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Summary 
Failures are very often affected by many other factors besides the 
time. In reality, very often, these factors are neglected, leading to 
misleading conclusions about reliability of stochastic systems.  In 
this paper we identify the key factors that contribute  to failure 
rates of various stochastic systems. We further formalize them 
and provide solutions for their modeling using stochastic Petri 
nets. The latter one is a challenging task for certain classes of 
factors, thus we have extended the classic Petri net formalism by 
new elements to facilitate the accurate modeling of these types of 
failures, which we term as state-varying failures. We illustrate 
how each of the factors is modeled by Petri nets. 
Key words: 
reliability modeling, Petri nets, stochastic systems, state-varying 
failures. 

1. Introduction 

There has been intensive research on failure rates, 
including their significant impact on reliability  [1, 2, 3, 4], 
which have been defined as such almost two decades 
ago  [5].  Recently, Xie developed an analytical model of 
unavailability due to aging failures too  [6]. Long time ago, 
it has been shown that constant failure rates are inadequate 
for describing systems’ failures  [7]. Nevertheless, they are 
still widely used due to the fact that the methodology for 
their analysis is less complex and more accurate. The 
popular MTTF (meantime to failure) measure is still a 
widely used one  [8, 9], even though it has been deemed 
many times as inadequate  [10]. We advance one step 
further as to claim that even time-varying failure rates are 
insufficient, as in many systems the rates completely 
change their functions based on the occurrence of some 
relevant events or based on the complete state of the 
system. For instance, if a part has been replaced by a new 
one that is based on a new technology, or if a mechanical 
part has been physically broken, then it is logical that the 
failure rate would increase with each time it breaks. This is 
what we term as a state-varying failure. To support the 
occurrence of such failure rates and justify the need for 
their formalization and modeling approach, we further 
summarize relevant studies and research. 
According to a study of medical equipment  [11], it was 
shown that there was a decreasing hazard of (first) failure 

after repair for some types of equipment. The explanation 
was that it is a consequence of imperfect or hazardous 
repair, and also, because of differing failure rates among a 
population of machines. 
Likewise, in  [12] a pizza production line is studied and it 
was found that most of the failures have a decreasing 
failure rate because proactive maintenance improves the 
operating conditions at different parts in the line, and a few 
failures have an almost constant failure rate. It was also 
concluded that the longer the time between two failures, 
the more problems accumulate, and therefore, it takes 
longer time to fix the latter failure. It also suggests that the 
more time the technicians spend fixing a failure, the more 
careful job they do, and therefore, the time period until the 
next failure is longer. This is a very interesting observation 
that calls for state-varying failure rates and it can be 
addressed using our approach. 
More recently, in  [13] an algorithm to evaluate substation 
reliability is proposed that considers operation, internal 
aging and external weather conditions. The authors further 
show that the operating conditions and failure types have a 
great impact on system reliability. 
These are some examples that show that failures need to be 
described more realistically to obtain accurate and useful 
simulation results. Unfortunately, this has very rarely been 
the case. 
Our goal is to provide an approach to model systems that 
exhibit not only time-, but also, more importantly, state-
varying failure rates. For this we use the Petri nets 
formalism, which we extend with new elements to 
accommodate the state-varying failure rates. In  [14] we 
have analyzed and described state-dependent transitions 
and used proxel-based simulation for their analysis. These 
are the types of transitions that correspond and can be used 
to describe state-varying failure rates. Thus, in addition to 
the simulation approach, this paper provides a concept of 
how to model this type of failure rates and what changes 
need to be undertaken in the standard stochastic Petri net 
(SPN) models to introduce them.  
The paper is organized as follows. In the subsequent 
section we describe the state-varying failure rates, along 
with a formal description of the formalism of stochastic 
Petri nets. Further, we provide a concept for modeling 
state-varying failures using SPN. Next, we present an 
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example model that we use to demonstrate our modeling 
approach. Finally, we present the conclusions of our 
proposed extension to the SPN modeling formalism.2. 
Tables, Figures and Equations 

2. Preliminaries 

In the following we provide the background and definition 
on the definition of state-varying failures and stochastic 
Petri nets. 

2.1 State-varying Failures 

It is a common observation that a failure rate cannot be 
simply described by one function during the entire 
simulation time. Even more, failure rates in reality can 
change not solely based on time  [1], but also based on the 
occurrence of certain events in the system (e.g. replacing 
the service person by another one which fixes them in a 
different manner, i.e. more thoroughly, which would 
influence the failure rate function for failure’s next 
occurrence). We refer to these types of failures as state-
varying failure rates. 
Description of failure rate functions of state-varying failure 
rates is a complex process and would require an 
algorithmic description to supplement the graphical model. 
To illustrate it, one such description may be: 
 
if machine is repaired by repairman A 

then failure rate function follows Probability 
Distribution  

else if machine is repaired by repairman B 
then failure rate function follows Probability 
Distribution   
 

If we add another factor to this, i.e. the age of the machine, 
and then the description would change to: 

if machine is repaired by repairman A 
then failure rate function follows Probability 
Distribution  

else if machine is repaired by repairman B 
then failure rate function follows Probability 
Distribution  
 

where t is the age of the machine (which can easily be 
exchanged to represent the number of failures or any other 
relevant quantity) and  and  are functions of the 
age of the machine. This observation is more general than 
the one that uses fixed failure rate functions, and as such, 
more realistically models the phenomenon of a machine 
that exhibits failures. 

Obviously, these models would need a more advanced (or 
extended) modeling formalisms to be described. Thus, we 
extend stochastic Petri nets to account for the state-varying 
rates.  

2.2 Stochastic Petri Nets 

Stochastic Petri Nets are widely popular modeling 
formalism, which is very powerful in its expression 
potential  [15]. In the following we provide the formal 
description and a basic example to describe its basic 
features. A stochastic Petri Net SPN is defined as: 

 

SPN = (P, T, A, G, m0) 
where: 

• P = {P1, P2, …, Pn}, the set of places, drawn as 
circles 

• T = {T1, T2, …, Tm }, the set of transitions along 
with their distribution functions or probability 
values, drawn as bars 

• A = AI ∪ AO ∪ AH, the set of arcs, where AO is the 
set of output arcs, AI is the set of input arcs, and 
AH is the set of inhibitor arcs; each arc has a 
multiplicity assigned to it,  

• G = {g1, g2, …, g r}, the set of guard functions 
which are associated with different transitions, 

• m0 – the initial marking of the Petri net. 
 
Each transition is defined as Ti = (F, type), where type ∈ 
{enabling, age, immediate} is the type of memory policy if 
it is a timed transition or “immediate” if the corresponding 
transition is an immediate one. F is a cumulative 
distribution function if the corresponding transition is a 
timed one. Immediate transitions have a constant value 
instead of a distribution function assigned to them, which 
is used for computing the probability of firing of an 
immediate transition if more than one are enabled at once. 
The sets of arcs are defined such that 
 

AO  = {ao
1, ao

2,…, ao
k},  AI  = {ai

1, ai
2,…, ai

j}, 
and AH  = {ah

1, ah
2,…, ah

i}, 
where 

AH, AI ⊆ P × T × ℕ, AO ⊆ T × P × ℕ. 
 
The multiplicity of the tracking arcs can be a real number, 
unlike the others, where it is a non-negative integer number. 
We denote by M = {m0, m1, m2, … } the set of all 
reachable markings of the Petri net. Each marking is a 
vector made up of the number of tokens in each place in 
the Petri net. The set of all reachable markings is the 
discrete state space of the Petri net. The changes from one 
marking to another are consequences of firing of enabled 
transitions which move (destroy and create) tokens; thus, 
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creating the dynamics in the Petri net. This makes the 
firing of a transition analogous to an event in a discrete-
event system. The markings of a Petri net, viewed as nodes, 
and the possibilities of movement from one to another, 
viewed as arcs, form the reachability graph of the Petri net. 

3. Modeling State-Varying Failures 

According to observations, studies and research, we 
identify several classes of factors that state-varying failure 
rates are dependent on, listed as follows: 
 

a) number of failure occurrences up to the observed 
point in time, 

b) age of a machine up to the observed point in time, 

c) duration of the last repair, 

d) time between the last two failures, 

e) properties of the repair facilities, introduced as 
additional parameters, and 

f) types of failures that have occurred. 

We allow a combination of a number of these factors to 
occur in our sample model to illustrate their effects through 
Petri net models. In the following, we will provide the 
details of the formal classification of the state-varying 
failures and our modeling approach. This will be further 
demonstrated using example models 

3.1 Formal Model 

The underlying discrete stochastic model that exhibits 
state-varying failure rates is described using a stochastic 
Petri net (SPN)  [16]. We propose an extension to the basic 
description of SPN to support tracking of, what is termed 
as, relevant rewards. Relevant rewards are variables that 
additionally affect the distribution functions of timed 
transitions, besides age intensities of relevant transitions. 
To model the less complex types/factors of the listed state-
varying failure rates’ factors, we extend the basic SPN with 
additional places and transitions that facilitate the tracking, 
as shown in Figure 1 (the details of this figure are shown in 
Figure 4, here we only show the high-level description of 
the proposed extensions). However, to model the more 
complex relevant rewards, such as duration of the last 
repair (type (c)), we introduce a novel element that we 
term as tracking variable (TV), and it is represented by a 
hexagon in the SPN graphical model. TVs are connected 
by diamond-shape-ended arrows (on the TV’s side) to the 
transitions for which they record the last firing time, 
termed as tracking arcs. We selected a different type of 

arrowhead for the tracking arcs to distinguish them from 
the standard input/output arcs, as they have different 
function, namely to assign a value to a tracking variable. 
E.g. in the example of “duration of the last repair” it 
would record the last random firing time that the repair 
transition was assigned to, and store it in one of the 
tracking variables. Tracking arc can also have algebraic 
function associated with it, i.e.  
 

• type “+” would mean to add the enabling time to 
the current value stored in the tracking variable, 

• type “reset” or “0” would mean to reset the value 
of the TV to zero. 

 
To summarize, the extension that we propose to account 
for the state-varying failures is at both: 
 

1) the level of SPN formalism, and  
2) the actual Petri net model.  

 

 
Fig. 1 Illustration of the extended SPN model 

 
The latter (2) implies enriching the SPN by a number of 
extra places and transitions to support tracking of relevant 
rewards. As for (1) - SPN formalism extension: we add 
new elements: tracking variables and tracking arcs. 
Furthermore, in order to model the various state-varying 
transitions, we allow discrete states, i.e. markings, to be 
parameters of distribution functions that determine firings 
of transitions. In the following, we show by example how a 
SPN can be extended to allow the tracking of the various 
relevant quantities. 
Table 1 illustrates at what level extensions need to be 
performed, with respect to the factors that influence a 
state-varying failure rate. For instance, failure rate of type 
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(a), i.e. one that depends on the number of failures that 
have occurred, can be recorded using an additional place in 
the SPN. For failure rate of type (b), no extension at either 
level is needed, as this is implicitly recorded as “simulation 
time”. However, if the system allows for renewal types of 
repairs/maintenance, i.e. repairs/maintenance which renew 
the lifetime of a machine by either replacing it by a new 
one or repairing it with the same effect, an additional 
tracking variable would be required that would record each 
renewal repair/maintenance time. However, for failure rate 
of type (c), as previously explained, the existing formalism 
of SPN is inadequate and need the support of tracking 
variables. 

 
Table 1. Extension level for the six state-varying failure classes 

State-varying failure class Extension Level 
a) number of failure 

occurrences up to the 
observed point in time, 

SPN Model 

b) age of a machine up to the 
observed point in time, 

None (implicitly recorded) or 
SPN Formalism (TV) 

c) duration of the last repair, SPN Formalism (TV) 
d) time between the last two 

failures, SPN Formalism (TV) 

e) properties of the repair 
facilities, introduced as 
additional parameters, 

SPN Model 

f) types of failures that have 
occurred. SPN Model 

 
In the following subsection, we provide the definition of 
the extended SPN formalism. 

3.2 Petri Net Specifications to Accommodate State-
Varying Failure Rates 

In the following we provide the formal definition of the 
extension of the SPN to account for the state-varying 
failure rates. With that respect, each extended stochastic 
Petri net SPN is defined as: 

SPN = (P, T, A, G, TV, m0) 

where: 

• P = {P1, P2, …, Pn}, the set of places, drawn as 
circles 

• T = {T1, T2, …, Tm }, the set of transitions along 
with their distribution functions or probability 
values, drawn as bars 

• A = AI ∪ AO ∪ AH∪ AT, the set of arcs, where AO 
is the set of output arcs, AI is the set of input arcs, 
AH is the set of inhibitor arcs, and AT  is the set of 
tracking arcs (connect transition to a tracking 
variable and are ended by a diamond-shape at the 

tracking variable end); each arc has a multiplicity 
assigned to it,  

• G = {g1, g2, …, gr}, the set of guard functions 
which are associated with different transitions, 

• TV = { TV1, TV2, …, TVm }, the set of tracking 
variables that store the duration of the last 
enabling time of a transition (drawn as hexagons), 

• m0 – the initial marking of the Petri net. 

Each transition is defined as Ti = (F, type), where type ∈ 
{enabling, age, immediate} is the type of memory policy if 
it is a timed transition or “immediate” if the corresponding 
transition is an immediate one. F is a cumulative 
distribution function if the corresponding transition is a 
timed one. Immediate transitions have a constant value 
instead of a distribution function assigned to them, which 
is used for computing the probability of firing of an 
immediate transition if more than one are enabled at once. 
The sets of arcs are defined such that 

AO  = {ao
1, ao

2,…, ao
k},  AI  = {ai

1, ai
2,…, ai

j}, 

AH  = {ah
1, ah

2,…, ah
i}, and AT  = {at

1, at
2,…, at

l}, 

where 

AH, AI ⊆ P × T × ℕ, AO ⊆ T × P × ℕ, AT ⊆ T × P × ℝ. 

The multiplicity of the tracking arcs can be a real number, 
unlike the others, where it is a non-negative integer number. 
We denote by M = {m0, m1, m2, … } the set of all 
reachable markings of the Petri net. Note that, different to 
the standard SPN description, in this case each marking is 
a vector made up of the number of tokens in each place in 
the Petri net along with the values of the tracking variables, 
mi = (#P1, #P2,…, #Pn, val(TV1), val(TV2),…, val(TVm)). 
The set of all reachable markings is the discrete state space 
of the Petri net.  
With this formal model, state-varying failure rates can be 
easily described and further analyzed. We anticipate 
building a tool for design and analysis of the extended 
Petri nets. 

4. Examples for the Classes of Factors that 
Affect State-Varying Failure Rates 

In this section we present simple example models to 
illustrate all factors that can affect state-varying failure 
rates. In the first subsection (4.1) we present a simple Petri 
net model of the example system to show the shortcomings 
of the standard SPN formalism in the presence of state-
varying failure rates. In the following subsection (4.2) we 
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extend the model, one-by-one with the newly defined 
elements, tracking variables and tracking arcs. 

 
Fig. 2. Basic Petri net model of the example 

4.1 Basic SPN Model 

The model that we use to demonstrate our approach is a 
straightforward model that describes a machine that 
incorporates both time- and state- varying failure rates, 
similar to the scenarios described in Section 2.1. 
Using Petri nets, the example model can be described as 
shown in Figure 2. It represents a machine that exhibits 
one of two possible states: OK and FAILED. When the 
machine has failed, one of the two repairmen arrives and 
repairs it, after what the machine’s state changes to OK. 
We assume that changing shifts of repairmen during repair 
is not allowed. The reachability graph, with the following 
mapping format (OK, FAILED, Technician A, Technician 
B), is shown in Figure 3. 
In the following subsection, we further complicate the 
model, step-by-step, to illustrate the real-world scenarios 
that lead to state-varying failure rates. 
 

Fig. 3. Reachability graph of the simple Petri net 
 

4.2 State-varying Failures Examples 

To improve the reflection of reality in our model, we 
include various different scenarios that illustrate the six 
different classes of factors that influence failure rates. In a 
step-by-step fashion, we include all classes and extend our 
model consequently. 

a) Number of failure occurrences 
To illustrate this factor, we assume that the distribution 
function of the time to failure takes the number of failures 
as parameter. In the Petri net, this is achieved by extending 
the Petri net model itself, as shown in Figure 4. 

b) Age of machine 
The age of the machine in our example is implicitly 
modeled as the simulation time. However, if repair could 
be of the type of replacement of a machine, then this would 
need a tracking variable connected with tracking arcs of 
type “+” to track the age of the new machine, and a “reset” 
tracking arc to reset the TV when a machine has been 
replaced. 

c) Duration of Last Repair 
If we assume that the time to failure distribution function 
depends on the duration of the last repair, this would imply 
adding a tracking variable that would keep track of the 
duration of the last repair (TV1). This is shown in Figure 5. 

 
Fig. 4. Basic Petri net + factor (a) model of the example 
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d) Time between Last Two Failures 

If we assume that the time between last two failures affects 
the time to failure distribution function, this would imply 
adding another tracking variable that would keep track of 
the this (TV2). This is shown in Figure 5. 

e) Properties of Repair Facilities 

To illustrate this factor we assume that the distribution 
function of the time to failure depends on the repairman 
that completed the last repair, as we assume that both 
repairmen have varying expertise. The two repairmen have 
different lengths of working experience, which is reflected 
in their repairing skills. Thus, when the machine is fixed by 
the Repairman A, the time to the next failure is on average 
longer, than when it is repaired by Repairman B. For this 
reason we need the extra places: Who, LastA, and LastB. 
Thus, this factor is easily modeled using existing Petri net 
elements. 
 

 
Fig. 5. Basic Petri net + factors (c,d) model of the example 

e) Types of Failures 

To illustrate this factor we can assume that in our model 
there are two different types of failures that can occur and 
each of them occurs with a certain probability, i.e. p and 1-

p. Additionally, we need to keep track of the number of 
each type of failure. Thus, this can be modeled using 
existing Petri net elements. 

4.2 Extended Petri Net Reachability Graph 

In Figure 7, a small fragment of the reachability graph of 
the Petri net model from Figure 4, is shown. We use the 
following order of places/tracking variables to format the 
marking: 
 

(OK, FAILED, TechnicianA, TechnicianB, #Failures, 
Who, LastA, LastB, TV1, TV2) 

Thus, the initial marking would be (as shown in Figure 4): 

. 

There are two enabled transitions in this marking: (1) -
“change shiftA” and (2) - “fail”, which can 
correspondingly transit the SPN in one of the two 
markings: 

1) , and 
2) . 

 

 
Fig. 6. Basic Petri net + factor (a) model of the example 

 
In case (2) the TV1 value gets updated with the enabling 
time duration of the transition “fail”, denoted as x. Note 
that the model is an unbounded Petri net, i.e. it is 
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practically impossible to accurately analyze it using 
numerical approaches. Thus, it can be effectively analyzed 
using either discrete-event simulation or the proxel-based 
simulation method  [17]. To simplify the representation 
each state in the Petri net contains the marking of the Petri 
net along with the values of a selection of the relevant 
rewards. E.g. ((OK, A) (0, A)) would mean that the 
machine is OK, it is Technician A’s shift, the time since 
the machine has spent in this state is 0, and the last repair 
was performed by Technician A. 
Besides the repair duration probability distribution 
function, as shown by the Equation (1), the remaining 
distribution functions of the time to failure can be 

described as where  is the 

age of the machine,  is the number of failures and  

 is the repairman that completed the last repair.  

5. Summary and Outlook 

We emphasized the importance of modeling failures in a 
more realistic manner, as this reflects their true nature 
more accurately. We presented a Petri net based approach 
to model failures that exhibit a wide range of dependencies, 
which are typically neglected. Their neglecting, however, 
can provide highly misleading results, and thus, it is 
imperative to avoid their oversimplification. We, 
furthermore, illustrated our approach and all of the 
elements in an example model. The proposed extension of 
stochastic Petri nets, by introducing tracking variables, is 
highly flexible in describing the complex types of 
dependencies that typically occur in stochastic models. We 
anticipate extending of the presented work to provide a 
tool that would facilitate reliability modeling and 
simulation considering state-varying failure rate functions. 

 

 
 

Fig. 7. State-transition diagram of the unbounded Petri net model from Figure 3 
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