
ℎ�𝑜(𝑧)

𝑔�𝑒(𝑧)
𝑔�𝑜(𝑧)�

= �
ℎ4(𝑧2 + 𝑧−2) + ℎ2(𝑧 + 𝑧−1) + ℎ𝑜

ℎ3(𝑧2 + 𝑧−2) + ℎ1(𝑧 + 1)
𝑔1(1 + 𝑧−1) + 𝑔3(𝑧 + 𝑧−1)
𝑔1(1 + 𝑧−1) + 𝑔3(𝑧 + 𝑧−1)�

 

Then, we use factorization algorithm is given by 

 𝑃�(𝑍) = �1 𝑎(1 + 𝑍−1)
0 1

� . � 1 0)
𝑏(1 + 𝑍) 1 � 

. �1 𝑐(1 + 𝑍−1)
0 1

� . � 1 0)
𝑑(1 + 𝑍) 1 � . �𝐾 0

0 1/𝐾� (16) 

We have found that the four “lifting” steps and the two 
“scaling” steps from Fig.7 are with same parameter as 
follows:  

⎩
⎨

⎧
𝑌(2𝑛 + 1) ← 𝑋(2𝑛 + 1) + (a × [X(2n) + X(2n + 2)])
𝑌(2𝑛) ← 𝑋(2𝑛) + (b × [Y(2n − 1) + Y(2n + 1)])

𝑌(2𝑛 + 1) ← 𝑌(2𝑛 + 1) + (c × [Y(2n) + Y(2n + 2)])
𝑌(2𝑛) ← 𝑌(2𝑛) + (d × [Y(2n − 1) + Y(2n + 1)])

                                                                              

(17)              

�
𝑌(2𝑛 + 1) ← 𝐾 × 𝑌(2𝑛 + 1),

𝑌(2𝑛) ← �1
K
� × 𝑌(2𝑛),                           (18) 

 

 

Figure 7: Lifting scheme of the analysis side of the CDF 9/7 filter bank. 

The synthesis side of the CDF9/7 filter bank simply inverts 
the scaling, and reverses the sequence of the lifting and 
update steps. Fig.8 shows the synthesis side of the filter 
bank using lifting structure to reconstruct of the signal or 
image.  

 

Figure 8: Lifting implementation of the synthesis side of the CDF 9/7 
filter bank. 

3.  Denoising Image 

The objective of CDF 9/7 wavelet based denoising process 
is to estimate the original image 𝑥(𝑖, 𝑗) by discarding the 
corrupted noise 𝑒(𝑖, 𝑗) from the function𝑓(𝑖, 𝑗): 
𝑓(𝑖, 𝑗)  =  𝑥(𝑖, 𝑗)  +  𝑒(𝑖, 𝑗)                                 (19) 
The threshold value is computed for denoising images into 
the noisy images 𝑓(𝑖, 𝑗) by the medium absolute deviation 
(MAD) was proposed by Donoho and Johnston [6]. It’s 
called  the universal ‘VisuShrink’ threshold given by [6]: 
𝑇ℎ𝑟 = 𝜎 �2. 𝑙𝑜𝑔(𝑁)                                         (20) 
The noise variance is estimated using the mean absolute 
deviation (MAD) method and is given by 

𝜎2 = �
𝑀𝐴𝐷��𝑐𝑖,𝑗��

0.6754
�
2

                                              (21) 

where 𝑐𝑖,𝑗  is the wavelet coefficient of the noisy image. 
Two wavelet thresholding techniques like hard 
thresholding and soft thresholding have provided better 
efficiency in image denoising based on universal threshold. 
The hard thresholding TH can be defined as [6] 

𝑇𝐻 = � 𝑥    𝑓𝑜𝑟 |𝑥| ≥ 𝑇ℎ𝑟
0  𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑠                    (22) 
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The soft thresholding 𝑇𝑠 can be  defined as follows [6], 

𝑇𝑠 = �𝑠𝑖𝑔𝑛(𝑥)(|𝑥| − 𝑇ℎ𝑟)   𝑓𝑜𝑟 |𝑥| > 𝑇ℎ𝑟
0 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑠      (23) 

The wavelet based denoising process follows resulting 
DWT detail coefficients are threshold by shrinkage (soft, 
hard). The original IR images can be reconstructed from 
the threshold wavelet, whose detail coefficients show a 
denoised (smoothed) version of the original images. 

4. Denoising Algorithm Description 

The denoising algorithm is designed to the noisy infrared 
(IR) images corrupted by multi-noise, particularly by the 
most popular noises: Gaussian Noise, Poisson noise, and 
impulse (slat & pepper) noise. The flow chart of our 
proposed algorithm is shown in Fig. 9.  
Our proposed denoising algorithm can be summarized as 
below: 
Step.1 Reading the infrared (IR) images on the workspace 
of the MATLAB. 
Step.2 Adding Gaussian noise, Poisson noise, and impulse 
(slat & pepper) noise in IR images with noise variance with 
three cases: case 1. Noise variance =0.1 & noise 
density=10%, case 2. Noise variance=0.2, Noise 
density=20%, and case 3. Noise variance=0.025, Noise 
density=2.5%.  
Step.3 Performing CDF9/7 wavelet transforms to the IR 
images: from the decomposition process the coefficients 
can be extracted. We have tested with different 
decomposing level 1, 2, 3, 4…20(as we considered) and 
found the level 3 comments on the quality of images with 
original images. 
Step.4 Estimating the noise variance for each noisy image 
pixel [refer to equation (21)]. 
Step.5 The threshold T for the wavelet coefficients of 
noisy image is calculated by equation (22 & 23). 
Step.6 If the wavelet coefficients are greater than 
threshold (𝑇ℎ𝑟), then coefficients are remained unchanged.  
Otherwise, they are suppressed. 
Step.7 Then, further comparing for denoising image: 
applying kernel mask, size 3x3 of median filtering, 
Gaussian filtering and Wiener filters individually. 
Step.8 After above, all the resultant coefficients are 
reconstructed by applying inverses CDF 9/7 wavelet 
transform, which results in deionised image. 
Step.9 Calculate MAE, MSE, PSNR, MSSIM, MSSSIM, 
FSIM, and RFSIM to find out the best quality denoised 
image. 
Step.10 The same process is repeated for various IR 
images and compares its performance. 

Start

Input infrared 
(IR)image

Apply lifting based CDF  
9/7 Wavelet transform & 

Decompose Wavelet 
coefficients

Calculate noise variance  into 
the wavelet coefficients of noisy 

image using equation(21)

To evaluate and compare the 
denoised image in terms of 

objective image quality metrics 

End

Add Gaussian , 
Poisson & Impulse 

noise

Best quality 
denoised image

Yes

No

Yes

No

Thr≤ Wavelet 
coefficients

Required  denoising 
image?

Apply Median filter, 
Weiner filter, 

Gaussian filter with 
3×3 window size 

individually
Apply inverse lifting based 

CDF 9/7 Wavelet 
transform 

 

Figure 9: Flow chart of proposed denosing algorithm. 

5. Quantitative Analysis 

Let 𝑥𝑖  and 𝑦𝑖  be the 𝑖𝑡ℎ  pixel in the original image 𝑥  and 
degraded image 𝑦 , respectively. The MSE and PSNR 
between two images are given by 
𝑀𝑆𝐸 = 1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖))2𝑁
𝑖=1                                  (24) 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
(2𝑛−1)2

√𝑀𝑆𝐸
                                   (25) 

Where N is the total number of pixels in the image and n=8 
bit/pixel gray scale images.  
Apart from the PSNR assessment, the mean of absolute 
error (MAE) has also been used in an analysis to 
characterize the filter’s detail preservation behaviour, one 
which is defined by: 
𝑀𝐴𝐸 = 1

𝑀×𝑁
∑ ∑ (𝑥(𝑖, 𝑗) − 𝑦(𝑖, 𝑗))𝑗=𝑁

𝑗=1
𝑖=𝑀
𝑖=1         (26)  
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Following [9] , we also defined the structural similarity 
index (SSIM) for estimating the quality of IR images.We 
assessed a new model to estimate the quality of infrared 
images, specifically for the ones decomposed and 
reconstruction by CDF 9/7 wavelet transform. This is 
based on the hypothesis that the human visual system 
(HVS) is highly adapted to extract structural information. 
In fact, the spatial domain SSIM compares the reference 
image with degraded image on the image’s brightness, 
contrast and structure.  The SSIM index define as the 
product of three components which gives  

𝑆𝑆𝐼𝑀(𝑥,𝑦) = �2𝜇𝑥𝜇𝑦+𝐶1��2𝜎𝑥𝜎𝑦+𝐶2�
�𝜇𝑥2+𝜇𝑦2+𝐶1��𝜎𝑥2+𝜎𝑦2+𝐶2�

                  (27) 

In real application, it is required the average of overall 
measurement of the whole image quality, which is defined 
as mean structural similarity index (MSSIM) and given by 
below: 
𝑀𝑆𝑆𝐼𝑀 (𝑋,𝑌) =  1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑥𝑖 ,𝑦𝑖)𝑀
𝑖=1               (28) 

where X and Y are respectively the reference and degraded 
images, 𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖  are the contents of images at the ith local 
window. M is the total number of local windows in image.   

The multi-scale extension of SSIM, called MS-SSIM  [10] , 
produced better results than its single-scale counterpart. 
Conceptually, this work related to the contrast sensitivity 
function (CSF) of the Human Vision System (HVS). The 
HVS measured weight function peaks at middle-resolution 
scales and drops at both low and high resolution 
scales .The overall MS-SSIM measure is defined as  
𝑀𝑆 − 𝑆𝑆𝐼𝑀 = ∏ �𝑆𝑆𝐼𝑀𝑗�

𝛽𝑗𝑀
𝑗=1     (29) 

where the  𝛽𝑗 values were obtained through psychophysical 
measure at the scale M. 

The Feature Similarity (FSIM) [Reader read the reference 
[11]] index have calculated the similarity between images 
𝑓1 and 𝑓2. Denoted by 𝑃𝐶1  and 𝑃𝐶2  the phase congruency 
(PC) maps extracted features from 𝑓1 and 𝑓2 ,as well as 𝐺1 
and 𝐺2   the gradient magnitude (GM) maps extracted 
features from them. The PC is contrast invariant but image 
local contrast does not affect HVS perception on the image 
quality. The image gradient magnitude (GM) is computed 
as the secondary feature to encode contrast information. 
The FSIM index in defines as 
𝐹𝑆𝐼𝑀 = ∑ 𝑆𝐿(𝑥).𝑃𝐶𝑚(𝑥)𝑥∈Ω

∑ 𝑃𝐶𝑚(𝑥)𝑥∈Ω
     (30) 

Where 𝑃𝐶𝑚(𝑥) = max�𝑃𝐶1(𝑥),𝑃𝐶2(𝑥)�  to weight the 
importance of  𝑆𝐿(𝑥) in the overall similarly between 𝑓1 
and 𝑓2. 

Another novel IQA metric, namely Riesz-transform based 
Feature Similarity (RFSIM) index [12]. RFSIM is computed 
by comparing Riesz transform features at key locations 
between the reference images and distorted images. 
Considered HVS is sensitive to image edges; key locations are 
masked by a mask formed by the Canny operator. For feature 
extraction, 1st and 2nd order Riesz transform are used .They 

can easily extract several types of image low-level features 
effectively and efficiently in theoretical framework. 
The similarity between two feature maps 𝑓𝑖  (𝑖 =  1~5) and 
𝑔𝑖   at the corresponding location (x, y) is defined as 
𝑑𝑖(𝑥,𝑦) = 2𝑓𝑖(𝑥,𝑦).𝑔𝑖(𝑥,𝑦)+𝑐

𝑓𝑖
2(𝑥,𝑦)+𝑔𝑖

2(𝑥,𝑦)+𝑐
   (31) 

where 𝑐 is a small constant value.  
 The RFSIM index between f and g by considering only the 
key locations marked by mask M is defined as  
𝑅𝐹𝑆𝐼𝑀 = ∏ ∑∑𝑑𝑖(𝑥,𝑦).𝑀(𝑥,𝑦)

∑∑𝑀(𝑥,𝑦)
5
𝑖=1    (32) 

6. Results & Discussion 

In this section we present some simulation results 
performed on the infrared images and implemented in 
MATLAB under our proposed denoising algorithm. In 
order to make good comparisons, our proposed algorithm 
was with different filter methods and wavelet thresholding 
techniques for denoising infrared image. We have taken an 
infrared (IR) images in standard parameters, such as size 
500×500 encoded on 8 bits per pixel, which was taken 
from the open database [16]. Tables 1-7 and also Figs 10-
15 showed the values of image quality comparison on the 
values of objective quality matrices such as MAE, MSE, 
PSNR, MSSIM, MS-SSIM, FSIM, and RFSIM. The 
experimental results have been shown in Figs 13(b), 14 (b) 
and 15 (b), which demonstrated the best performance in 
proposed denoising image algorithm for the infrared 
images corrupted with Gaussian noise, Poisson noise, and 
impulse noises (salt& pepper).We have used different 
filters for denoising infrared image. All the tables 
represented the values of MAE, MSE, PSNR, MSSIM, 
MS-SSIM, FSIM, and RFSIM at the different noise 
variances, such as 𝜎 = 0.025, 0.1, 0.2  for the Gaussian 
noise, Poisson noise with 𝜆 =  0.9686  and impulse (salt & 
pepper) noise with different densities, ND, and ND = 2.5%, 
10% and 20%. The various filters are used to compare the 
performances of median filter, Gaussian filter, Wiener 
filter, soft and hard threshold technique. The best result 
was in bold font. It has shown the highest PSNR value with 
minimum MSE & MAE value, which, as expected, 
depended on the lower value of noise variances for 
Gaussian noise, means of Poisson noise and noise densities 
for impulse noise of the entire image. A visual inspection 
was carried out in order to judge the filters’ effectiveness 
in reducing Gaussian noise, Poisson noise & impulse noise 
effect as shown in Figs.16(c), 17(c) & 18(c). We can 
conclude that the value of an output pixel is determined by 
the median of the neighbourhood pixels, rather than the 
mean. We also observed that the median filter is much less 
sensitive than the mean filter to the extreme values 
(called outliers). Median filtering is therefore better way 
being able to remove these outliers without reducing the 
sharpness of the image. Results obtained by the median 
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filter, with size 3x3, are shown in Figs. 16(c), 17(c) & 
18(c). The Wiener filtering gave the optimal results in 
terms of the mean square error. The results of the noised 
removed for the contaminated IR image by Wiener filter or 
adaptive median filter, with size 3×3, are shown in Figs 
16(d), 17(d) & 18(d). These filters are applied by low-pass 
filters convolution kernel with a small window size 3×3 
and a standard deviation  𝜎 = 4 . The results of noise 
elimination based on their gray-level value as shown in 
Figs. 16(e), 17(e) & 18(e). The MAE, MSE, PSNR, 
MSSIM, MS-SSIM, FSIM, and RFSIM results  for the 
image denoising by the wavelet thresholding techniques 
have been shown in tables, which are considerably worse 
than the other filtering methods,  as shown in Figs.16 (g) & 
(f), 17 (g) & (f), & 18 (g) & (f). It is clear from results 
listed on tables 1-7 that the median filter method removed 
the noise significantly for the quality metrics such as MAE, 
MSE, PSNR, MSSIM, MS-SSIM, FSIM, and RFSIM.  The 
median filter tends to smooth the image, thereby could be 
losing some details (e.g. sharp edges) of the original signal 
which can result in an increased estimation error. 

Table.1 Comparison of MAE values for different filters at infrared (IR) 
image corrupted by Gaussian, Poisson & impulse (salt& pepper) noise  

 
Filter algorithm 

𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

MAE MAE MAE 
Noisy image 0.5636 0.5804 0.6020 

Proposed algorithm 0.5580 0.5600 0.5705 
Wiener filter 0.5633 0.5794 0.6021 

Gaussian filter 0.5627 0.5788 0.6015 
Hard threshold 0.3959 0.4204 0.4527 
Soft threshold 6.0844e-04 0.0143 0.0350 

Table.2 Comparison of MSE values for different filters at infrared (IR) 
image corrupted by Gaussian, Poisson & impulse (salt& pepper) noise  

 
Filter algorithm 

𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

MSE MSE MSE 
Noisy image 0.5386 0.5768 0.6450 

Proposed 
algorithm 

0.5243 0.5256 0.5363 

Wiener filter 0.5282 0.5392 0.5569 
Gaussian filter 0.5220 0.5292 0.5444 
Hard threshold 0.5068 0.5451 0.6092 
Soft threshold 0.0541 0.0649 0.0866 

Table.3 Comparison of PSNR values for different filters at infrared (IR) 
image corrupted by Gaussian, Poisson & impulse (salt& pepper) noise  

 
Filter 

algorithm 

𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

PSNR 
(dB) 

PSNR 
(dB) 

PSNR 
(dB) 

Noisy image 50.8169 50.5268 50.0398 
Proposed 
algorithm 

50.9323 50.9205 50.8472 

Wiener filter 50.8994 50.8150 50.6803 

Gaussian 
filter 

50.9501 50.8965 50.7779 

Hard 
threshold 

51.0769 50.7651 50.2749 

Soft 
threshold 

60.7922 60.0226 58.7919 

Table.4 Comparison of MSSIM values for different filters at infrared (IR) 
image corrupted by Gaussian, Poisson & impulse (salt& pepper) noise  

 
Filter algorithm 

𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

MSSIM MSSIM MSSIM 
Noisy image 0.9432 0.9417 0.9393 

Proposed algorithm 0.9704 0.9943 0.9898 
Wiener filter 0.9435 0.9423 0.9408 

Gaussian filter 0.9435 0.9149 0.9410 
Hard threshold 0.9438 0.9301 0.9783 
Soft threshold 0.9436 0.9435 0.9429 

Table.5 Comparison of MS-SSIM values for different filters at infrared 
(IR) image corrupted by Gaussian, Poisson & impulse (salt& pepper) 

noise  
 

Filter algorithm 
𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

MS-SSIM MS-SSIM MS-SSIM 
Noisy image 0.9158     0.9150     0.9138 

Proposed algorithm 0.9551 0.9940 0.9874 
Wiener filter 0.9158     0.9151 0.9140 

Gaussian filter 0.9158 0.9151 0.9140 
Hard threshold 0.9167 0.9302 0.9778 
Soft threshold     0.9159 0.9158 0.9154 

Table.6 Comparison of FSIM values for different filters at infrared (IR) 
image corrupted by Gaussian, Poisson & impulse (salt& pepper) noise 

 
Filter algorithm 

𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

FSIM FSIM FSIM 
Noisy image 0.9986 0.9927  0.9803 

Proposed algorithm 0.9990 0.9979 0.9923 
Wiener filter  0.9988  0.9952  0.9872 

Gaussian filter 0.9985 0.9958 0.9887 
Hard threshold 0.9965 0.9783  0.9470 
Soft threshold 0.9957 0.9745 0.9497 

Table.7 Comparison of FSIM values for different filters at infrared (IR) 
image corrupted by Gaussian, Poisson & impulse (salt& pepper) noise 

 
Filter algorithm 

𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

RSIM RSIM RSIM 
Noisy image 0.7752 0.7820  0.7874 

Proposed algorithm 0.8127 0.9164  0.9557 
Wiener filter 0.7793  0.7894 0.8027 

Gaussian filter 0.7807  0.7911 0.8051 
Hard threshold 0.7559  0.6848  0.7081 
Soft threshold 0.7744   0.7758 0.7808 
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Figure 10:  Comparisons of MSE values for different filters at IR image 
corrupted by Gaussian, Poisson and impulse noise. It is obviously the 

proposed algorithm has the minimum MSE in all the three different cases. 

 

Figure 11: Comparisons of PSNR values for different filters at IR image 
corrupted by Gaussian, Poisson and impulse noise. It is clearly the 

proposed algorithm has the maximum PSNR in all the three different 
cases. 

 

Figure 12: Comparisons of MSSIM values for different filters at IR image 
corrupted by Gaussian, Poisson and impulse noise. It is clearly the 

proposed algorithm has the maximum MSSIM in all the three different 
cases. 

 

Figure 13: Comparisons of MSSSIM values for different filters at IR 
image corrupted by Gaussian, Poisson and impulse noise. It is clearly  the 
proposed algorithm has the maximum MSSSIM in all the three different 

cases. 

 

Figure 14: Comparisons of FSIM values for different filters at IR image 
corrupted by Gaussian, Poisson and impulse noise. It is clearly the 

proposed algorithm has the maximum FSIM in all the three different cases. 

 

Figure 15: Comparisons of RSIM values for different filters at IR image 
corrupted by Gaussian, Poisson and impulse noise. It is clearly the 

proposed algorithm has the maximum RSIM in all the three different 
cases. 

We use three evaluation metrics to compare the 
performance of proposed denoising image and original 
image. The first two metrics are the Spearman rank order 
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correlation coefficient (SROCC) and the Kendall rank 
order correlation coefficient (KROCC) is employed to 
assess monotonicity. The third metric is the Pearson linear 
correlation coefficients (PLCC) between the mean opinion 
score (MOS) and the objective score after nonlinear 
regression [17]. In our work we have used open souses 
infrared images database. They don’t identify the MOS 
scores and objective scores. We have only used this three 
metrics from MATLAB optimization toolbox for compare 
the performance of image denoising. Since all the reference 
images are assumed to have perfect quality. There are no 
natural relative ranks between them in resulting 
ambiguities when computing the SROCC, KROCC, and 
PLCC. Tables 8-10 gives the results of SROCC, KROCC, 
and PLCC over the original infrared image and denoised 
image that was corrupted by three different noises such as 
Gaussian noise, Poisson noise and impulse noise. We can 
clearly see through the results in tables 8-10 that the 
proposed denoising image by median filter as bold font 
much better than all other filtering methods. It has 
evaluated in terms of all the three evaluation metrics. 

Table.8 Comparison of Spearman rank correlation coefficient (SROCC) 
values for different filters at infrared (IR) image corrupted by Gaussian, 

Poisson & impulse (salt& pepper) noise 
 

Filter algorithm 
𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

SROCC  SROCC  SROCC  
Noisy image 0.9489 0.8562 0.7617 

Proposed algorithm 0.9635 0.9407 0.9237 
Wiener filter 0.9574 0.9127 0.8868 

Gaussian filter 0.9559 0.9281    0.9078 
Hard threshold 0.9196 0.7151 0.3126 
Soft threshold 0.9196 0.7151 0.3126 

Table.9 Comparison of Kendall rank correlation coefficient ( KROCC) 
values for different filters at infrared (IR) image corrupted by Gaussian, 

Poisson & impulse (salt& pepper) noise 
 

Filter algorithm 
𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

KROCC  KROCC  KROCC  
Noisy image 0.8422 0.7098 0.5980 

Proposed algorithm 0.8759 0.8303 0.7909 
Wiener filter 0.8661 0.7908 0.7356 

Gaussian filter 0.8603 0.8081 0.7617 
Hard threshold 0.8257 0.5913 0.2610 
Soft threshold 0.8257 0.5913 0.2610 

Table.10 Comparison of Pearson linear correlation coefficients(PLCC)  
values for different filters at infrared (IR) image corrupted by Gaussian, 

Poisson & impulse (salt& pepper) noise 
 

Filter algorithm 
𝝈 = 𝟎.𝟎𝟐𝟓 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐.𝟓% 

𝝈 = 𝟎.𝟏 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟏𝟎% 

𝝈 = 𝟎.𝟐 
𝝀 =  𝟎.𝟗𝟔𝟖𝟔 
𝑵𝑫 = 𝟐𝟎% 

PLCC  PLCC  PLCC  
Noisy image 0.9809 0.9060 0.7918 

Proposed algorithm 0.9900 0.9877 0.9712 
Wiener filter 0.9838 0.9650 0.9325 

Gaussian filter 0.9897 0.9816 0.9611 
Hard threshold 0.9727 0.8101 0.3965 
Soft threshold 0.9566 0.7474 0.3080 

Figure 16: Denoising of IR image (a) Original image (b) Noisy image 
(noise variance=0.025 for Gaussian and λ =  0.9686 for Poisson noise 

and 2.5% noise density for impulse noise) (c) Denoised image with 
Median filter (d) Denoised image with Wiener filter (e) Denoised image 
with Gaussian filter (f) Denoised image with hard threshold (g) Denoised 

image with soft threshold. 

IR Image

(a)

Noisy:NV/ND-0.025

(b)
Proposed Algorithm

(c)

WeinerFilter

(d)
GaussianFilter

(e)

HardThr-0.29059

(f)
SoftThr-0.29059

(g)
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Figure 17: Denoising of IR image (a) Original image (b)Noisy 
image(noise variance=0.1for Gaussian and λ =  0.9686 for Poisson noise 

and 10% noise density for impulse noise) (c) Denoised image with 
Median filter (d) Denoised image with Wiener filter (e) Denoised image 
with Gaussian filter(σ = 4)  (f) Denoised image with hard threshold (g) 

Denoised image with soft threshold. 

 

Figure 18: Denoising of IR image (a) Original image (b)Noisy 
image(noise variance=0.2 for Gaussian and λ =  0.9686 for Poisson noise 

and 20% noise density for impulse noise) (c) Denoised image with 
Median filter (d) Denoised image with Wiener filter (e) Denoised image 
with Gaussian filter(σ = 4) (f) Denoised image with hard threshold (g) 

Denoised image with soft threshold. 
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(b)
Proposed Algorithm

(c)

WeinerFilter

(d)
GaussianFilter

(e)

HardThr-0.85672

(f)
SoftThr-0.85672

(g)
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(a)

Noisy:NV/ND-0.2

(b)
Proposed Algorithm

(c)

WeinerFilter

(d)
GaussianFilter

(e)

HardThr-1.6215

(f)
SoftThr-1.6215

(g)
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7. Conclusion 

In this paper, a simple effective and efficient denoising 
algorithm is proposed based on wavelet technology. Our 
previous research [18] has been extended to  the  image 
recovery from an IR image corrupted with multi-noise, in 
particularly for the three major popular IR image’s noises,   
Gaussian noise, Poisson noise & impulse noise. The 
evaluation of the results supports the fact that our proposed 
algorithm has significantly improved noise removal result 
than others methods. For example, under the noise with 
𝜎 = 0.2   and density = 20% cases for our proposed 
algorithm, the MSE is decreasing 83%; peak signal to 
noise ratio (PSNR) increasing 98% and mean of structural 
similarity (MSSIM) increasing 95%, multi-scale structural 
similarity (MS-SSIM) enhancing 93%, Feature similarity 
(FSIM) index growing 98.8%, Riesz-transform based 
Feature Similarity index (RFSIM) increasing 83.4%  under 
the same conditions. The proposed algorithm presented 
better results with smoothness and better edge preservation 
at the same subband coefficients. Our research also 
demonstrated that the noise removal significantly depends 
on the minimum value of the noise density for different 
filters such as median filter, Gaussian filter, Wiener filter 
and soft and hard thresholding.  Moreover, it further 
suggested that a threshold may be implemented to the 
compression framework, which may further improve the 
denoising performance. 
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