
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

29

Manuscript received July 5, 2013
Manuscript revised July 20, 2013

An Efficient Approach Concurrency Control in Database
Management System: A Performance Analysis

Radha Krishna Rambol, Zafar Imam and N. Ahmad

University Department Statistics and Computer Applications
T. M. Bhagalpur University, Bhagalpur-812007, India

Abstract
The traditional pessimistic lock-based concurrency control
mechanism which focuses on the data’s consistency and the
transactions’ concurrency cannot meet the demand that the in-
time database systems make on the temporal consistency. This
paper presents a new concurrency control method which is based
on the locking, multi-version and single phase commit protocol
concurrency control mechanisms, after the improvement of the
concurrency control protocol for in-time transactions.
Furthermore, we have adopted a method which is based on
different concurrency control mechanisms according to the
idiographic situation. In this way it can effectively improve the
concurrency of transactions and increase the amount of the
transactions completed within the deadline and through this
database can make efficient.
Keywords
Commit protocol, Deadline, Concurrency control, EDBMS,
DBMS

1. Introduction

Recently several algorithms have been proposed for
concurrency control in a Database Management System
(DBMS) (see ref. [1 - 14]). The various research efforts are
examining the concurrency control algorithms developed
for DBMSs (see ref. [1 - 15]). The Efficient Database
Management Systems (EDBMS) have shown the timing
constraint of both data and transactions. The traditional
lock-based pessimistic concurrency control mechanisms
two phase high priority locking protocol can guarantee the
transactions serializable, so as to powerfully guarantee the
consistency of data. However, because of a high rate of
restart of transactions, it cannot satisfy the need of the time
management database systems very well. Whereas the
optimistic concurrency control mechanism believes that the
probability of any two concurrent transactions requesting
the same database is seldom. The Multi-version and single
phase commit Concurrency Control Protocol are kind of
the optimistic concurrency control mechanisms which
makes the transaction has a large degree of concurrency by
maintaining multiple versions of data items with
conformation of transaction in-time constraints. So it is
more suitable for efficient database management systems
where the transaction has a low rate of restart and delay of

cut-off time but a high degree of concurrency. A
transaction is normally considered as a program unit that
must be executed in its atomicity standard.
The module of a database management system (DBMS)
that is responsible for transaction execution is a transaction
manager. An objective in most database management
systems is to execute multiple transactions concurrently.
Generally, transactions could interfere with one another
and, as a result, could cause the database to be inconsistent.
The techniques that have been developed to ensure the
consistency of a database in the midst of concurrent
transaction execution are called concurrency control
techniques ([2], [3]). This is based on locking protocol
system, which is one of the best protocols in database
management system. When transactions are executed in a
multilevel environment in addition to consistency, it must
be ensured that the access control policy enforced by the
system is not violated and transactions executing on behalf
of higher level users do not interfere with those executing
at a lower level. While transaction management techniques
are relatively mature for traditional database applications
(such as banking and business data processing), it is only
recently that concurrency control techniques are being
examined for a multilevel database environment. In other
words, the developments in multilevel database
concurrency control are more than a decade behind the
developments in database concurrency control.
Furthermore, during recent years, database concurrency
control has progressed beyond traditional applications and
techniques are now being developed for advanced
applications. Such applications involve heterogeneous
environments, real-time processing, long duration
transactions, and collaborative computing environments.
Furthermore, theory of database concurrency control is
sufficiently developed for traditional database applications.
Therefore, much needs to be done on concurrency control
for multilevel database applications. A new concurrency
control method which is based on the locking and multi-
version with single phase commit option used to maintain
the concurrency control mechanisms. In this way it can
effectively improve the concurrency of transactions and
increase the amount of the transactions completed within
the deadline.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

30

2. Review of Transactions

In the multi-version systems of the, the real-time
transactions can be divided into three categories according
to the multi-version concurrency control mechanism:
Read-only Transaction (Tr): Always read the data elements
that are the maximum timestamp with a less than or equal
Tr in timestamp TS (Tr). In other words, the read-only
transaction reads the most recent version of the data before
it, so reading-reading conflict or the reading-writing
conflict will not happen. Tr never fails (see ref. [8]).
Write-only Transaction (Tw): The old data elements are not
modified. But a new version of data elements will be
created which is given by Tw as timestamp TS (Tw). So
writing-writing conflict will not happen and Tw will not be
blocked by other transactions ([9]).
Data-processing Transaction (Tp): It not only reads the data
elements, but also writes a new version of data elements.
So writing- writing conflict between Tp’s is likely to
happen ([7]). From the above analysis we can see that in
the multi-version systems of database writing-writing
conflict between the data-processing transactions must be
effectively resolved in order to improve the system’s
performance. This leads to propose a new concurrency
control mechanism. This mechanism uses the concurrency
control methods of combining the optimistic multi-version
with single phase commit protocol and the pessimistic
blockade two phase high priority protocols so as to increase
the rate of success of the transaction.

3. The Description of New Approach

After the usage of the new method, Tr, Tw will not fail. The
resolution of the conflicts among transactions in Tp will be
based on the following principles.
In multi-version systems of efficient database, the
transaction priority P(T) is mainly determined by
Deadline(T), in our paper work, we used the following
formula for deadline calculation:

 D(T) = A(T) + SF(T) * E(T) (1)

In equation (1) where D(T) and A(T) are the deadline and
arrival time of transaction T, respectively, and E(T) is the
expected execution time of the largest possible transaction
(a transaction accessing 1.5 *TransSize pages). SF(T) is a
slack factor that varies uniformly over the range set by the
workload parameters LSF (Low slack factor) and HSF
(High slack factor), and it determines the
tightness/slackness of deadlines. The Arrival Rate
parameter specifies the mean rate of transaction arrivals.
The number of pages accessed by a transaction varies
uniformly between 0.5 and 1.5 times TransSize. Page
requests are generated from a uniform distribution (without

replacement) spanning the entire database. WriteProb gives
the probability of a page that is read being also updated
([11-14]). In multi-version systems of efficient database,
the transaction priority P(T) is mainly determined by
Deadline(T), that is, ∀ 𝐴1,𝐴2 ∈ 𝐴, located

Deadline(T1) ＞＝Deadline(T2),
then

P(T1) ＜＝ P(T2),

the high-priority transaction will gain the priority of
implementation; order O on behalf of data elements of the
conflict, ∀ 𝐴𝑖,𝐴𝑗 ∈ 𝑇𝑝 , P(T i) ＜ P(T j), T i, T j in the
conflict of O, then T i ,T j will be in following manner:

• T i, T j can deal with the different data items O
without disturbing each other, then O will be
divided into smaller data items, change the block
size of data, and allow low-priority transaction to
inherit high-priority transaction’s priority, and
assume P(T i) ＝P(T j) which makes that T i, T j can
perform simultaneously with helping each other.
Of course, this approach may have some errors, so
these errors must be calculated before the
submitting phase, if they are in the permitting
extent in systems of the efficient database to
generate a new version of data items and set O’s
timestamp by the final submission of the
transaction. This method can effectively reduce
the blocking time in the conflict of the low-
priority transaction and the rate of restart in
reducing the transaction.

• O has the atomicity which cannot be divided
further, T i, T j are likely to have conflicts and if
using the optimistic mechanism of the commit
confirmation, the rollback of transaction is almost
inevitable, so in this case blockade mechanism is
still used to save resources, and at the same time,
the traditional two phase high priority lock means
of resolving conflicts have to cause low-priority
transactions to restart, which will make the
number of transactions for delaying deadline
increase. Therefore, according to the mechanisms
of commit confirmation improvements will be
made as follows:

• In efficient database systems, Execution Time (T)
of transaction is predictable. When the requested
data is possessed by T i, P(T i) ＜ P(T j), instead of
immediate restart of T i, first of all weigh the
conditions before making a decision:

DeadTime = min (Deadline (T i), Deadline (T j));

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

31

// Order DeadTime as the less one between Deadline (T i)
and Deadline (T j);

If ((Current time + T i’s remained time of the execution +
Execution Time (T j)) < DeadTime)

Then
{

P(T i) = P(T j);
 // Low-priority transaction inherits the priority of high-
priority one, which improves Ti’s priority, thus
accelerating their implementation;

Implementation of the T i comes to the end;

 // T j waits for T i’s completion and the release of the lock
on O;

 T j obtains the lock on O and starts the implementation
until the completion;
}

Else

if ((current time + T i’s remained time of the execution +
Execution Time (T j)) ＜ Deadline(T i)
&& Deadline (T i) > Deadline (T j))

Then

{

T i dies; // T i releases the lock on O;

T j obtains the lock on O and starts the implementation until
the completion;

 // Ti waits for T j’s completion and the release of the lock
on O;

Ti obtains the lock on O and starts the implementation until
the completion;

}

Else

// Abandon the blockade mechanism, adopt the mechanism
of commit confirmation in order to maximize the number
of transactions completed within the deadline

{

Ti dies; // T i releases the lock on O;

Start T j’s implementation;

// There is no data locked any longer

Start T i’s implementation;

// T j, T i simultaneously start implementation;

If T j finds the risk when commit is confirmed

Then

{

T i dies;
// Finding the risk, unconditionally put an end to low-
priority transactions to ensure that high-priority
transactions can be successfully implemented;

 commit T j;
}

Else
{
commit T j;

commit T i;
 // Operations of T i, T j 's reading and writing can just
performed in time to a serial implementation, this can be
successfully completed by the commit conformation;

}
Endif
}
Endif
Endif

As for the transactions’ conflicts between data elements
which cannot be further divided, if the order of the
implementation of transactions can still meet the need of
their deadline, the priority-inheritance mechanism can be
used without changing the order of the implementation of
transactions , then use the blockade mechanism to make
transactions serialized to save the expense, or abandon the
blockade mechanism to use the mechanism of commit
conformation so as to minimize the rate of transactions’
delaying deadline.

4. Performance Analysis

Through the testing comparison between the new and
traditional methods, shows how transaction’s different
inter-arrival time affects the transaction’s restart [16]. From
the above description we can see, as the interval increases,

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

32

the rate of restart becomes small due to the less opportunity
of conflicts. But when the interval is not long, the new
method is significantly better than traditional one. The
performance of efficient database systems has a
fundamentally different target compared with the
traditional one. The efficient database systems require the
number of transactions completed within the deadline for
the largest rather than the number of concurrent transaction
for execution to maintain the largest [4].
The new method makes read-only and write-only
transactions never fail and avoids their unnecessary restart.
It effectively saves the system’s expense and improves the
system’s throughput. As for the data-processing
transactions, the new method makes the same data
elements operate on different data items of the transaction
without interfering but collaborating with each other by
changing dynamically the data elements of the block size;
when it comes to the data elements which cannot be
divided, according to the idiographic situation this method
can adaptively use the blockade mechanism and the
mechanisms of valid confirmation for the implementation
of the conflicts and create a new version of data elements
to improve the concurrency degree of transaction and the
amount of transactions completed before deadline. In
summary, in different situations the new method can
flexibly take advantage of the traditional concurrency
control mechanism with multiple versions, blockade, and
commit confirmation, it can improve the concurrency of
the system, save effectively the expense of the system.
Compared with the traditional concurrency control
mechanisms, the improved one is better on performance.

5. Conclusion

As the efficient database systems have a strong time
constraint for the transactions and data, and the traditional
concurrency control mechanisms cannot meet their needs
very well. After the improvement of the concurrency
control protocol, this new approach will present a new
concurrency control method. With strong self adaptability,
this method is able to use different concurrency control
mechanisms according to different situations. Overall
performance may be improved by 20-30%. It can also
effectively improve the performance of system.

Acknowledgements

The authors are grateful to the Editor in Chief and the
learned Reviewers for their valuable comments and
suggestions to improve the manuscript.

References
[1] J. E. Armendariz. Design and Implementation of Database

Replication Protocols in the MADIS Architecture. PhD

thesis, Universidad Publican de Navarra, Pamplona Spain,
Feb, 2006.

[2] Bernstein, P. A., V. Hadzilacos, and Goodman, N., 1987,
Concurrency Control and Recovery in Database Systems,
Addison-Wesley Publishing Company.

[3] Keefe, T., W.T. Tsai, and J. Srivastava, 1989, Database
Concurrency Control in Multilevel, Secure Database
Management Systems, Technical Report 89-73, University of
Minnesota (a version also published in the Proceedings of
the 6th IEEE Data Engineering Conference).

[4] Keefe, T., and W.T. Tsai, 1990, "Multiversion Concurrency
Control for Multilevel Secure Database Systems Proceedings
of the IEEE Symposium on Security and Privacy”, Oakland,
CA.

[5] Maimone, W„ and I. Greenberg, 1990, "Single-level
Multiversion Schedulers for Multilevel Secure Database
Systems, “Proceedings of the 6th Computer Security
Applications Conference, Tucson, AZ.

[6] Jajodia, S., and B. Kogan, 1990, "Transaction Processing in
Multilevel Secure Databases Using the Replicated
Architecture," Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA.

[7] Costich, O., and J. McDermott, 1992, "A Multilevel
Transaction Problem for Multilevel Secure Database
Systems and Its Solution for the Replicated Architecture,"
Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA.

[8] Costich, O., and S. Jajodia, 1992, "Maintaining Multilevel
Transaction Atomicity in MLS Database Systems with
Kernelized Architecture," Proceedings of the 6th IFIP
Working Conference in Database Security, Vancouver,
British Columbia.

[9] K. Ramamritham. Real-time databases. Distributed and
Parallel Databases, 1(2):199.226, 1993.

[10] Bernstein, P. A., V. Hadzilacos, and Goodman, N., 1987,
Concurrency Control and Recovery in Database Systems,
Addison-Wesley Publishing Company.

[11] J. Haritsa, M. Carey, and M. Livny, “Earliest-Deadline
Scheduling for Real-Time Database Systems,” Proc. 12th
IEEE Real-Time Systems Symp., San Antonio, Tex., Dec.
1991.

[12] J.R Haritsa., M. Carey and M. Livny, “Data access
scheduling in firm realtime database systems”, Journal of
RTS, vol.4, no 3, p. 203-241, 1992.

[13] K. Ramamritham, J. Stankovic, P. Shiah, "Efficient
Scheduling Algorithms for Real-Time Multiprocessor
Systems," IEEE Transactions on Parallel and Distributed
Systems, Vol. 1, No. 2, pp. 184-194, April 1990.

[14] L. Baccouche and I. Balti “Distributed real-time transaction
execution control”, technical report INSAT 01_05, INSAT,
Computer Science Department, January 2005.

[15] Rambol, R. K., Ahmad, N. and Sharma, B. K., “Efficient
Data Accessing through Heterogeneous ERP Solution”,
International Journal of Computer Applications, Vol. 53 (6),
pp.14–17, 2012.

[16] Farooq, S. U., Quadri, S. M. K. and Ahmad, N., “Software
Measurements and Metrics: Role in Effective Software
Testing”, International Journal of Engineering Science and
Technology, Vol. 3 (1), pp. 671 – 680, 2011.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

33

Radha Krishna Rambola is a research
scholar in University Department of
Statistics and Computer Applications at
Tilka Manjhi Bhagalpur University
(TMBU), Bhagalpur, India. He is working
as an Asst. Professor at Asia Pacific
Institute of Information Technology SD
India. Which is International Engineering
College affiliated from Staffordshire

University (UK). He is having Over 13 years of experience in
teaching and industry with Engineering technology uses
Languages, System Analysis and Design, Software Development
Project, Project Management, Database Management System and
Engineering related subjects with deep experience of ERP. He is
B.E (Computer Science and Engineering) from University of
Madras in 1998, M. Tech (CSE) from Allahabad Agricultural
Deemed University, Allahabad (In year 2006). His interest area of
research is Database management system, Concurrency Control
and Data Mining. Rambola is IBM DB2 & Web Sphere certified.
He is a member of IEEE.

Md Zafar Imam is a research scholar in
University Department of Statistics and
Computer Applications at Tilka Manjhi
Bhagalpur University (TMBU), Bhagalpur,
India. He is working as a teaching faculty
in Bachelor of Information Technology in
Marwari College in the university of Tilka
Manjhi Bhagalpur University, Bhagalpur,
India, since 2010. He graduated from Tilka

Manjhi Bhagalpur university with a B. Sc in Physics in 2001,
MCA in 2008. He is currently a Ph.D. candidate in University
Department of Statistics and Computer Applications, at Tilka
Manjhi Bhagalpur University, Bhagalpur. His main research
interest includes software testing, and software reliability analysis.

Nesar Ahmad is an Associate Professor
and Head in University Department of
Statistics and Computer Applications at
Tilka Manjhi Bhagalpur University
(TMBU), Bhagalpur, India. He received the
B. Sc. degree in Mathematics from Bihar
University, India, in 1984 and the M. Sc.,
M. Phil., and Ph. D. degree in Statistics

from Aligarh Muslim University, Aligarh, India, in 1987, 1990,
and 1993, respectively. From 1995 to 1996 he was a research
associate of UGC/CSIR at Aligarh Muslim University, Aligarh.
He has been a Lecturer in Statistics from January 2006 to
December 2009 at the University of the South Pacific, Suva, Fiji
Islands. After working five months as a lecturer at Poona College,
Pune, he joined the University Department of Statistics and
Computer Applications at TMBU, Bhagalpur, India in 1996. He
has about 17 years of experience in teaching and research. His
research interests include life testing, statistical modeling,
reliability analysis, software testing, software reliability
engineering and optimization. He has published more than 50
papers in journals, and conferences in these areas. He is in the
editorial board of International Journal of Scientific and Statistical
Computing (IJSSC) and Journal of Convergence Information
Technology (JCIT). Ahmad is life member of Indian Science

Congress and Bihar Journal of Mathematical Society, and regular
member of Aligarh Statistical Association.

